Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of wh-CQDs
2.3. Characterizations
2.4. QY Calculations
2.5. Stability of wh-CQDs
2.6. Sensitivity and Selective Detection of Fe3+ Ions
2.7. Cell Viability Assay
2.8. Cell Imaging
2.9. Flow Cytometry Analysis of Intracellular wh-CQDs
3. Results and Discussion
3.1. Synthesis and Characterization of wh-CQDs
3.2. Optical Properties of wh-CQDs
3.3. Stability of wh-CQDs
3.4. Fluorescent and Colorimetric Detection of Fe3+
3.5. Cytotoxicity and Cell Imaging
3.6. Flow Cytometry Analysis of Intracellular wh-CQDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raja, S.; Buhl, E.M.; Dreschers, S.; Schalla, C.; Zenke, M.; Sechi, A.; Mattoso, L.H.C. Curaua-derived carbon dots: Fluorescent probes for effective Fe(III) ion detection, cellular labeling and bioimaging. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; He, B.; Feng, M. Synthesis and modification of biomass derived carbon dots in ionic liquids and their application: A mini review. GreenChE 2020, 1, 15. [Google Scholar] [CrossRef]
- Rawat, S.; Mishra, R.K.; Bhaskar, T. Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 2022, 286, 131961. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Y.; Li, Y.X.; Liu, C.; Li, Y.; Qian, M.M.; Zhu, Y.C.; Wang, X.F. Controllable conversion of biomass to lignin-silica hybrid nanoparticles: High-performance renewable dual-phase fillers. Waste Manag. 2021, 135, 381–388. [Google Scholar] [CrossRef]
- Rajamohan, N.; Al Shibli, F.S.Z.S. Synthesis and application of carbon substrate nano material from biomass for surface protection - Effect of variables, electrochemical and isotherm studies. Chemosphere 2022, 292, 133479. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, L.; Liu, X.Y.; Li, Y.X.; Wu, Y.P.; Zhu, Y.C.; Wang, X.F. N-Enriched Porous Carbon/SiO2 Composites Derived from Biomass Rice Husks for Boosting Li-Ion Storage: Insight into the Effect of N-Doping. Chemistry 2021, 27, 10749–10757. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.X.; Zhang, M.M.; Yu, M.W.; Chen, H.; Yang, H.W.; Xu, Q. One-step synthesis of mixed valence FeOX nanoparticles supported on biomass activated carbon for degradation of bisphenol A by activating peroxydisulfate. J. Hazard Mater. 2021, 409, 124990. [Google Scholar] [CrossRef]
- Li, D.; Yang, T.X.; Liu, Z.G.; Xia, Y.; Chen, Z.L.; Yang, S.S.; Gai, C.; Bhatnagar, A.; Ng, Y.H.; Ok, Y.S. Green synthesis of graphite-based photo-Fenton nanocatalyst from waste tar via a self-reduction and solvent-free strategy. Sci. Total Environ. 2022, 824, 153772. [Google Scholar] [CrossRef]
- Zha, Y.C.; Xin, R.J.; Zhang, M.Y.; Cui, X.; Li, N. Stimuli-responsive azobenzene-quantum dots for multi-sensing of dithionite, hypochlorite, and azoreductase. Mikrochim. Acta 2020, 187, 481. [Google Scholar] [CrossRef]
- Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 2013, 65, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Min, H.; Qi, Y.Q.; Chen, Y.H.; Zhang, Y.L.; Han, X.X.; Xu, Y.; Liu, Y.; Hu, J.S.; Liu, H.B.; Li, Y.Y.; et al. Synthesis and Imaging of Biocompatible Graphdiyne Quantum Dots. ACS Appl. Mater. Interfaces 2019, 11, 32798–32807. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.M.; Yang, H.; Zhou, B.; Chen, Y.; Yang, M.; Wei, K.S.; Yan, X.F.; Kang, C. Waste tobacco leaves derived carbon dots for tetracycline detection: Improving quantitative accuracy with the aid of chemometric model. Anal. Chim. Acta 2022, 1191, 339269. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, Y.; Cao, L.P.; Jiang, Y.J.; Li, Y.F.; Zou, H.Y.; Zhan, L.; Huang, C.Z. Self-Targeting Carbon Quantum Dots for Peroxynitrite Detection and Imaging in Live Cells. Anal. Chem. 2021, 93, 16466–16473. [Google Scholar] [CrossRef]
- Chen, Y.N.; Cheng, H.X.; Wang, W.N.; Jin, Z.; Liu, Q.; Yang, H.Y.; Cao, Y.; Li, W.D.; Fakhri, A.; Gupta, V.K. Preparation of carbon dots-hematite quantum dots-loaded hydroxypropyl cellulose-chitosan nanocomposites for drug delivery, sunlight catalytic and antimicrobial application. J. Photochem. Photobiol. B 2021, 219, 112201. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Luo, Q.; Zhang, J.; Chen, P.; Wang, H.J.; Luo, K.; Yu, X.Q. Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale 2019, 11, 12973–12982. [Google Scholar] [CrossRef]
- Qureashi, A.; Pandith, A.H.; Bashir, A.; Malik, L.A. Biomass-derived carbon quantum dots: A novel and sustainable fluorescent “ON-OFF-ON” sensor for ferric ions. Anal. Methods 2021, 13, 4756–4766. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Cheng, F.C.; Cai, H.C.; Li, X.R.; Sun, J.P.; Wu, Y.Q.; Wang, N.N.; Zhu, Y.Q. Robust versatile nanocellulose/polyvinyl alcohol/carbon dot hydrogels for biomechanical sensing. Carbohydr. Polym. 2021, 259, 117753. [Google Scholar] [CrossRef]
- Zairov, R.R.; Dovzhenko, A.P.; Sarkanich, K.A.; Nizameev, I.R.; Luzhetskiy, A.V.; Sudakova, S.N.; Podyachev, S.N.; Burilov, V.A.; Vatsouro, I.M.; Vomiero, A.; et al. Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer. Nanomaterial 2021, 11, 3080. [Google Scholar] [CrossRef]
- Zhu, S.J.; Song, Y.B.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2016, 13, 10–14. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Leonardos, I.; Troganis, A.; Stalikas, C. Human fingernails as an intriguing precursor for the synthesis of nitrogen and sulfur-doped carbon dots with strong fluorescent properties: Analytical and bioimaging applications. Sens. Actuators B Chem. 2018, 267, 494–501. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, S.W.; Qi, S.H.; Song, W.J.; Sun, C.Y. Facile and High-yield Synthesis of N-doped Carbon Quantum Dots from Biomass Quinoa Saponin for the Detection of Co2+. J. Anal. Methods Chem. 2021, 2021, 9732364. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Mundekkad, D.; Mukherjee, A.; Chaudhary, S.; Umar, A.; Baskoutas, S. Coconut Carbon Dots: Progressive Large-Scale Synthesis, Detailed Biological Activities and Smart Sensing Aptitudes towards Tyrosine. Nanomaterials 2022, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.X.; Wang, B.Y.; Ai, L.; Song, H.Q.; Lu, S.Y. Engineering white light-emitting diodes with high color rendering index from biomass carbonized polymer dots. J. Colloid Interface Sci. 2021, 598, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, M.; Dhinasekaran, D.; Soundharraj, P.; Rajendran, S.; Vo, D.N.; Prakasarao, A.; Ganesan, S. Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications. J. Hazard Mater. 2021, 416, 125091. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Zhu, Y.F.; Tong, C.Y.; Shi, S.Y.; Long, R.Q.; Guo, Y. Simultaneous sensing gamma-glutamyl transpeptidase and alkaline phosphatase by robust dual-emission carbon dots. Anal. Chim. Acta 2021, 1178, 338829. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, M.W.; Chen, L.G.; Niu, N. Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium. Mikrochim. Acta 2021, 188, 297. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Cai, Z.; You, S.J.; Sun, Y.B.; Dai, Y.; Wang, R.Y.; Shao, S.L.; Zou, J.L. Corn Stalk-Derived Carbon Quantum Dots with Abundant Amino Groups as a Selective-Layer Modifier for Enhancing Chlorine Resistance of Membranes. ACS Appl. Mater. Interfaces 2021, 13, 22621–22634. [Google Scholar] [CrossRef]
- Chan, M.H.; Chen, B.G.; Ngo, L.T.; Huang, W.T.; Li, C.H.; Liu, R.S.; Hsiao, M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021, 13, 1874. [Google Scholar] [CrossRef]
- Liang, C.Z.; Xie, X.B.; Zhang, D.D.; Feng, J.; Lu, S.Y.; Shi, Q.S. Biomass carbon dots derived from Wedelia trilobata for the direct detection of glutathione and their imaging application in living cells. J. Mater. Chem. B 2021, 9, 5670–5681. [Google Scholar] [CrossRef]
- Zhou, J.D.; Ge, M.; Han, Y.Q.; Ni, J.X.; Huang, X.; Han, S.Y.; Peng, Z.B.; Li, Y.D.; Li, S.J. Preparation of Biomass-Based Carbon Dots with Aggregation Luminescence Enhancement from Hydrogenated Rosin for Biological Imaging and Detection of Fe3+. ACS Omega 2020, 5, 11842–11848. [Google Scholar] [CrossRef]
- Shen, J.; Shang, S.M.; Chen, X.Y.; Wang, D.; Cai, Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 856–864. [Google Scholar] [CrossRef]
- Sharma, N.; Das, G.S.; Yun, K. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Appl. Microbiol. Biotechnol. 2020, 104, 7187–7200. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.B.; Jiao, L.; Zhou, X.L.; Guo, Z.Y.; Bian, H.Y.; Dai, H.Q. Highly fluorescent graphene quantum dots from biorefinery waste for tri-channel sensitive detection of Fe3+ ions. J. Hazard Mater. 2021, 412, 125096. [Google Scholar] [CrossRef] [PubMed]
- Safranko, S.; Stankovic, A.; Hajra, S.; Kim, H.J.; Strelec, I.; Dutour-Sikiric, M.; Weber, I.; Bosnar, M.H.; Grbcic, P.; Pavelic, S.K.; et al. Preparation of Multifunctional N-Doped Carbon Quantum Dots from Citrus clementina Peel: Investigating Targeted Pharmacological Activities and the Potential Application for Fe3+ Sensing. Pharmaceuticals 2021, 14, 857. [Google Scholar] [CrossRef] [PubMed]
- Architha, N.; Ragupathi, M.; Shobana, C.; Selvankumar, T.; Kumar, P.; Lee, Y.S.; Kalai Selvan, R. Microwave-assisted green synthesis of fl uorescent carbon quantum dots from Mexican Mint extract for Fe(3+) detection and bio-imaging applications. Environ. Res. 2021, 199, 111263. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, J.; Song, W.; Xiao, L.P. Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Front. Bioeng. Biotechnol. 2021, 9, 803138. [Google Scholar] [CrossRef]
- Paul, A.; Kurian, M. N-doped photoluminescent carbon dots from water hyacinth for tumour detection. Mater. Today Proc. 2020, 25, 213–217. [Google Scholar] [CrossRef]
- Gong, N.Q.; Wang, H.; Li, S.; Deng, Y.L.; Chen, X.A.; Ye, L.; Gu, W. Microwave-Assisted Polyol Synthesis of Gadolinium-Doped Green Luminescent Carbon Dots as a Bimodal Nanoprobe. Langmuir 2014, 30, 10933–10939. [Google Scholar] [CrossRef]
- Li, C.J.; Wang, Y.Q.; Zhang, X.J.; Guo, X.L.; Kang, X.X.; Du, L.B.; Liu, Y. Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells. J. Colloid Interface Sci. 2018, 526, 487–496. [Google Scholar] [CrossRef]
- Baccile, N.; Laurent, G.; Babonneau, F.; Fayon, F.; Titirici, M.M.; Antonietti, M. Structural Characterization of Hydrothermal Carbon Spheres by Advanced Solid-State MAS 13C NMR Investigations. J. Phys. Chem. C 2009, 113, 9644–9654. [Google Scholar] [CrossRef] [Green Version]
- Falco, C.; Perez Caballero, F.; Babonneau, F.; Gervais, C.; Laurent, G.; Titirici, M.M.; Baccile, N. Hydrothermal carbon from biomass: Structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir 2011, 27, 14460–14471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagathesan, G.; Rajiv, P. Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal. Agric. Biotechnol. 2017, 13, 90–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, S.Y.; Li, Y.B.; Ding, P.F.; Zhang, Y.G.; Zhao, P. Green-synthesized nickel oxide nanoparticles enhances biohydrogen production of Klebsiella sp. WL1316 using lignocellulosic hydrolysate and its regulatory mechanism. Fuel 2021, 305, 121585. [Google Scholar] [CrossRef]
- Tian, T.; Zhong, Y.P.; Deng, C.; Wang, H.; He, Y.; Ge, Y.L.; Song, G.W. Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta 2017, 162, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Diao, H.P.; Li, T.T.; Zhang, R.; Kang, Y.; Liu, W.; Cui, Y.H.; Wei, S.Y.; Wang, N.; Li, L.; Wang, H.J.; et al. Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 200, 226–234. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Atchudan, R.; Perumal, S.; Salama, E.S.; Lee, Y.R.; Jeon, B.H. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 2022, 286, 131764. [Google Scholar] [CrossRef]
- Bu, Y.M.; Yu, L.; Su, P.C.; Wang, L.X.; Sun, Z.L.; Sun, M.T.; Wang, X.K.; Huang, D.J.; Wang, S.H. Green-emitting carbon quantum dots as a dual-mode fluorescent and colorimetric sensor for hypochlorite. Anal. Bioanal. Chem. 2022, 414, 2651–2660. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Tian, J.K.; Wang, G.C.; Luo, W.K.; Huang, Z.B.; Huang, Y.; Li, N.; Guo, M.M.; Fan, X.G. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma. J. Nanobiotechnology 2022, 20, 78. [Google Scholar] [CrossRef]
- Feng, X.W.; Han, G.D.; Cai, J.H.; Wang, X.Y. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J. Colloid Interface Sci. 2022, 607, 1313–1322. [Google Scholar] [CrossRef]
- Wang, X.; Yang, P.; Feng, Q.; Meng, T.T.; Wei, J.; Xu, C.Y.; Han, J.Q. Green Preparation of Fluorescent Carbon Quantum Dots from Cyanobacteria for Biological Imaging. Polymers 2019, 11, 616. [Google Scholar] [CrossRef] [Green Version]
- Chellasamy, G.; Arumugasamy, S.K.; Govindaraju, S.; Yun, K. Green synthesized carbon quantum dots from maple tree leaves for biosensing of Cesium and electrocatalytic oxidation of glycerol. Chemosphere 2022, 287, 131915. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.G.; Cai, C.Z.; Lin, H.W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. Engl. 2015, 54, 5360–5363. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Hong, L.; Zhang, L.; Liu, H.; Shang, S.M. Nitrogen and sulfur co-doped highly luminescent carbon dots for sensitive detection of Cd (II) ions and living cell imaging applications. J. Photochem. Photobiol. B 2018, 186, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Bharathi, D.; Siddlingeshwar, B.; Krishna, R.H.; Singh, V.; Kottam, N.; Divakar, D.D.; Alkheraif, A.A. Green and Cost Effective Synthesis of Fluorescent Carbon Quantum Dots for Dopamine Detection. J. Fluoresc. 2018, 28, 573–579. [Google Scholar] [CrossRef]
- Magdy, G.; Abdel Hakiem, A.F.; Belal, F.; Abdel-Megied, A.M. Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples. Food Chem. 2021, 343, 128539. [Google Scholar] [CrossRef]
- Zhu, J.T.; Chu, H.Y.; Shen, J.W.; Wang, C.Z.; Wei, Y.M. Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome c in serum and temperature sensing. J. Colloid Interface Sci. 2021, 586, 683–691. [Google Scholar] [CrossRef]
- Chang, D.; Zhao, Z.H.; Shi, L.H.; Liu, W.L.; Yang, Y.X. Lysosome-targeted carbon dots for colorimetric and fluorescent dual mode detection of iron ion, in vitro and in vivo imaging. Talanta 2021, 232, 122423. [Google Scholar] [CrossRef]
- Du, F.Y.; Cheng, Z.F.; Tan, W.; Sun, L.S.; Ruan, G.H. Development of sulfur doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe2+ and Fe3+ ions in oral ferrous gluconate samples. Spectrochim. Acta A 2020, 226, 117602. [Google Scholar] [CrossRef]
- Yi, Z.H.; Li, X.M.; Zhang, H.Y.; Ji, X.L.; Sun, W.; Yu, Y.X.; Liu, Y.A.; Huang, J.X.; Sarshar, Z.; Sain, M. High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta 2021, 222, 121663. [Google Scholar] [CrossRef]
- Du, J.Y.; Yang, Y.; Shao, T.L.; Qi, S.Q.; Zhang, P.; Zhuo, S.J.; Zhu, C.Q. Yellow emission carbon dots for highly selective and sensitive OFF-ON sensing of ferric and pyrophosphate ions in living cells. J. Colloid Interface Sci. 2011, 587, 376–384. [Google Scholar] [CrossRef]
- He, Y.Y.; Wang, Y.B.; Mao, G.N.; Liang, C.Y.; Fan, M. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions. Anal. Chim. Acta 2022, 1191, 339251. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Liu, S.Y. Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal. Chim. Acta 2020, 1105, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.K.; Mo, L.Q.; Li, Y.D.; Pan, X.Q.; Hu, G.Q.; Lei, B.F.; Zhang, X.J.; Zheng, M.T.; Zhuang, J.L.; Liu, Y.L.; et al. Construction of Carbon Dots with Color-Tunable Aggregation-Induced Emission by Nitrogen-Induced Intramolecular Charge Transfer. Adv. Mater. 2021, 33, 2104872. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.A.; Srivastava, I.; Pan, D.P.J.; Gruebele, M. Unraveling the Fluorescence Mechanism of Carbon Dots with Sub-Single-Particle Resolution. Acs Nano 2020, 14, 6127–6137. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Sun, Y.Q.; Li, Z.H.; Yang, R.; Zhao, Y.M.; Guo, Y.F.; Xu, J.J.; Li, F.T.; Wang, Y.; Lu, S.Y.; et al. Retrosynthesis of Tunable Fluorescent Carbon Dots for Precise Long-Term Mitochondrial Tracking. Small 2019, 15, 1901517. [Google Scholar] [CrossRef]
Sensing Platform | Carbon Source | Synthesis Method | Linear Range (μM) | LOD (μM) | R2 | Ref. |
---|---|---|---|---|---|---|
Nitrogen-doped carbon dots | Poa pratensis | Carbonization | 5–25 | 1.4 | 0.997 | [47] |
C-dots | Ananas erectifolius | Hydrothermal | 0–30 | 0.77 | 0.997 | [1] |
CDs | Mint | Carbonization | 0–400 | 0.037 | 0.995 | [58] |
S-doped carbon quantum | Ascorbic acid and thioglycolic | Hydrothermal | 0–200 | 0.05 | 0.995 | [59] |
N-CDs | Diethylenetriamine | Hydrothermal | 2–50 | 10.42 | 0.996 | [60] |
Wh-CQDs | Water hyacinth | Hydrothermal | 0–330 | 0.084 | 0.996 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Zhang, Q.; Cao, J.; Qian, C.; Ye, J.; Xu, S.; Zhang, Y.; Li, Y. Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging. Nanomaterials 2022, 12, 1528. https://doi.org/10.3390/nano12091528
Zhao P, Zhang Q, Cao J, Qian C, Ye J, Xu S, Zhang Y, Li Y. Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging. Nanomaterials. 2022; 12(9):1528. https://doi.org/10.3390/nano12091528
Chicago/Turabian StyleZhao, Pei, Qin Zhang, Juanjuan Cao, Cheng Qian, Jing Ye, Siyuan Xu, Yonggui Zhang, and Yanbin Li. 2022. "Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging" Nanomaterials 12, no. 9: 1528. https://doi.org/10.3390/nano12091528
APA StyleZhao, P., Zhang, Q., Cao, J., Qian, C., Ye, J., Xu, S., Zhang, Y., & Li, Y. (2022). Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging. Nanomaterials, 12(9), 1528. https://doi.org/10.3390/nano12091528