Miniaturized Spoof Plasmonic Antennas with Good Impedance Matching
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lalbakhsh, A.; Simorangkir, R.B.V.B.; Bayat-Makou, N.; Kishk, A.A.; Esselle, K.P. Chapter 2—Advancements and artificial intelligence approaches in antennas for environmental sensing. In Artificial Intelligence and Data Science in Environmental Sensing; Asadnia, M., Razmjou, A., Beheshti, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 19–38. [Google Scholar]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. All-Metal Wideband Frequency-Selective Surface Bandpass Filter for TE and TM Polarizations. IEEE Trans. Antennas Propag. 2022, 70, 2790–2800. [Google Scholar] [CrossRef]
- Das, P.; Mandal, K.; Lalbakhsh, A. Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface. Int. J. RF Microw. Comput. Eng. 2021, 32, e23033. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Mandal, K. All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources. Sci. Rep. 2021, 11, 9421. [Google Scholar] [CrossRef]
- Esfandiari, M.; Lalbakhsh, A.; Nasiri Shehni, P.; Jarchi, S.; Ghaffari-Miab, M.; Noori Mahtaj, H.; Reisenfeld, S.; Alibakhshikenari, M.; Koziel, S.; Szczepanski, S. Recent and emerging applications of Graphene-based metamaterials in electromagnetics. Mater. Des. 2022, 221, 110920. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking Surface Plasmons with Structured Surfaces. Science 2004, 305, 847. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhang, H.C.; Gao, X.X.; Zhang, L.P.; Niu, L.Y.; He, P.H.; Cui, T.J. Integrated spoof plasmonic circuits. Sci. Bull. 2019, 64, 843–855. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Zhang, J.; Gao, X.; Zheng, X.; Liu, X.; Cui, T.J. Active spoof plasmonics: From design to applications. J. Phys. Condens. Matter. 2021, 34, 053002. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Fernandez-Dominguez, A.I.; Martin-Moreno, L.; Zhang, H.C.; Tang, W.X.; Peng, R.W.; Cui, T.J. Spoof surface plasmon photonics. Rev. Mod. Phys. 2022, 94, 025004. [Google Scholar] [CrossRef]
- Guan, D.F.; You, P.; Zhang, Q.F.; Xiao, K.; Yong, S.W. Hybrid Spoof Surface Plasmon Polariton and Substrate Integrated Waveguide Transmission Line and Its Application in Filter. IEEE Trans. Microw. Theory Tech. 2017, 65, 4925–4932. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Pandit, N.; Pathak, N.P. Spoof Surface Plasmon Polaritons Based Reconfigurable Band-Pass Filter. IEEE Photonics Technol. Lett. 2019, 31, 218–221. [Google Scholar] [CrossRef]
- Zhang, H.C.; He, P.H.; Gao, X.; Tang, W.X.; Cui, T.J. Pass-band reconfigurable spoof surface plasmon polaritons. J. Phys. Condens. Matter 2018, 30, 134004. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.J.; Xiao, Q.X. Electronically controlled rejections of spoof surface plasmons polaritons. J. Appl. Phys. 2017, 121, 123109. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.C.; Wu, L.W.; Wang, Z.X.; He, P.H.; Gao, Z.; Cui, T.J. Programmable Multifunctional Device Based on Spoof Surface Plasmon Polaritons. IEEE Trans. Antennas Propag. 2020, 68, 3770–3779. [Google Scholar] [CrossRef]
- Liu, X.Y.; Feng, Y.J.; Chen, K.; Zhu, B.; Zhao, J.M.; Jiang, T. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Opt. Express 2014, 22, 20107–20116. [Google Scholar] [CrossRef]
- Zhang, H.C.; Liu, S.; Shen, X.; Chen, L.H.; Li, L.; Cui, T.J. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev. 2015, 9, 83–90. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, W.; Liu, Z.; Zhang, A.; Wu, B.; Chen, H. Dynamically Tunable Integrated Device for Attenuation, Amplification, and Transmission of SSPP Using Graphene. IEEE Trans. Antennas Propag. 2020, 68, 3953–3962. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Luo, Y.; Ma, Q.; Bai, G.D.; Zhang, H.C.; Cui, T.J. Reconfigurable Parametric Amplifications of Spoof Surface Plasmons. Adv. Sci. 2021, 8, e2100795. [Google Scholar] [CrossRef]
- Zhang, H.C.; Fan, Y.; Guo, J.; Fu, X.; Cui, T.J. Second-Harmonic Generation of Spoof Surface Plasmon Polaritons Using Nonlinear Plasmonic Metamaterials. ACS Photonics 2016, 3, 139–146. [Google Scholar] [CrossRef]
- Liu, L.; Wu, L.; Zhang, J.; Li, Z.; Zhang, B.; Luo, Y. Backward Phase Matching for Second Harmonic Generation in Negative-Index Conformal Surface Plasmonic Metamaterials. Adv. Sci. 2018, 5, 1800661. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Zhang, H.C.; Liu, L.; Ma, Q.; Xu, P.; Cui, T.J. Dynamic Controls of Second-Harmonic Generations in Both Forward and Backward Modes Using Reconfigurable Plasmonic Metawaveguide. Adv. Opt. Mater. 2020, 8, 1902058. [Google Scholar] [CrossRef]
- Esfandiyari, M.; Lalbakhsh, A.; Jarchi, S.; Ghaffari-Miab, M.; Mahtaj, H.N.; Simorangkir, R.B.V.B. Tunable terahertz filter/antenna-sensor using graphene-based metamaterials. Mater. Des. 2022, 220, 110855. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Li, Q.Y.; Zhao, H.Z.; Cui, T.J. Gain-Assisted Active Spoof Plasmonic Fano Resonance for High-Resolution Sensing of Glucose Aqueous Solutions. Adv. Mater. Technol. 2020, 5, 1900767. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, Y.J.; Zhang, Y.; Li, Q.Y. Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids. Opt. Express 2018, 26, 25460–25470. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Cui, T.J.; Cheng, Q.; Huang, Z.Z.; Feng, Y. Electromagnetic wave localization using a left-handed transmission-line superlens. Phys. Rev. B 2005, 72, 035112. [Google Scholar] [CrossRef]
- Ma, H.F.; Shen, X.P.; Cheng, Q.; Jiang, W.X.; Cui, T.J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 2014, 8, 146–151. [Google Scholar] [CrossRef]
- Liao, Z.; Zhao, J.; Pan, B.C.; Shen, X.P.; Cui, T.J. Broadband transition between microstrip line and conformal surface plasmon waveguide. J. Phys. D Appl. Phys. 2014, 47, 315103. [Google Scholar] [CrossRef]
- Xu, J.; Cui, Y.; Guo, J.; Xu, Z.; Qian, C.; Li, W. Broadband transition between microstrip line and spoof SP waveguide. Electron. Lett. 2016, 52, 1694–1695. [Google Scholar] [CrossRef]
- Kong, G.S.; Ma, H.F.; Cai, B.G.; Cui, T.J. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci. Rep. 2016, 6, 29600. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Ma, H.F.; Zhang, H.C.; Tang, W.X.; Zhang, X.R.; Cui, T.J. Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using Electronically Controllable Corrugated Microstrip Line. IEEE Trans. Antennas Propag. 2018, 66, 4449–4457. [Google Scholar] [CrossRef]
- Wang, M.; Ma, H.F.; Tang, W.x.; Zhang, H.C.; Jiang, W.x.; Cui, T.J. A Dual-Band Electronic-Scanning Leaky-Wave Antenna Based on a Corrugated Microstrip Line. IEEE Trans. Antennas Propag. 2019, 67, 3433–3438. [Google Scholar] [CrossRef]
- Xu, J.J.; Zhang, H.C.; Zhang, Q.; Cui, T.J. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl. Phys. Lett. 2015, 106, 021102. [Google Scholar] [CrossRef]
- Zhang, H.C.; Liu, L.; He, P.H.; Lu, J.Y.; Zhang, L.P.; Xu, J.; Liu, L.L.; Gao, F.; Cui, T.J.; Wang, Q.J.; et al. A Wide-Angle Broadband Converter: From Odd-Mode Spoof Surface Plasmon Polaritons to Spatial Waves. IEEE Trans. Antennas Propag. 2019, 67, 7425–7432. [Google Scholar] [CrossRef]
- He, P.H.; Ren, Y.; Shao, C.; Zhang, H.C.; Zhang, L.P.; Cui, T.J. Suppressing High-Power Microwave Pulses Using Spoof Surface Plasmon Polariton Mono-Pulse Antenna. IEEE Trans. Antennas Propag. 2021, 69, 8069–8079. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, J.; Luo, Y.; Wang, Z.; Ren, Y.; Cui, T.J. Rotationally Symmetrical Spoof-Plasmon Antenna for Polarization-Independent Radiation Enhancement. Phys. Rev. Appl. 2022, 18, 054018. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, L.; Hao, Z.C.; Zhang, S.; Shen, X. Integrated Hybrid Antenna Based on Spoof Surface Plasmon Polaritons. IEEE Access 2021, 9, 10797–10804. [Google Scholar] [CrossRef]
- Yang, Y.J.; Li, Z.; Wang, S.Z.; Chen, X.Y.; Wang, J.H.; Guo, Y.J. Miniaturized High-Order-Mode Dipole Antennas Based on Spoof Surface Plasmon Polaritons. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2409–2413. [Google Scholar] [CrossRef]
- Qu, B.Y.; Yan, S.; Zhang, A.X.; Pang, Y.Q.; Xu, Z. Miniaturization of Monopole Antenna Based on Spoof Surface Plasmon Polaritons. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1562–1566. [Google Scholar] [CrossRef]
- He, P.H.; Fan, Y.; Zhang, H.C.; Zhang, L.P.; Tang, M.; Wang, M.N.; Niu, L.Y.; Tang, W.X.; Cui, T.J. Characteristic impedance extraction of spoof surface plasmon polariton waveguides. J. Phys. D-Appl. Phys. 2021, 54, 385102. [Google Scholar] [CrossRef]
- Huang, J.S.; Feichtner, T.; Biagioni, P.; Hecht, B. Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit. Nano Lett. 2009, 9, 1897–1902. [Google Scholar] [CrossRef]
- Alu, A.; Engheta, N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 2008, 101, 043901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Tucker, E.; Boreman, G.; Raschke, M.B.; Lail, B.A. Optical Nanoantenna Input Impedance. ACS Photonics 2016, 3, 881–885. [Google Scholar] [CrossRef]
- Suh, Y.H.; Chang, K. A wideband coplanar stripline to microstrip transition. IEEE Microw. Wirel. Compon. Lett. 2001, 11, 28–29. [Google Scholar] [CrossRef]
- Shen, X.P.; Cui, T.J.; Martin-Cano, D.; Garcia-Vidal, F.J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA 2013, 110, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, N.; Mendes, C.; Koohestani, M.; Skrivervik, A.K.; Moreira, A.A. Novel Approach to the Measurement of Ultrawideband Antenna Efficiency. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1512–1515. [Google Scholar] [CrossRef]
- Sharma, S.; Mehra, R. A Low-Profile Dual-Band Meander-Line Antenna for Sub-6 GHz 5G Applications. In Proceedings of the Optical and Wireless Technologies; OWT 2021; Springer: Berlin/Heidelberg, Germany, 2023; pp. 243–251. [Google Scholar]
- Sakomura, E.S.; Ferreira, D.B.; Bianchi, I.; Nascimento, D.C. Compact Planar Two-Arm Compound Spiral Antenna for L-/X-Band Direction Finding Applications. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 853–854. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Zhang, J.; Gao, X.; Zheng, X.; Zhang, L.P.; Cui, T.J. Miniaturized Spoof Plasmonic Antennas with Good Impedance Matching. Nanomaterials 2023, 13, 136. https://doi.org/10.3390/nano13010136
Ren Y, Zhang J, Gao X, Zheng X, Zhang LP, Cui TJ. Miniaturized Spoof Plasmonic Antennas with Good Impedance Matching. Nanomaterials. 2023; 13(1):136. https://doi.org/10.3390/nano13010136
Chicago/Turabian StyleRen, Yi, Jingjing Zhang, Xinxin Gao, Xin Zheng, Le Peng Zhang, and Tie Jun Cui. 2023. "Miniaturized Spoof Plasmonic Antennas with Good Impedance Matching" Nanomaterials 13, no. 1: 136. https://doi.org/10.3390/nano13010136
APA StyleRen, Y., Zhang, J., Gao, X., Zheng, X., Zhang, L. P., & Cui, T. J. (2023). Miniaturized Spoof Plasmonic Antennas with Good Impedance Matching. Nanomaterials, 13(1), 136. https://doi.org/10.3390/nano13010136