In-Situ Imaging of a Light-Induced Modification Process in Organo-Silica Films via Time-Domain Brillouin Scattering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Chemical Composition and Porosity
2.3. Time-Domain Brillouin Scattering Technique
2.4. Thermally and Acoustically Thick Optoacoustic Transducer for TDBS
2.5. TDBS Setup Based on Asynchronous Optical Sampling (ASOPS)
2.6. Density Functional Theory
3. Results and Discussion
3.1. Chemical Composition
3.2. TDBS Data
3.3. Interpretation of TDBS Data: Origin of Brillouin Frequency Changes
3.4. Mechanism of Modification Based on Two-Photon Absorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gusev, V.E.; Ruello, P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 2018, 5, 031101. [Google Scholar] [CrossRef] [Green Version]
- Mechri, C.; Ruello, P.; Breteau, J.M.; Baklanov, M.R.; Verdonck, P.; Gusev, V. Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry. Appl. Phys. Lett. 2009, 95, 091907. [Google Scholar] [CrossRef]
- Lomonosov, A.M.; Ayouch, A.; Ruello, P.; Vaudel, G.; Baklanov, M.R.; Verdonck, P.; Zhao, L.; Gusev, V.E. Nanoscale Noncontact Subsurface Investigations of Mechanical and Optical Properties of Nanoporous Low-k Material Thin Film. ACS Nano 2012, 6, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Maex, K.; Baklanov, M.R.; Shamiryan, D.; Lacopi, F.; Brongersma, S.H.; Yanovitskaya, Z.S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841. [Google Scholar] [CrossRef]
- Baklanov, M.R.; Jousseaume, V.; Rakhimova, T.V.; Lopaev, D.V.; Mankelevich, Y.A.; Afanas’ev, V.V.; Shohet, J.L.; King, S.V.; Ryan, E.T. Impact of VUV photons on SiO2 and organosilicate low-k dielectrics: General behavior, practical applications, and atomic models. Appl. Phys. Rev. 2019, 6, 011301. [Google Scholar] [CrossRef]
- Iacopi, F.; Travaly, Y.; Eyckens, B.; Waldfried, C.; Abell, T.; Guyer, E.P.; Gage, D.M.; Dauskardt, R.H.; Sajavaara, T.; Houthoofd, K.; et al. Short-ranged structural rearangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation. J. Appl. Phys. 2006, 99, 053511. [Google Scholar] [CrossRef]
- Baklanov, M.R.; Zhao, L.; Van Besien, E.; Pantouvaki, M. Effect of porogen residue on electrical characteristics of ultra low-k materials. Microelectron. Eng. 2011, 88, 990–993. [Google Scholar] [CrossRef]
- Perevalov, T.V.; Gismatulin, A.A.; Seregin, D.S.; Wang, Y.; Xu, H.; Kruchinin, V.N.; Spesivcev, E.V.; Gritsenko, V.A.; Nasyrov, K.A.; Prosvirin, I.P.; et al. Critical properties and charge transport in ethylene bridged organosilica low-κ dielectrics. J. Appl. Phys. 2020, 127, 195105. [Google Scholar] [CrossRef]
- Jousseaume, V.; Zenasni, A.; Gourhant, O.; Favennec, L.; Baklanov, M.R. Ultra-Low-k by CVD: Deposition and Curing. In Advanced Interconnects for ULSI Technology; Baklanov, M.R., Ho, P.S., Zschech, E., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 35–77. [Google Scholar]
- Zhang, L.; de Marneffe, J.-F.; Heylen, N.; Murdoch, G.; Tokei, Z.; Boemmels, J.; De Gendt, S.; Baklanov, M.R. Damage free integration of ultralow-k dielectrics by template replacement approach. Appl. Phys. Lett. 2015, 107, 092901. [Google Scholar] [CrossRef]
- Gall, D. The search for the most conductive metal for narrow interconnect lines. J. Appl. Phys. 2020, 127, 050901. [Google Scholar] [CrossRef] [Green Version]
- Kapur, P.; McVittie, J.P.; Saraswat, K.C. Technology and reliability constrained future copper interconnects–Part I: Resistance modelling. IEEE Trans. Electr. Dev. 2002, 49, 590–597. [Google Scholar] [CrossRef]
- Adelmann, C.; Wen, L.G.; Peter, A.P.; Siew, Y.K.; Croes, K.; Swerts, J.; Popovici, M.; Sankaran, K.; Pourtois, G.; van Elshocht, S.; et al. Alternative Metals for Advanced Interconnects. In Proceedings of the 2014 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), San Jose, CA, USA, 20–23 May 2014. [Google Scholar]
- Michalak, D.J.; Blackwell, J.M.; Torres, J.M.; Sengupta, A.; Kreno, L.E.; Clarke, J.S.; Pantuso, D. Porosity scaling strategies for low-k films. J. Mater. Res. 2015, 30, 3363–3385. [Google Scholar] [CrossRef]
- Tas, G.; Maris, H.J. Electron diffusion in metals studied by picosecond ultrasonics. Phys. Rev. B 1994, 49, 15046–15054. [Google Scholar] [CrossRef] [PubMed]
- Gidley, D.W.; Peng, H.G.; Vallery, R.; Soles, C.L.; Lee, H.J.; Vogt, B.D.; Lin, E.K.; Wu, W.L.; Baklanov, M.R. Porosity of Low Dielectric Constant Materials. In Dielectric Films for Advanced Microelectronics; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 85–136. [Google Scholar]
- Baklanov, M.R.; Mogilnikov, K.P.; Polovinkin, V.; Dultsev, F.N. Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. B 2000, 18, 1385–1391. [Google Scholar] [CrossRef]
- Nye, J.F.; Lindsay, R.B. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Dil, J.G. Brillouin scattering in condensed matter. Rep. Prog. Phys. 1982, 45, 285. [Google Scholar] [CrossRef]
- Gusev, V.; Lomonosov, A.M.; Ruello, P.; Ayouch, A.; Vaudel, G. Depth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: Theory. J. Appl. Phys. 2011, 110, 124908. [Google Scholar] [CrossRef]
- Fournier, D.; Marangolo, M.; Fretigny, C. Measurement of thermal properties of bulk materials and thin films by modulated thermoreflectance (MTR). J. Appl. Phys. 2020, 128, 241101. [Google Scholar] [CrossRef]
- Cahill, D.G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 2004, 75, 5119–5122. [Google Scholar] [CrossRef]
- Minnich, A.J.; Johnson, J.A.; Schmidt, A.J.; Esfarjani, K.; Dresselhaus, M.; Nelson, K.A.; Chen, G. Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths. Phys. Rev. Lett. 2011, 107, 095901. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, W.; Bi, K.; Ma, J.; Wang, J.; Ni, Z.; Ni, Z.; Chen, Y. Heat conduction across metal and nonmetal interface containing imbedded graphene layers. Carbon 2013, 64, 61–66. [Google Scholar] [CrossRef]
- Hopkins, P.E.; Duda, J.C.; Petz, C.W.; Floro, J.A. Controlling thermal conductance through quantum dot roughening at interfaces. Phys. Rev. B 2011, 84, 035438. [Google Scholar] [CrossRef] [Green Version]
- NETA. Available online: https://www.neta-tech.com/en/ (accessed on 19 November 2021).
- Bartels, A.; Cerna, R.; Kistner, C.; Thoma, A.; Hudert, F.; Janke, C.; Dekorsy, T. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum. 2007, 78, 035107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilhaire, S.; Claeys, W.; Rampnoux, J.M.; Rossignol, C. Optical Heterodyne Sampling Device Having Probe and Pump Beams. U.S. Patent 007728317 B2, 1 June 2010. Available online: https://patentimages.storage.googleapis.com/0f/06/9d/8025f78bb9ec81/US7728317.pdf (accessed on 19 November 2021).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef] [Green Version]
- Jaguar, Version 9.6; Schrodinger, Inc.: New York, NY, USA, 2017.
- Weilbeer, C.; Sickert, M.; Naumov, S.; Schneider, C. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones. Chem. Eur. J. 2017, 23, 513–518. [Google Scholar] [CrossRef]
- Naumov, S.; Herzog, B.; Abel, B. Spectra and photorelaxation of hydroxyphenyl-benzotriazole-type UV absorbers: From monomers to nanoparticles. J. Phys. Chem. A 2020, 124, 625–632. [Google Scholar] [CrossRef]
- Vishnevskiy, A.S.; Naumov, S.; Seregin, D.S.; Wu, Y.-H.; Chuang, W.-T.; Rasadujjaman; Zhang, J.; Leu, J.; Vorotilov, K.A.; Baklanov, M.R. Effects of Methyl Terminal and Carbon Bridging Groups Ratio on Critical Properties of Porous Organosilicate-Glass Films. Materials 2020, 13, 4484. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Hirata, S.; Head-Gordon, M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314, 291–299. [Google Scholar] [CrossRef]
- Schrödinger Release 2017-2: Maestro; Schrödinger, LLC: New York, NY, USA, 2017.
- Lide, D.R. (Ed.) Handbook of Chemistry and Physics, 85th ed.; CRC: Boca Raton, FL, USA, 2004; pp. 9–52. [Google Scholar]
- Krishtab, M.; De Marneffe, J.-F.; De Gendt, S.; Baklanov, M. Plasma induced damage mitigation in spin-on self-assembly based ultra low-k dielectrics using template residues. Appl. Phys. Lett. 2017, 110, 13105. [Google Scholar] [CrossRef] [Green Version]
- Prager, L.; Marsik, P.; Wennrich, L.; Baklanov, M.; Naumov, S.; Pistol, L.; Schneider, D.; Gerlach, J.; Verdonck, P.; Buchmeiser, M. Effect of pressure on efficiency of UV curing of CVD-derived low-k material at different wavelengths. Microelectron. Eng. 2008, 85, 2094–2097. [Google Scholar] [CrossRef]
- Fan, L.-S.; Constantin, L.; Li, D.-W.; Liu, L.; Keramatnejad, K.; Azina, C.; Huang, X.; Golgir, H.R.; Lu, Y.; Ahmadi, Z.; et al. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films. Light. Sci. Appl. 2018, 7, 171777. [Google Scholar] [CrossRef] [PubMed]
- Baur, W.H. Silicon-oxygen bond lengths, bridging angles Si-O-Si and synthetic low tridymite. Acta Cryst. Section B 1977, 33, 2615–2619. [Google Scholar] [CrossRef]
- Avramov, P.V.; Kuzubov, A.A.; Fedorov, A.S.; Sorokin, P.B.; Tomilin, F.N.; Maeda, Y. Density-functional theory study of the electronic structure of thin Si/SiO2 quantum nanodots and nanowires. Phys. Rev. B. 2007, 75, 205427. [Google Scholar] [CrossRef] [Green Version]
- Baumert, T.; Grosser, M.; Thalweiser, R.; Gerber, G. Femtosecond time-resolved molecular multiphoton ionization: The Na2 system. Phys. Rev. Lett. 1991, 67, 3753–3756. [Google Scholar] [CrossRef] [Green Version]
- Irimia, D.; Janssen, M.H.M. Toward elucidating the mechanism of femtosecond pulse shaping control in photodynamics of molecules by velocity map photoelectron and ion imaging. J. Chem. Phys. 2010, 132, 234302. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-H.; Wu, C.-L.; Lin, Y.-H.; Yan, W.-L.; Shih, M.-H.; Chang, J.-H.; Wu, C.-I.; Lee, C.-K.; Lin, G.-R. Strong optical nonlinearity of the nonstoichiometric silicon carbide. J. Mater. Chem. C 2015, 3, 10164–10176. [Google Scholar] [CrossRef]
- Guo, X.; Peng, Z.; Ding, P.; Li, L.; Chen, X.; Wei, H.; Tong, Z.; Guo, L. Nonlinear optical properties of 6H-SiC and 4H-SiC in an extensive spectral range. Opt. Mater. Express 2021, 11, 1080–1092. [Google Scholar] [CrossRef]
- Yu, X.; Bian, Q.; Zhao, B.; Chang, Z.; Corkum, P.B.; Lei, S. Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization. Appl. Phys. Lett. 2013, 102, 101111. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-S.; Yang, D.-Y.; Park, S.H.; Kim, R.H. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polym. Adv. Technol. 2006, 17, 72–82. [Google Scholar] [CrossRef]
- Holzer, B.; Lunzer, M.; Rosspeintner, A.; Licari, G.; Tromayer, M.; Naumov, S.; Lumpi, D.; Horkel, E.; Hametner, C.; Ovsianikov, A.; et al. Towards efficient initiators for two-photon induced polymerization: Fine tuning of the donor/acceptor properties. Mol. Syst. Des. Eng. 2019, 4, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Parsons, G.N.; Clark, R.D. Area-Selective Deposition: Fundamentals, Applications, and Future Outlook. Chem. Mater. 2020, 32, 4920–4953. [Google Scholar] [CrossRef]
- Mackus, A.J.M.; Merkx, M.J.M.; Kessels, W.M.M. From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chem. Mater. 2018, 31, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Number | HB Time (h) | d (nm) (±6) | RI (±0.0008) | Porosity (% ±0.2) | G (GPa) (±0.5) |
---|---|---|---|---|---|
1 hN | 1 | 656 | 1.2586 | 36.4 | 3.6 |
2 hN | 2 | 587 | 1.2601 | 36.4 | 3.0 |
1 hA | 1 | 589 | 1.2611 | 36.0 | 3.0 |
2 hA | 2 | 575 | 1.2621 | 35.9 | 2.6 |
ASOPS System | JAX-M1 (NETA, Pessac, France) |
---|---|
Probe repetition frequency | 42 MHz |
Pump repetition frequency | 42.0005 MHz |
Probe wavelength | 356 nm |
Pump wavelength | 517 nm |
Pulse duration | <200 fs |
Beam diameter (1/e2) | 5 µm (objective lens of 20× magnification) |
Number of averages | 1000 |
Acquisition time for 1000 averages | 5 s |
Probe power | 1 mW, 3 mW, 6 mW, 13 mW |
Pump power | 26 mW, 50 mW, 100 mW |
OSG Fragments | Si-O-Si | Si-CH3 | CHx |
---|---|---|---|
Energy of cleavage | >8.3 eV | >6 eV | 3.4 eV |
UV wavelength | <150 nm | <200 nm | 365 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandeep, S.; Vishnevskiy, A.S.; Raetz, S.; Naumov, S.; Seregin, D.S.; Husiev, A.; Vorotilov, K.A.; Gusev, V.E.; Baklanov, M.R. In-Situ Imaging of a Light-Induced Modification Process in Organo-Silica Films via Time-Domain Brillouin Scattering. Nanomaterials 2022, 12, 1600. https://doi.org/10.3390/nano12091600
Sandeep S, Vishnevskiy AS, Raetz S, Naumov S, Seregin DS, Husiev A, Vorotilov KA, Gusev VE, Baklanov MR. In-Situ Imaging of a Light-Induced Modification Process in Organo-Silica Films via Time-Domain Brillouin Scattering. Nanomaterials. 2022; 12(9):1600. https://doi.org/10.3390/nano12091600
Chicago/Turabian StyleSandeep, Sathyan, Alexey S. Vishnevskiy, Samuel Raetz, Sergej Naumov, Dmitry S. Seregin, Artem Husiev, Konstantin A. Vorotilov, Vitalyi E. Gusev, and Mikhail R. Baklanov. 2022. "In-Situ Imaging of a Light-Induced Modification Process in Organo-Silica Films via Time-Domain Brillouin Scattering" Nanomaterials 12, no. 9: 1600. https://doi.org/10.3390/nano12091600
APA StyleSandeep, S., Vishnevskiy, A. S., Raetz, S., Naumov, S., Seregin, D. S., Husiev, A., Vorotilov, K. A., Gusev, V. E., & Baklanov, M. R. (2022). In-Situ Imaging of a Light-Induced Modification Process in Organo-Silica Films via Time-Domain Brillouin Scattering. Nanomaterials, 12(9), 1600. https://doi.org/10.3390/nano12091600