Multi-Pulse Bound Soliton Fiber Laser Based on MoTe2 Saturable Absorber
Abstract
:1. Introduction
2. Preparation, Characterization and Saturable Absorption of Layered MoTe2
3. Experimental Setup
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photon. 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Ilday, F.Ö.; Buckley, J.R.; Clark, W.G.; Wise, F.W. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 2004, 92, 213902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grelu, P.; Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 2012, 6, 84–92. [Google Scholar] [CrossRef]
- Solli, D.R.; Ropers, C.; Koonath, P.; Jalali, B. Optical rogue waves. Nature 2007, 450, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Malomed, B.A. Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation. Phys. Rev. A 1991, 44, 6954. [Google Scholar] [CrossRef] [PubMed]
- Malomed, B.A. Bound states of envelope solitons. Phys. Rev. E 1993, 47, 2874. [Google Scholar] [CrossRef]
- Akhmediev, N.N.; Ankiewicz, A.; Soto-Crespo, J.M. Multisoliton of the complex Ginzburg-Landau equation. Phys. Rev. Lett. 1997, 79, 4047. [Google Scholar] [CrossRef] [Green Version]
- Alamoudi, S.M.; Al Khawaja, U.; Baizakov, B.B. Averaged dynamics of soliton molecules in dispersion-managed optical fibers. Phys. Rev. A 2014, 89, 053817. [Google Scholar] [CrossRef] [Green Version]
- Korobko, D.A.; Gumenyuk, R.; Zolotovskii, I.O.; Okhotnikov, O.G. Analysis of steady bound soliton-state attributes in hybrid mode-locked fiber laser. Laser Phys. Lett. 2016, 13, 105103. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Skryabin, D.V.; Malomed, B.A. Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion. Opt. Lett. 2018, 43, 2688–2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, D.Y.; Man, W.S.; Tam, H.Y.; Drummond, P.D. Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 2020, 64, 033814. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Tang, D.Y.; Shum, P.; Guo, X.; Lu, C.; Tam, H.Y. Bound twin-pulse solitons in a fiber ring laser. Phys. Rev. E 2004, 70, 067602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, D.Y.; Zhao, L.M.; Zhao, B. Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction. Appl. Phys. B 2005, 80, 239–242. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Wu, X.; Lei, D.J.; Wen, S.C. Bound states of gain-guided solitons in a passively mode-locked fiber laser. Opt. Lett. 2007, 32, 3191–3193. [Google Scholar] [CrossRef]
- Seong, N.H.; Kim, D.Y. Experimental observation of stable bound solitons in a figure-eight fiber laser. Opt. Lett. 2002, 27, 1321–1323. [Google Scholar] [CrossRef]
- Pang, M.; He, W.; Jiang, X.; Russell, P.S.J. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photon. 2016, 10, 454–458. [Google Scholar] [CrossRef]
- He, W.; Pang, M.; Yeh, D.H.; Huang, J.; Menyuk, C.R.; Russell, P.S.J. Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions. Nat. Commun. 2019, 10, 5756. [Google Scholar] [CrossRef] [Green Version]
- Hsiang, W.W.; Lin, C.Y.; Lai, Y. Stable new bound soliton pairs in a 10 GHz hybrid frequency modulation mode-locked Er-fiber laser. Opt. Lett. 2006, 31, 1627–1629. [Google Scholar] [CrossRef]
- Roy, V.; Olivier, M.; Piché, M. Pulse interactions in the stretched-pulse fiber laser. Opt. Express 2005, 13, 9217–9223. [Google Scholar] [CrossRef]
- Olivier, M.; Roy, V.; Piché, M. Third-order dispersion and bound states of pulses in a fiber laser. Opt. Lett. 2006, 31, 580–582. [Google Scholar] [CrossRef] [PubMed]
- Komarov, A.; Haboucha, A.; Sanchez, F. Ultrahigh-repetition-rate bound-soliton harmonic passive mode-locked fiber lasers. Opt. Lett. 2008, 33, 2254–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X. Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers. Phys. Rev. A 2010, 82, 063834. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Li, X.; Luo, W.; Feng, T.; Zhang, Y.; Guo, P.; Ge, Y. Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser. Nanotechnology 2018, 30, 025204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhan, L.; Majeed, A.; Zou, Z. Harmonic mode locking of bound solitons. Opt. Lett. 2015, 40, 1065–1068. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.F.; Lin, Y.H.; Cheng, C.H.; Chi, Y.C.; Lin, G.R. Stability and chirp of tightly bunched solitons from nonlinear polarization rotation mode-locked erbium-doped fiber lasers. J. Lightw. Technol. 2016, 34, 5118–5128. [Google Scholar] [CrossRef]
- Wang, P.; Bao, C.; Fu, B.; Xiao, X.; Grelu, P.; Yang, C. Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution. Opt. Lett. 2016, 41, 2254–2257. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Nithyanandan, K.; Coillet, A.; Tchofo-Dinda, P.; Grelu, P. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 2019, 10, 830. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, X.; Song, Y.; Liu, J.; Zhang, H. Generation and pulsating behaviors of loosely bound solitons in a passively mode-locked fiber laser. Phys. Rev. A 2020, 101, 013825. [Google Scholar] [CrossRef]
- Hsiang, W.W.; Chang, C.H.; Cheng, C.P.; Lai, Y. Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser. Opt. Lett. 2009, 34, 1967–1969. [Google Scholar] [CrossRef]
- Yun, L.; Liu, X. Generation and propagation of bound-state pulses in a passively mode-locked figure-eight laser. IEEE Photon. J. 2012, 4, 512–519. [Google Scholar]
- Huang, Y.Q.; Hu, Z.A.; Cui, H.; Luo, Z.C.; Luo, A.P.; Xu, W.C. Coexistence of harmonic soliton molecules and rectangular noise-like pulses in a figure-eight fiber laser. Opt. Lett. 2016, 41, 4056–4059. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, H.; Hu, X.; Wang, Y.; Zhang, W.; Zhang, T.; Sun, C.; Yan, Z. Experimental observation of bound solitons with a nonlinear multimode interference-based saturable absorber. Laser Phys. Lett. 2018, 15, 115106. [Google Scholar] [CrossRef]
- Babin, S.A.; Podivilov, E.V.; Kharenko, D.S.; Bednyakova, A.E.; Fedoruk, M.P.; Kalashnikov, V.L.; Apolonski, A. Multicolour nonlinearly bound chirped dissipative solitons. Nat. Commun. 2014, 5, 4653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Ruan, S.; Zhai, J.; Li, L.; Pei, J.; Tang, Z. Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes. Photon. Res. 2018, 6, 996–1002. [Google Scholar] [CrossRef]
- Liu, X.; Yao, X.; Cui, Y. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 2018, 121, 023905. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Li, J.; Cao, Z.; Popa, D. Bound states of solitons in a harmonic graphene-mode-locked fiber laser. Photon. Res. 2019, 7, 116–120. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Dhanabalan, S.C.; Sophia, J.; Zhao, C.; Xu, C.; Zhang, H. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photon. J. 2016, 8, 5. [Google Scholar] [CrossRef]
- Song, Y.F.; Zhang, H.; Zhao, L.M.; Shen, D.Y.; Tang, D.Y. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 2016, 24, 1814–1822. [Google Scholar] [CrossRef]
- Liu, M.; Luo, A.P.; Zheng, X.W.; Zhao, N.; Liu, H.; Luo, Z.C.; Xu, W.C.; Chen, Y.; Zhao, C.Z.; Zhang, H. Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser. J. Lightw. Technol. 2015, 33, 2056–2061. [Google Scholar]
- Chen, Y.; Chen, S.; Liu, J.; Gao, Y.; Zhang, W. Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus. Opt. Express 2016, 24, 13316–13324. [Google Scholar] [CrossRef] [PubMed]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D layered materials: Synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, D.; Gan, X.; Han, L.; Ma, C.; Xi, T.; Zhang, Y.; Shang, W.; Hua, S.; Zhao, J. Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber. Opt. Express 2015, 23, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Huang, D.; Sun, H.; Fan, F.; Feng, J.; Wang, Z.; Ning, C.Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 2017, 12, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 2016, 10, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Wu, X.; Wang, Y.; Guo, X.; Tong, L. 2D materials for optical modulation: Challenges and opportunities. Adv. Mater. 2017, 29, 1606128. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Q.; Qiu, J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886. [Google Scholar] [CrossRef]
- Fang, H.; Liu, J.; Li, H.; Zhou, L.; Liu, L.; Li, J.; Wang, X.; Krauss, T.F.; Wang, Y. 1305 nm Few-Layer MoTe2-on-Silicon Laser-Like Emission. Laser Photon. Rev. 2018, 12, 1800015. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Du, B.; Yang, D.; Zhang, S.; Wang, Y.; Zhang, W.; She, X.; Cheng, H.; Zeng, H.; Zhao, J. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small 2016, 12, 1489–1497. [Google Scholar] [CrossRef]
- Wang, G. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber. Opt. Laser Technol. 2017, 96, 307–312. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Jiang, Z.; Yin, J.; Wang, J.; Zhang, M.; He, T.; Li, J.; Yan, P.; Ruan, S. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Opt. Lett. 2018, 43, 1998–2001. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhao, J.; Qiao, W.; Yang, K.; Li, T.; Zhao, S. Passively Q-switched Er: YAG laser at 1645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber. Laser Phys. Lett. 2018, 15, 095801. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, B.; Nie, H.; Wang, H.; Li, G.; Sun, X.; Wang, R.; Lin, N.; He, J. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber. Opt. Express 2018, 26, 18505–18512. [Google Scholar] [CrossRef]
- Ma, Y.; Tian, K.; Dou, X.; Yang, J.; Li, Y.; Han, W.; Xu, H.; Liu, J. Passive Q-switching induced by few-layer MoTe2 in an Yb: YCOB microchip laser. Opt. Express 2018, 26, 25147–25155. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, C.; Aslan, B.; Heinz, T.F. Optical properties and band gap of single-and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231–6236. [Google Scholar] [CrossRef]
- Quan, C.; He, M.; He, C.; Huang, Y.; Zhu, L.; Yao, Z.; Xu, X.; Lu, C.; Xu, X. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci. 2018, 457, 115–120. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Ruan, S.; Yan, P.; Zhang, H.; Tsang, Y.H.; Yang, J.H.; Huang, G. Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber. JOSA B 2014, 31, 716–722. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, X.; Liu, B.; Yu, J.; Liu, Y.; He, R.; He, J.; Li, H.; Wang, Z. Real-time dynamics of soliton collision in a bound-state soliton fiber laser. Nanophotonics 2020, 9, 1921–1929. [Google Scholar] [CrossRef]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Kudelin, I.S.; Orekhov, I.O.; Pnev, A.B.; Karasik, V.E.; Denisov, L.K. Multibound soliton formation in an erbium-doped ring laser with a highly nonlinear resonator. IEEE Photon. Technol. Lett. 2019, 32, 43–46. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, Z.; Wang, D.N.; Yang, F.; Li, L. Observation of controllable tightly and loosely bound solitons with an all-fiber saturable absorber. Photon. Res. 2019, 7, 61–68. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, Z.; Boscolo, S.; Finot, C.; Sugavanam, S.; Churkin, D.V.; Zeng, H. Breather Molecular Complexes in a Passively Mode-Locked Fiber Laser. Laser Photon. Rev. 2021, 15, 2000132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.; Guo, X.; Zhou, R.; Ren, Z.; Chen, Q.; Xu, R.; Luo, W. Multi-Pulse Bound Soliton Fiber Laser Based on MoTe2 Saturable Absorber. Nanomaterials 2023, 13, 177. https://doi.org/10.3390/nano13010177
Guo B, Guo X, Zhou R, Ren Z, Chen Q, Xu R, Luo W. Multi-Pulse Bound Soliton Fiber Laser Based on MoTe2 Saturable Absorber. Nanomaterials. 2023; 13(1):177. https://doi.org/10.3390/nano13010177
Chicago/Turabian StyleGuo, Bo, Xinyu Guo, Renlai Zhou, Zhongyao Ren, Qiumei Chen, Ruochen Xu, and Wenbin Luo. 2023. "Multi-Pulse Bound Soliton Fiber Laser Based on MoTe2 Saturable Absorber" Nanomaterials 13, no. 1: 177. https://doi.org/10.3390/nano13010177
APA StyleGuo, B., Guo, X., Zhou, R., Ren, Z., Chen, Q., Xu, R., & Luo, W. (2023). Multi-Pulse Bound Soliton Fiber Laser Based on MoTe2 Saturable Absorber. Nanomaterials, 13(1), 177. https://doi.org/10.3390/nano13010177