Characterization of Magnetron Sputtered BiTe-Based Thermoelectric Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin-Film Fabrication
2.2. Characterisation and Properties Measurement
2.3. Output Mesurement of the Active Thin Layers
3. Results and Discussion
3.1. Microstructure and Phase Constituents of the Thin Films
3.2. Thermoelectrical Properties of the Thin Films
3.3. Output Test of the Thin Film
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALD | Atomic layer deposition |
CVD | Chemical vapor deposition |
DC | Direct current |
EDX | Energy dispersive X-ray spectroscopy |
MBE | Molecular-beam epitaxy |
MOCVD | Metalorganic chemical vapor deposition |
PF | Power factor |
RF | Radio frequency |
SEM | Scanning electron microscope |
TE | Thermoelectric |
TPF | Thermoelectric power factor |
TEM | Transition electron microscope |
XRD | X-ray diffraction |
ZT | Figure of merit |
References
- Jaldurgam, F.F.; Ahmad, Z.; Touati, F. Synthesis and Performance of Large-Scale Cost-Effective Environment-Friendly Nanostructured Thermoelectric Materials. Nanomaterials 2021, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jie, Q.; Kim, H.S.; Ren, Z. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 2015, 87, 357–376. [Google Scholar] [CrossRef] [Green Version]
- Ajiboye, T.O.; Onwudiwe, D.C. Bismuth sulfide based compounds: Properties, synthesis and applications. Results Chem. 2021, 3, 100151. [Google Scholar] [CrossRef]
- Yang, Z.-R.; Lin, F.-H.; Hung, P.-C.; Liu, C.-J. Type controlled thermoelectric properties in tin selenide fabricated using room-temperature synthesis and hot pressing. J. Alloys Compd. 2021, 889, 161639. [Google Scholar] [CrossRef]
- Pham, N.H.; Farahi, N.; Kamila, H.; Sankhla, A.; Ayachi, S.; Müller, E.; de Boor, J. Ni and Ag electrodes for magnesium silicide based thermoelectric generators. Mater. Today Energy 2019, 11, 97–105. [Google Scholar] [CrossRef]
- Chen, X.; Dai, W.; Wu, T.; Luo, W.; Yang, J.; Jiang, W.; Wang, L. Thin Film Thermoelectric Materials: Classification, Characterization, and Potential for Wearable Applications. Coatings 2018, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Hamawandi, B.; Mansouri, H.; Ballikaya, S.; Demirci, Y.; Orlovská, M.; Bolghanabadi, N.; Sajjadi, S.; Toprak, M. A Comparative Study on the Thermoelectric Properties of Bismuth Chalcogenide Alloys Synthesized through Mechanochemical Alloying and Microwave-Assisted Solution Synthesis Routes. Front. Mater. 2020, 7, 569723. [Google Scholar] [CrossRef]
- Tan, M.; Deng, Y.; Hao, Y. Improved thermoelectric performance of a film device induced by densely columnar Cu electrode. Energy 2014, 70, 143–148. [Google Scholar] [CrossRef]
- Peranio, N.; Winkler, M.; Bessas, D.; Aabdin, Z.; König, J.; Böttner, H.; Hermann, R.P.; Eibl, O. Room-temperature MBE deposition, thermoelectric properties, and advanced structural characterization of binary Bi2Te3 and Sb2Te3 thin films. J. Alloys Compd. 2012, 521, 163–173. [Google Scholar] [CrossRef]
- You, H.; Hyub Baek, S.; Kim, K.-C.; Kwon, O.J.; Kim, J.-S.; Park, C. Growth and thermoelectric properties of Bi2Te3 films deposited by modified MOCVD. J. Cryst. Growth 2012, 346, 17–21. [Google Scholar] [CrossRef]
- Amiri, L.; Narjis, A.; Nkhaili, L.; Bousseta, M.; Elmassi, S.; Tchenka, A.; Drissi, S.; Abali, A.; Somaily, H.H.; El Kissani, A.; et al. Spectroscopic study and thermoelectric properties of copper sulfide thin films prepared by the flash evaporation method. J. Alloys Compd. 2022, 924, 166479. [Google Scholar] [CrossRef]
- Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R. Microstructure and electrical properties of antimony telluride thin films deposited by RF magnetron sputtering on flexible substrate using different sputtering pressures. J. Electron. Mater. 2017, 46, 3166–3171. [Google Scholar] [CrossRef]
- Shen, S.; Zhu, W.; Deng, Y.; Zhao, H.; Peng, Y.; Wang, C. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Appl. Surf. Sci. 2017, 414, 197–204. [Google Scholar] [CrossRef]
- Kim, D.-H.; Byon, E.; Lee, G.-H.; Cho, S. Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering. Thin Solid Film. 2006, 510, 148–153. [Google Scholar] [CrossRef]
- Kurokawa, T.; Mori, R.; Norimasa, O.; Chiba, T.; Eguchi, R.; Takashiri, M. Influences of substrate types and heat treatment conditions on structural and thermoelectric properties of nanocrystalline Bi2Te3 thin films formed by DC magnetron sputtering. Vacuum 2020, 179, 109535. [Google Scholar] [CrossRef]
- Jitthamapirom, P.; Wanarattikan, P.; Nuthongkum, P.; Sakdanuphab, R.; Sakulkalavek, A. Comparison of thermoelectric properties of flexible bismuth telluride thin films deposited via DC and RF magnetron sputtering. Ferroelectrics 2019, 552, 64–72. [Google Scholar] [CrossRef]
- Takayama, K.; Takashiri, M. Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering. Vacuum 2017, 144, 164–171. [Google Scholar] [CrossRef]
- Prainetr, N.; Vora-ud, A.; Thaowonkaew, S.; Horprathum, M.; Muthitamongkol, P.; Seetawan, T. Effect of substrates on thermoelectric properties of Ag–Sb–Te thin films within the temperature annealing. Phys. B Condens. 2020, 582, 411977. [Google Scholar] [CrossRef]
- Vora-ud, A.; Kumar, M.; bong Jin, S.; Muthitamongkol, P.; Horprathum, M.; Thaowonkaew, S.; Chao-moo, W.; Thanachayanont, C.; Thang, P.B.; Seetawan, T. Microstructural control by substrate heating in Pulse-DC sputtering induced thermoelectric Ge2Sb2Te5 thin films. J. Alloys Compd. 2018, 763, 430–435. [Google Scholar] [CrossRef]
- Fan, P.; Fan, W.-F.; Zheng, Z.-H.; Zhang, Y.; Luo, J.-T.; Liang, G.-X.; Zhang, D.-P. Thermoelectric properties of zinc antimonide thin film deposited on flexible polyimide substrate by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 2014, 25, 5060–5065. [Google Scholar] [CrossRef]
- Burmistrova, P.V.; Maassen, J.; Favaloro, T.; Saha, B.; Salamat, S.; Rui Koh, Y.; Lundstrom, M.S.; Shakouri, A.; Sands, T.D. Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO (001) substrates. J. Appl. Phys. 2013, 113, 153704. [Google Scholar] [CrossRef] [Green Version]
- Perez-Taborda, J.A.; Vera, L.; Caballero-Calero, O.; Lopez, E.O.; Romero, J.J.; Stroppa, D.G.; Briones, F.; Martin-Gonzalez, M. Pulsed hybrid reactive magnetron sputtering for high zT Cu2Se thermoelectric films. Adv. Mater. Technol. 2017, 2, 1700012. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Zhang, J.; Iversen, B.B. Enhanced thermoelectric properties of SnSe thin films grown by single-target magnetron sputtering. J. Mater. Chem. A 2019, 7, 17981–17986. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, T.; Li, K.; Si, J. Effect of substrate temperature on structural and thermoelectric properties of RF magnetron sputtered SnSe thin film. Funct. Mater. Lett. 2019, 12, 1950040. [Google Scholar] [CrossRef]
- Tani, J.-I.; Ishikawa, H. Thermoelectric properties of Mg2Sn thin films fabricated using radio frequency magnetron sputtering. Thin Solid Film. 2019, 692, 137601. [Google Scholar] [CrossRef]
- Tani, J.-I.; Kido, H. Electrical properties of Mg2Si thin films on flexible polyimide substrates fabricated by radio-frequency magnetron sputtering. J. Ceram. Soc. Jpn. 2015, 123, 298–301. [Google Scholar] [CrossRef]
- Nowak, D.; Turkiewicz, M.; Solnica, N. Thermoelectric Properties of Thin Films of Germanium-Gold Alloy Obtained by Magnetron Sputtering. Coatings 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Zhang, J.; Iversen, B.B. Microstructure and Thermoelectric Properties of Zn1–x Ag x Sb Thin Films Grown by Single-Target Magnetron Sputtering. ACS Appl. Energy Mater. 2020, 3, 2055–2062. [Google Scholar] [CrossRef]
- Matsuda, T.; Uenuma, M.; Kimura, M. Thermoelectric effects of amorphous Ga–Sn–O thin film. Jpn. J. Appl. Phys. 2017, 56, 070309. [Google Scholar] [CrossRef]
- Schaeuble, N.; Romanyuk, Y.; Aguirre, M.; Shkabko, A.; Yoon, S.; Weidenkaff, A. Aluminium-Substituted Zinc Oxide Thin Films: Thermoelectric Properties and Structural Characterisation. In Proceedings of the 8th European Conference on Thermoelectrics (ECT 2010), Como, Italy, 22–24 September 2010. [Google Scholar]
- Fan, P.; Zhang, Y.; Zheng, Z.-H.; Fan, W.-F.; Luo, J.-T.; Liang, G.-X.; Zhang, D.-P. Thermoelectric properties of cobalt antimony thin films deposited on flexible substrates by radio frequency magnetron sputtering. J. Electron. Mater. 2015, 44, 630–635. [Google Scholar] [CrossRef]
- Chen, R.; Lee, J.; Lee, W.; Li, D. Thermoelectrics of Nanowires. Chem. Rev. 2019, 119, 9260–9302. [Google Scholar] [CrossRef] [PubMed]
- Linseis, V.; Völklein, F.; Reith, H.; Nielsch, K.; Woias, P. Advanced platform for the in-plane ZT measurement of thin films. Rev. Sci. Instrum. 2018, 89, 015110. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Chen, Y.-X.; Zheng, Z.; Li, F.; Liang, G.; Luo, J.; Fan, P. Enhancement of thermoelectric performance of N-type Bi2Te3 based thin films via in situ annealing during magnetron sputtering. Ceram. Int. 2020, 46, 13365–13371. [Google Scholar] [CrossRef]
- Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cret, P.; Siciliano, P.; Perrone, A. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J. Power Sources 2011, 196, 3239–3243. [Google Scholar] [CrossRef]
- Kwon, S.-D.; Ju, B.-k.; Yoon, S.-J.; Kim, J.-S. Fabrication of Bismuth Telluride-Based Alloy Thin Film Thermoelectric Devices Grown by Metal Organic Chemical Vapor Deposition. J. Electron. Mater. 2009, 38, 920–924. [Google Scholar] [CrossRef]
TE Film | Substrate | MS Parameters | Properties | Ref. |
---|---|---|---|---|
Sb2Te3 | Polyimide | RF | TPF: 1.07 × 10−4 Wm−1K−2 | [12] |
Sb2Te3 | Polyimide | DC, deposited at 473 K | TPF: 6.0 × 10−4 Wm−1K−2 | [13] |
Bi2Te3 | SiO2/Si | RF | TPF: 3 × 10−4Wm−1K−2 at 498 K | [14] |
Bi2Te3 | Glass, alumina, sapphire, and polyimide | DC | S: maximum −1.63 × 10−4W/K on glass | [15] |
Bi2Te3 | Polyimide | RF/DC | TPF: 3.5 × 10−3 Wm−1K−2 at 558 K with DC power | [16] |
Sb2Te3 Bi2Te3 | Glass | RF | TPF: 1.27 × 10−3 Wm−1K−2 for Sb2Te3 at RT, and 1.02 × 10−3 Wm−1K−2 for Bi2Te3 at 573 K | [17] |
Ag–Sb–Te (AST) | Soda-lime glass and SiO2/Si | DC | SiO2/Si wafer has better results with annealing at 773 K | [18] |
Ge2Sb2Te5 | Soda-lime Glass (523 K–723 K) | Pulsed DC | TPF: 0.77 × 10−3 Wm−1K−2 at 673 K | [19] |
ZnxSby | flexible polyimide | RF | TPF: 2.35 × 10−3 Wm−1K−2 | [20] |
ScN | MgO (1123 K) | DC in Ar/N2 | TPF: 3.3 × 10−3 Wm−1K−2 at 800 K | [21] |
Cu2Se | Copper (low-temperature) | Pulsed hybrid technique | TPF: 1.1 × 10−3 Wm−1K−2 κ = 0.8 ± 0.1 Wm−1K−1 | [22] |
SnSe | Glass/fused silica | RF | TPF: 1.4 × 10−4 Wm−1K−2 at 575 K | [23,24] |
Mg2Sn | Glass | RF | TPF: 8.5 × 10−4 Wm−1K−2 at 519 K | [25] |
Mg2Si | Polyimide | RF | TPF: 3.3 × 10−5 Wm−1K−2 at 710 K | [26] |
Ge–Au | Glass | Power of 320 W | Thermal conductivity: 1.1 Wm−1K−1 at 300 K | [27] |
Zn1−xAgxSb | Fused silica | DC | TPF: 1.49 × 10−3 Wm−1K−2 at525 K | [28] |
Amorphous Ga–Sn–O | Quartz | RF | TPF: 1.47 × 10−4 Wm−1K−2 at 397 K | [29] |
Al-doped Zinc Oxide (AZO) | Soda-lime glass | RF | Maximum ZT value of 0.019 at 640 K | [30] |
CoxSby | Polyimide | RF | Maximum TPF: 1.71 × 10−4 Wm−1K−2 | [31] |
Sample Code | Substrate | Target Current (A) | Deposition Time (min) | Thickness (µm) |
---|---|---|---|---|
N4 | Si/Chip/Glass | 0.4 | 40 | 2.0 |
N5 | Si/Chip/Glass | 0.5 | 40 | 2.5 |
N45 | Si/Chip/Glass | 0.45 | 40 | 2.2 |
P3 | Si/Glass | 0.3 | 65 | 2.0 |
P3R | Si/Chip/Glass | 0.3 | 50 | 1.5 |
P4 | Si/Chip/Glass | 0.4 | 50 | 1.8 |
P45 | Si/Chip/Glass | 0.45 | 45 | 1.8 |
P5 | Si/Glass | 0.5 | 45 | 1.9 |
P6 | Si/Glass | 0.6 | 30 | 1.8 |
P45K | Kapton | 0.45 | 60 | 2.5 |
P4K-6mm | Kapton | 0.4 | 50 | 2.0 |
P4K-12mm | Kapton | 0.4 | 50 | 2.0 |
N4K-50m | Kapton | 0.4 | 50 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Gurtaran, M.; Li, X.; Un, H.-I.; Qin, Y.; Dong, H. Characterization of Magnetron Sputtered BiTe-Based Thermoelectric Thin Films. Nanomaterials 2023, 13, 208. https://doi.org/10.3390/nano13010208
Zhang Z, Gurtaran M, Li X, Un H-I, Qin Y, Dong H. Characterization of Magnetron Sputtered BiTe-Based Thermoelectric Thin Films. Nanomaterials. 2023; 13(1):208. https://doi.org/10.3390/nano13010208
Chicago/Turabian StyleZhang, Zhenxue, Mikdat Gurtaran, Xiaoying Li, Hio-Ieng Un, Yi Qin, and Hanshan Dong. 2023. "Characterization of Magnetron Sputtered BiTe-Based Thermoelectric Thin Films" Nanomaterials 13, no. 1: 208. https://doi.org/10.3390/nano13010208
APA StyleZhang, Z., Gurtaran, M., Li, X., Un, H. -I., Qin, Y., & Dong, H. (2023). Characterization of Magnetron Sputtered BiTe-Based Thermoelectric Thin Films. Nanomaterials, 13(1), 208. https://doi.org/10.3390/nano13010208