Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins
Abstract
:1. Introduction
2. Experimental
2.1. Gas Sensor Fabrication
2.2. Gas Sensing Test
2.3. Characterization
3. Results and Discussions
3.1. Gas Sensing Properties
3.2. HPV Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bentley, K.; Dove, B.K.; Parks, S.R.; Walker, J.T.; Bennett, A.M. Hydrogen peroxide vapour decontamination of surfaces artificially contaminated with norovirus surrogate feline calicivirus. J. Hosp. Infect. 2012, 80, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Bohlooli, F.; Yamatogi, A.; Mori, S. Manganese oxides/carbon nanowall nanocomposite electrode as an efficient non-enzymatic electrochemical sensor for hydrogen peroxide. Sens. Bio-Sens. Res. 2021, 31, 100392. [Google Scholar] [CrossRef]
- Garreffi, B.P.; Guo, M.; Tokranova, N.; Cady, N.C.; Castracane, J.; Levitsky, I.A. Highly sensitive and selective fluorescence sensor based on nanoporous silicon-quinoline composite for trace detection of hydrogen peroxide vapors. Sens. Actuators B Chem. 2018, 276, 466–471. [Google Scholar] [CrossRef]
- Aroutiounian, V.M.; Arakelyan, V.M.; Aleksanyan, M.S.; Shahnazaryan, G.; Kacer, P.; Picha, P.; Kovarik, J.; Pekarek, J.; Joost, B. Thin-film SnO2 and ZnO detectors of hydrogen peroxide vapors. J. Sens. Sens. Syst. 2018, 7, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Aleksanyan, M.S.; Sayunts, A.G.; Zakaryan, H.A.; Aroutiounian, V.M.; Arakelyan, V.M.; Shakhnazaryan, G.E. Influence of UV Rays on the Volt-Capacity Characteristic of SnO2:Co Sensor of Vapors of Hydrogen Peroxide. Contemp. Phys. Armen. Acad. Sci. 2020, 55, 151–156. [Google Scholar] [CrossRef]
- Korotcenkov, G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R. Rep. 2008, 61, 1–39. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Sun, S.; Wang, J.; Yan, W. One-Dimensional Nanomaterials in Resistive Gas Sensor: From Material Design to Application. Chemosensors 2021, 9, 198. [Google Scholar] [CrossRef]
- Manikandan, V. Real environment humidity-sensing ability of Nd-doped Fe2O3 sensor. Sens. Bio-Sens. Res. 2021, 33, 100439. [Google Scholar] [CrossRef]
- Vinh, N.T.; Dang, T.V.; Hang, B.T.; Le, A.-T.; Tuan, N.T.; Vinh, L.K.; Quy, N.V. Effect of ferric ion [Fe3+] and [Fe2+] on SO2 adsorption ability of γ-Fe2O3 nanoparticles for mass-type gas sensors. Sens. Actuator A Phys. 2021, 331, 112981. [Google Scholar] [CrossRef]
- Salah, B.; Ayesh, A.I. Fabrication of H2S sensitive gas sensors formed of SnO2–Fe2O3 composite nanoparticles. Mater. Chem. Phys. 2021, 266, 124597. [Google Scholar] [CrossRef]
- Sun, P.; Wang, W.; Liu, Y.; Sun, Y.; Ma, J.; Lu, G. Hydrothermal synthesis of 3D urchinlike α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B Chem. 2012, 173, 52–57. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zhou, C.; Cao, Z.; Zhang, R. ZnO rod/reduced graphene oxide sensitized by α-Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. J. Colloid Interface Sci. 2019, 554, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Aliah, H.; Syarif, D.G.; Iman, R.N.; Sawitri, A.; Darmalaksana, W.; Setiawan, A.; Malik, A.; Gumarang, P. Structure Analysis of Nanocomposite ZnO:Fe2O3 based Mineral Yarosite as Fe2O3 Source and its Application Probability. Mater. Today Proc. 2019, 13, 36–40. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, B.; Liu, H.; Zong, B.; Huang, L.; Bala, H.; Zhang, Z. Synthesis and improved gas sensing properties of ZnO/α-Fe2O3 microflowers assembled with nanosheets. Mater. Lett. 2017, 196, 149–152. [Google Scholar] [CrossRef]
- Touba, S.; Kimiagar, S. Enhancement of sensitivity and selectivity of α-Fe2O3 nanorod gas sensors by ZnO nanoparticles decoration. Mater. Sci. Semicond. Process. 2019, 102, 104603. [Google Scholar] [CrossRef]
- Fan, K.; Guo, J.; Cha, L.; Chen, Q.; Ma, J. Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing. J. Alloys Compd. 2017, 698, 336–340. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.-L.; Zhao, F.-X. Highly selective acetone sensor based on ternary Au/Fe2O3-ZnO synthesized via co-precipitation and microwave irradiation. Trans. Nonferrous Met. Soc. China 2018, 28, 137–144. [Google Scholar] [CrossRef]
- Aleksanyan, M.S. Magnetron Sputtering Techniques and Their Applications at Gas Sensors Manufacturing. Armen. J. Phys. 2019, 12, 62–67. [Google Scholar]
- Trivedi, H.; Gaganpreet; Boochani, A.; Shagya, N.; Lahiri, J.; Ghorannevis, Z.; Parmar, A.S. Investigating optical, structural and morphological properties of polycrystalline CdTe thin-film deposited by RF magnetron sputtering. Mater. Lett. X 2021, 11, 100087. [Google Scholar] [CrossRef]
- Ye, X.; Zhao, H.; Wang, Z.; Ran, P.; Xia, C.; Zheng, Z.; Huang, Y.; Cui, X.; Wang, F. Deep understanding the effect of annealing temperature on fluorescence and persistent luminescence properties of Mn doped Zn2GeO4 films deposited by RF magnetron sputtering. Appl. Surf. Sci. 2021, 570, 151192. [Google Scholar] [CrossRef]
- Appiagyei, A.B.; Banua, J.; Han, J.I. Flexible and patterned-free Ni/NiO-based temperature device on cylindrical PET fabricated by RF magnetron sputtering: Bending and washing endurance tests. J. Ind. Eng. Chem. 2021, 100, 372–382. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G.; Aroutiounian, V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. [Google Scholar] [CrossRef]
- Aleksanyan, M.S.; Sayunts, A.G.; Aroutiounian, V.M.; Shahnazaryan, G.E.; Shahkhatuni, G.H. Study of Characteristics of the Sensor Detecting of Low Concentration of Ammonia. Contemp. Phys. Armen. Acad. Sci. 2021, 56, 352–358. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Pandeeswari, R.; Jeyaprakash, B.G. High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators B Chem. 2014, 195, 206–214. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Aleksanyan, M.S.; Arakelyan, V.M.; Aroutiounian, V.M.; Shahnazaryan, G.E. Investigation of gas sensor based on In2O3:Ga2O3 film. Contemp. Phys. Armen. Acad. Sci. 2011, 46, 86–92. [Google Scholar] [CrossRef]
- Sadek, E.M.; Mansour, N.A.; Ahmed, S.M.; Abd-El-Messieh, S.L.; El-Komy, D. Synthesis, characterization and applications of poly (vinyl chloride) nanocomposites loaded with metal oxide nanoparticles. Polym. Bull. 2021, 78, 5481–5502. [Google Scholar] [CrossRef]
- Mao, N. Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation. Sci. Rep. 2019, 9, 12383. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, S. Superior Degradation Performance of Nanoporous Copper Catalysts on Methyl Orange. Metals 2021, 11, 913. [Google Scholar] [CrossRef]
- Radhakrishnan, J.K.; Getika; Kumara, M. Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO and CO2. Sens. Int. 2021, 2, 100059. [Google Scholar] [CrossRef]
- Karaduman, I.; Yıldız, D.E.; Sincar, M.M.; Acar, S. UV light activated gas sensor for NO2 detection. Mater. Sci. Semicond. Process. 2014, 28, 43–47. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, S.; Cao, Y.; Li, S.; Xie, T.; Lin, Y.; Li, Z. A highly efficient room-temperature formaldehyde gas sensor based on a Ni-doped ZnO hierarchical porous structure decorated with NiS illuminated by UV light. J. Alloys Compd. 2022, 920, 165850. [Google Scholar] [CrossRef]
- Vahidpour, F.; Oberländer, J.; Schöning, M.J. Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes. Phys. Status Solidi A 2018, 215, 1800044. [Google Scholar] [CrossRef]
- Lee, J.-S.; Jeong, D.-W.; Byun, Y.T. Porphyrin nanofiber/single-walled carbon nanotube nanocomposite-based sensors for monitoring hydrogen peroxide vapor. Sens. Actuators B Chem. 2020, 306, 127518. [Google Scholar] [CrossRef]
- Lee, D.-J.; Choi, S.-W.; Byun, Y.T. Room temperature monitoring of hydrogen peroxide vapor using platinum nanoparticles-decorated single-walled carbon nanotube networks. Sens. Actuators B Chem. 2018, 256, 744–750. [Google Scholar] [CrossRef]
- Lee, D.-J.; Kim, S.H.; Byun, Y.T. Paper-based hydrogen peroxide sensors using porphyrin with central ions of Ti. In Proceedings of the 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018. [Google Scholar]
- Chen, Q.; Yang, L.; Guo, K.; Yang, J.; Han, J.-M. Expedite Fluorescent Sensor Prototype for Hydrogen Peroxide Detection with Long-Life Test Substrates. ACS Omega 2021, 6, 11447–11457. [Google Scholar] [CrossRef]
- Liu, T.; Wang, H.; Zhang, M. Fabrication of a solid H2O2 vapor sensor using Cu(II) chelating chitosan as catalyst and PVA/NaNO2 as electrolyte. J. Mater. Sci. Mater. Electron. 2020, 31, 12561–12569. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z.; Duan, H.; Jia, D. Detection of Triacetone Triperoxide (TATP) Precursors with an Array of Sensors Based on MoS2/RGO Composites. Sensors 2019, 19, 1281. [Google Scholar] [CrossRef] [Green Version]
- Goicoechea, J.; Rivero, P.J.; Sada, S.; Arregui, F.J. Self-Referenced Optical Fiber Sensor for Hydrogen Peroxide Detection Based on LSPR of Metallic Nanoparticles in Layer-by-Layer Films. Sensors 2019, 19, 3872. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Shukla, S.K. A structurally aligned nickel oxide encapsulated polypyrrole nanocomposite for hydrogen peroxide sensing. J. Chem. Soc. Dalton Trans. 2020, 49, 8744–8754. [Google Scholar] [CrossRef] [PubMed]
- Reisert, S.; Schneider, B.; Geissler, H.; Gompel, M.; Wagner, P.; Schöning, M.J. Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range. Phys. Status Solidi A 2013, 210, 898–904. [Google Scholar] [CrossRef]
- Aghamalyan, M.A.; Hunanyan, A.A.; Aroutiounian, V.M.; Aleksanyan, M.S.; Sayunts, A.G.; Zakaryan, H.A. First-Principles Study of the Interaction of H2O2 with the SnO2 (110) Surface. Contemp. Phys. Armen. Acad. Sci. 2020, 55, 235–239. [Google Scholar] [CrossRef]
- Xie, J.; Zhou, Z.; Lian, Y.; Hao, Y.; Li, P.; Wei, Y. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram. Int. 2015, 41, 2622–2625. [Google Scholar] [CrossRef]
- Wang, J.; Shen, H.; Xia, Y.; Komarneni, S. Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceram. Int. 2021, 47, 7353–7368. [Google Scholar] [CrossRef]
- Espid, E.; Taghipour, F. UV-LED Photo-activated Chemical Gas Sensors: A Review. Crit. Rev. Solid State Mater. Sci. 2016, 42, 416–432. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664. [Google Scholar] [CrossRef]
Process | Sputtering Duration | Power of Generator | Working Pressure | Sputtering Gas | Substrate Temperature | Cathode Current | Base Pressure |
---|---|---|---|---|---|---|---|
Magnetron sputtering (RF) (Fe2O3:ZnO layer) | 25 min | 70 Wt | 2 × 10−1 Pa | Ar | 200 °C | – | 1 × 10−3 Pa |
Magnetron sputtering (DC) (Pd catalytic particles) | 5 s | – | 5 × 10−1 Pa | Ar | 200 °C | 250 mA | 3 × 10−3 Pa |
Materials | T (°C) | HPV (ppm) | Response | Reference |
---|---|---|---|---|
MnO2/Polyimide | 140 | 20 | 30% | [34] |
Porphyrin nanofiber/single-walled carbon nanotubes (SWCNTs) | RT | 0.1 | 11.25% | [35] |
(Pt-SWCNTs) | RT | 2.6 | 2.7% | [36] |
Porphyrin/polydimethylsiloxane (PDMS)/paper | RT | 2.6 | 45.4 | [37] |
Tetrabutylammonium hydroxide (TBAH) | RT | 0.013 | 25 % | [38] |
Polyvinyl alcohol (PVA)/NaNO2 | RT | 5 | 14% | [39] |
MoS2/reduced graphene oxide (RGO) | RT | 50 | 12 (~373.1%) | [40] |
Silver/gold metallic nanoparticles | RT | 100 | 50% | [41] |
NiO-en-PPy (polypyrrole) nanocomposite | RT | 225 | 1.3 | [42] |
Fe2O3:ZnO nanograins | 150 | 3 | 42 | This work |
Fe2O3:ZnO nanograins | RT | 1.5 | 12 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Kasparyan, H.; Kopecký, D. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials 2023, 13, 120. https://doi.org/10.3390/nano13010120
Aleksanyan M, Sayunts A, Shahkhatuni G, Simonyan Z, Kasparyan H, Kopecký D. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials. 2023; 13(1):120. https://doi.org/10.3390/nano13010120
Chicago/Turabian StyleAleksanyan, Mikayel, Artak Sayunts, Gevorg Shahkhatuni, Zarine Simonyan, Hayk Kasparyan, and Dušan Kopecký. 2023. "Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins" Nanomaterials 13, no. 1: 120. https://doi.org/10.3390/nano13010120
APA StyleAleksanyan, M., Sayunts, A., Shahkhatuni, G., Simonyan, Z., Kasparyan, H., & Kopecký, D. (2023). Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials, 13(1), 120. https://doi.org/10.3390/nano13010120