Enhanced Photo-Assisted Fenton Degradation of Antibiotics over Iron-Doped Bi-Rich Bismuth Oxybromide Photocatalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Photocatalysts
2.3. Characterizations
2.4. Degradation Experiments of Tetracycline Hydrochloride
3. Results and Discussion
3.1. The Structure of the Synthesized Samples
3.2. Degradation Performance of TC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Catteau, L.; Zhu, L.; Van Bambeke, F.; Quetin-Leclercq, J. Natural and hemi−synthetic pentacyclic triterpenes as antimicrobials and resistance modifying agents against Staphylococcus aureus: A review. Phytochem. Rev. 2018, 17, 1129–1163. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J.J. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, X.; Hua, G.; Li, G.; Feng, R.; Liu, X. Migration and degradation of swine farm tetracyclines at the river catchment scale: Can the multi-pond system mitigate pollution risk to receiving rivers? Environ. Pollut. 2017, 220, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Jaiswal, S.; Sodhi, K.K.; Shree, P.; Singh, D.K.; Agrawal, P.K.; Shukla, P. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ. Int. 2019, 124, 448–461. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Xia, L.; Sun, Z.; Wu, Y.; Yu, X.-F.; Cheng, J.; Zhang, K.; Sarina, S.; Zhu, H.-Y.; Weerathunga, H.; Zhang, L.; et al. Leveraging doping and defect engineering to modulate exciton dissociation in graphitic carbon nitride for photocatalytic elimination of marine oil spill. Chem. Eng. J. 2022, 439, 135668. [Google Scholar] [CrossRef]
- Lyu, J.; Hu, Z.; Li, Z.; Ge, M. Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis. J. Phys. Chem. Solids 2019, 129, 61–70. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Wang, S.; Wang, X.; Fang, M.; Zuo, Q.; Kong, M.; Liu, Z.; Tan, X. Stress modulation on photodegradation of tetracycline by Sn-doped BiOBr. J. Environ. Chem. Eng. 2022, 10, 107675. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, J.; Ma, N.; Li, Z.; Wu, M.; Xu, D.; Zhang, S.; Feng, W.; Zhu, Y. Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Appl. Catal. B Environ. 2021, 286, 119937. [Google Scholar] [CrossRef]
- Mao, D.; Ding, S.; Meng, L.; Dai, Y.; Sun, C.; Yang, S.; He, H. One-pot microemulsion−mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Appl. Catal. B Environ. 2017, 207, 153–165. [Google Scholar] [CrossRef]
- Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J. Light-Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar−Driven Nitrogen Fixation in Pure Water. Adv. Mater. 2017, 29, 1701774. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zheng, C.; Lu, M.; Zhang, L.; Liu, F.; Zuo, X.; Nan, J. Deficient Bi24O31Br10 as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation. Appl. Catal. B Environ. 2018, 228, 142–151. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, Y.; Yang, Y.; Zhang, L.; Bian, Z.; Wang, H. Bismuth−rich strategy intensifies the molecular oxygen activation and internal electrical field for the photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 430, 132963. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H.; Zhou, Y.; Ye, L. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482. [Google Scholar] [CrossRef]
- Jin, X.; Lv, C.; Zhou, X.; Xie, H.; Sun, S.; Liu, Y.; Meng, Q.; Chen, G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy 2019, 64, 103955. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ji, M.; Yin, S.; Li, H.; Xu, H.; Zhang, Q.; Li, H. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. J. Mater. Chem. A 2015, 3, 15108–15118. [Google Scholar] [CrossRef]
- Jin, Y.; Li, F.; Li, T.; Xing, X.; Fan, W.; Zhang, L.; Hu, C. Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Appl. Catal. B Environ. 2022, 302, 120824. [Google Scholar] [CrossRef]
- Shao, L.; Liu, Y.; Wang, L.; Xia, X.; Shen, X. Electronic structure tailoring of BiOBr (0 1 0) nanosheets by cobalt doping for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2020, 502, 143895. [Google Scholar] [CrossRef]
- Li, J.; Cai, L.; Shang, J.; Yu, Y.; Zhang, L. Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Adv. Mater. 2016, 28, 4059–4064. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, M.; Nan, J.; Zuo, X.; Zhang, W.; Liu, S.; Wang, S. Rapid microwave synthesis of I-doped Bi4O5Br2 with significantly enhanced visible-light photocatalysis for degradation of multiple parabens. Appl. Catal. B Environ. 2017, 218, 398–408. [Google Scholar] [CrossRef]
- Zhang, W.-B.; Xiao, X.; Wu, Q.-F.; Fan, Q.; Chen, S.; Yang, W.-X.; Zhang, F.-C. Facile synthesis of novel Mn-doped Bi4O5Br2 for enhanced photocatalytic NO removal activity. J. Alloy Compd. 2020, 826, 154204. [Google Scholar] [CrossRef]
- Noorjahan, M.; Durga Kumari, V.; Subrahmanyam, M.; Panda, L. Immobilized Fe(III)−HY: An efficient and stable photo-Fenton catalyst. Appl. Catal. B Environ. 2005, 57, 291–298. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, J.; Jin, W. Transformation of Oxidation Products and Reduction of Estrogenic Activity of 17β-Estradiol by a Heterogeneous Photo−Fenton Reaction. Environ. Sci. Technol. 2008, 42, 5277–5284. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-L.; Liang, W.-Z.; Zhang, Q.; Jiang, W.-F. Solar−light−assisted Fenton oxidation of 2,4-dinitrophenol (DNP) using Al2O3−supported Fe(III)-5-sulfosalicylic acid (ssal) complex as catalyst. Chem. Eng. J. 2010, 164, 115–120. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, B.; Li, X.; Liu, B.; Wang, S.; Yu, P.; Xu, Y.; Jiang, G. High-efficiency removal of tetracycline by carbon-bridge-doped g-C3N4/Fe3O4 magnetic heterogeneous catalyst through photo-Fenton process. J. Hazard. Mater. 2021, 418, 126333. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wang, Z.; Fu, Y.; Lai, C.; Liu, X.; Li, B.; Liu, S.; Yi, H.; Li, L.; Zhang, M.; et al. Gold nanoparticles−modified MnFe2O4 with synergistic catalysis for photo−Fenton degradation of tetracycline under neutral pH. J. Hazard. Mater. 2021, 414, 125448. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; You, H.; Chen, Q. Heterogeneous photo-Fenton degradation of polyacrylamide in aqueous solution over Fe(III)-SiO2 catalyst. J. Hazard. Mater. 2009, 162, 860–865. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, P.; Li, Y.; Zhu, N.; Dang, Z. Heterogeneous photo−Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. J. Hazard. Mater. 2009, 168, 901–908. [Google Scholar] [CrossRef]
- Chen, Q.; Ji, F.; Liu, T.; Yan, P.; Guan, W.; Xu, X. Synergistic effect of bifunctional Co-TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process. Chem. Eng. J. 2013, 229, 57–65. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, G.; Yu, J.C. Enhanced photo−Fenton degradation of rhodamine B using graphene oxide-amorphous FePO4 as effective and stable heterogeneous catalyst. J. Colloid Interface Sci. 2015, 448, 460–466. [Google Scholar] [CrossRef]
- Liu, C.; Dai, H.; Tan, C.; Pan, Q.; Hu, F.; Peng, X. Photo−Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B Environ. 2022, 310, 121326. [Google Scholar] [CrossRef]
- Guo, S.; Yang, W.; You, L.; Li, J.; Chen, J.; Zhou, K. Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo−Fenton processes. Chem. Eng. J. 2020, 393, 124758. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, Y.; Zhou, Z.; Wang, Q.; Mei, Q.; Cheng, H. Efficiency LaFeO3 and BiOI heterojunction for the enhanced photo−Fenton degradation of tetracycline hydrochloride. Appl. Surf. Sci. 2022, 590, 153081. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Wang, Q.; Cheng, H. High-efficiency photo−Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Appl. Clay Sci. 2021, 212, 106213. [Google Scholar] [CrossRef]
- Ma, J.; Wang, K.; Wang, C.; Chen, X.; Zhu, W.; Zhu, G.; Yao, W.; Zhu, Y. Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability. Appl. Catal. B Environ. 2020, 276, 119150. [Google Scholar] [CrossRef]
- Dong, Y.; Han, Z.; Liu, C.; Du, F. Preparation and photocatalytic performance of Fe (III)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation. Sci. Total Environ. 2010, 408, 2245–2253. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, G.; Gao, J.; Hojamberdiev, M.; Zhu, R.; Wei, X.; Guo, Q.; Liu, P. Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles: Photodegradation of Phenol and bisphenol A. Appl. Catal. B Environ. 2017, 200, 72–82. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, G.; Zhang, Y.; Wei, Y. Mediation of band structure for BiOBrxI1−x hierarchical microspheres of multiple defects with enhanced visible-light photocatalytic activity. CrystEngComm 2018, 20, 3647–3656. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Wang, Q.; Wu, Q. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity. J. Mater. Chem. A 2013, 1, 8622–8629. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Shi, R.; Wang, B.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Tuning Oxygen Vacancies in Ultrathin TiO2 Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482. [Google Scholar] [CrossRef]
- Li, J.-F.; Zhong, C.-Y.; Huang, J.-R.; Chen, Y.; Wang, Z.; Liu, Z.-Q. Carbon dots decorated three−dimensionally ordered macroporous bismuth−doped titanium dioxide with efficient charge separation for high performance photocatalysis. J. Colloid Interface Sci. 2019, 553, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, M.; Liu, J.; Lu, G.; Feng, X. Insight into the effects of electronegativity on the H2 catalytic activation for CO2 hydrogenation: Four transition metal cases from a DFT study. Catal. Sci. Technol. 2020, 10, 5641–5647. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Wu, Z.; Zhu, H.; Xie, Y.; Schaefer, H.F. Heteroatom (N, P, As, Sb, Bi) Effects on the Resonance-Stabilized 2-, 3-, and 4-Picolyl Radicals. Inorg. Chem. 2021, 60, 5860–5867. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pi, Y.; Wu, L.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Facilitation of the visible light−induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal−organic framework for MB degradation. Appl. Catal. B Environ. 2017, 202, 653–663. [Google Scholar] [CrossRef]
- Li, X.; Tang, Y.; Jiang, Y.; Mu, M.; Yin, X. Fe-MIL tuned and bound with Bi4O5Br2 for boosting photocatalytic reduction of CO2 to CH4 under simulated sunlight. Catal. Sci. Technol. 2021, 11, 2864–2872. [Google Scholar] [CrossRef]
- Zhu, G.; Hojamberdiev, M.; Zhang, W.; Taj Ud Din, S.; Joong Kim, Y.; Lee, J.; Yang, W. Enhanced photocatalytic activity of Fe-doped Bi4O5Br2 nanosheets decorated with Au nanoparticles for pollutants removal. Appl. Surf. Sci. 2020, 526, 146760. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, H.; Liu, Q.; Sun, Z.; Li, P.; Ding, P.; Guo, M.; Yi, X.; Xu, W.; Wang, C.-C.; et al. Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers. J. Hazard. Mater. 2022, 424, 127563. [Google Scholar] [CrossRef]
- Geng, Q.; Xie, H.; Cui, W.; Sheng, J.; Tong, X.; Sun, Y.; Li, J.; Wang, Z.; Dong, F. Optimizing the Electronic Structure of BiOBr Nanosheets via Combined Ba Doping and Oxygen Vacancies for Promoted Photocatalysis. J. Phys. Chem. C 2021, 125, 8597–8605. [Google Scholar] [CrossRef]
- Idris, A.M.; Liu, T.; Hussain Shah, J.; Shahid Malik, A.; Zhao, D.; Han, H.; Li, C. Correction to “Sr2NiWO6 Double Perovskite Oxide as a Novel Visible-light −Responsive Water Oxidation Photocatalyst”. ACS Appl. Mater. Interfaces 2020, 12, 56659–56660. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Yu, C.; Lu, K.; Huang, W.; Xu, L.; Zou, L.; Wang, S.; Chen, Z.; Hu, J.; et al. Steering Unit Cell Dipole and Internal Electric Field by Highly Dispersed Er atoms Embedded into NiO for Efficient CO2 Photoreduction. Adv. Funct. Mater. 2022, 32, 2111999. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Peng, Y.; Li, Z.; Yu, J.; Zhang, Y. Regulating the Built−In Electric Field of BiOBr by a Piezoelectric Mineral Tourmaline and the Enhanced Photocatalytic Property. Ind. Eng. Chem. Res. 2022, 61, 1704–1714. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, J.; Yi, Q.; Li, D.; Liu, C.; Liu, Y. Construction of core-shell Fe3O4@GO-CoPc photo-Fenton catalyst for superior removal of tetracycline: The role of GO in promotion of H2O2 to •OH conversion. J. Environ. Manag. 2022, 308, 114613. [Google Scholar] [CrossRef] [PubMed]
Sample | Pore Volume/cm3 g−1 | Mean Pore Size/nm |
---|---|---|
Bi4O5Br2 | 0.328 | 37.7 |
1%Fe-Bi4O5Br2 | 0.367 | 27.8 |
3%Fe-Bi4O5Br2 | 0.481 | 27.8 |
5%Fe-Bi4O5Br2 | 0.431 | 23.5 |
7%Fe-Bi4O5Br2 | 0.473 | 23.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Peng, Y.; Yang, X.; Li, Z.; Zhang, Y. Enhanced Photo-Assisted Fenton Degradation of Antibiotics over Iron-Doped Bi-Rich Bismuth Oxybromide Photocatalyst. Nanomaterials 2023, 13, 188. https://doi.org/10.3390/nano13010188
Zhang F, Peng Y, Yang X, Li Z, Zhang Y. Enhanced Photo-Assisted Fenton Degradation of Antibiotics over Iron-Doped Bi-Rich Bismuth Oxybromide Photocatalyst. Nanomaterials. 2023; 13(1):188. https://doi.org/10.3390/nano13010188
Chicago/Turabian StyleZhang, Fengjiao, Yanhua Peng, Xiaolong Yang, Zhuo Li, and Yan Zhang. 2023. "Enhanced Photo-Assisted Fenton Degradation of Antibiotics over Iron-Doped Bi-Rich Bismuth Oxybromide Photocatalyst" Nanomaterials 13, no. 1: 188. https://doi.org/10.3390/nano13010188
APA StyleZhang, F., Peng, Y., Yang, X., Li, Z., & Zhang, Y. (2023). Enhanced Photo-Assisted Fenton Degradation of Antibiotics over Iron-Doped Bi-Rich Bismuth Oxybromide Photocatalyst. Nanomaterials, 13(1), 188. https://doi.org/10.3390/nano13010188