Photodetection Properties of MoS2, WS2 and MoxW1-xS2 Heterostructure: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Characterization
3.2. Optical Properties
3.3. Photoresponse Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hui, R. Photodetectors. In Introduction to Fiber-Optic Communications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 125–154. [Google Scholar]
- Malik, M.; Iqbal, M.A.; Choi, J.R.; Pham, P.V. 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Front. Chem. 2022, 10, 905404. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, A.; Roccaforte, F.; Raineri, V. Electro-Optical Response of Ion-Irradiated 4H-SiC Schottky Ultraviolet Photodetectors. Appl. Phys. Lett. 2008, 92, 093505. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; Fang, Z.; Meng, X.; Zuo, C.; Lv, M.; Tian, Y.; Fang, Y.; Xiao, Z.; Shan, C.; et al. An Electrically Modulated Single-Color/Dual-Color Imaging Photodetector. Adv. Mater. 2020, 32, 1907257. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Recent Advances in Two-Dimensional-Material-Based Sensing Technology toward Health and Environmental Monitoring Applications. Nanoscale 2020, 12, 3535–3559. [Google Scholar] [CrossRef] [PubMed]
- Arams, F.R. Photodetectors for Optical Communication Systems. Proc. IEEE 1970, 58, 1466–1486. [Google Scholar] [CrossRef]
- Rogalski, A.; Antoszewski, J.; Faraone, L. Third-Generation Infrared Photodetector Arrays. J. Appl. Phys. 2009, 105, 4. [Google Scholar] [CrossRef] [Green Version]
- Xi, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-Dimensional Material Nanophotonics. Nat. Photonics 2010, 4, 882. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef] [Green Version]
- Koski, K.J.; Cui, Y. The New Skinny in Two-Dimensional Nanomaterials. ACS Nano 2013, 7, 3739–3743. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.W.; Lee, C.H.; Paul, P.K.; Ma, L.; McCulloch, W.D.; Krishnamoorthy, S.; Wu, Y.; Arehart, A.R.; Rajan, S. Layer-Transferred MoS2/GaN PN Diodes. Appl. Phys. Lett. 2015, 107, 103505. [Google Scholar] [CrossRef] [Green Version]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, E.; Gutiérrez-Lezama, I.; Ubrig, N.; Morpurgo, A.F. Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS2. Nano Lett. 2015, 15, 8289–8294. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Fistul, M.V.; Gruenewald, M.; Kaiser, D.; Lehnert, T.; Mupparapu, R.; Neumann, C.; Hübner, U.; Schaal, M.; Masurkar, N.; et al. Giant Persistent Photoconductivity in Monolayer MoS2 Field-Effect Transistors. npj 2D Mater. Appl. 2021, 5, 15. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, B.; Wang, S.; Wang, D.; Wang, A.; Wang, Z.; Yu, H.; Zhang, H.; Chen, Y.; Zhao, M.; et al. Ultrabroadband MoS2 Photodetector with Spectral Response from 445 to 2717 Nm. Adv. Mater. 2017, 29, 1605972. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Liu, F.; Chen, Y.; Liu, B.; Deng, W.; An, B.; Chu, F.; Zhang, G.; Li, S.; et al. Enhanced Performance of a CVD MoS2 Photodetector by Chemical in Situ N-Type Doping. ACS Appl. Mater. Interfaces 2019, 11, 11636–11644. [Google Scholar] [CrossRef]
- Magnozzi, M.; Pflug, T.; Ferrera, M.; Pace, S.; Ramó, L.; Olbrich, M.; Canepa, P.; Ağircan, H.; Horn, A.; Forti, S.; et al. Local Optical Properties in CVD-Grown Monolayer WS2 Flakes. J. Phys. Chem. C 2021, 125, 16059–16065. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Cheng, Y.C.; Schwingenschlögl, U. Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors. Phys. Rev. B Cover. Condens. Matter Mater. Phys. 2011, 84, 153402. [Google Scholar] [CrossRef]
- Li, J.; Han, J.; Li, H.; Fan, X.; Huang, K. Large-Area, Flexible Broadband Photodetector Based on WS2 Nanosheets Films. Mater. Sci. Semicond. Process 2020, 107, 104804. [Google Scholar] [CrossRef]
- Tan, H.; Fan, Y.; Zhou, Y.; Chen, Q.; Xu, W.; Warner, J.H. Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 with Graphene Electrodes. ACS Nano 2016, 10, 7866–7873. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhang, Y.; Liu, Y.; Liu, H.; Song, J.; Sophia, J.; Liu, J.; Xu, Z.; Xu, Q.; Wang, Z.; et al. Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano 2016, 10, 573–580. [Google Scholar] [CrossRef]
- Ye, K.; Liu, L.; Liu, Y.; Nie, A.; Zhai, K.; Xiang, J.; Wang, B.; Wen, F.; Mu, C.; Zhao, Z.; et al. Lateral Bilayer MoS2–WS2 Heterostructure Photodetectors with High Responsivity and Detectivity. Adv. Opt. Mater. 2019, 7, 1900815. [Google Scholar] [CrossRef]
- Susarla, S.; Kutana, A.; Hachtel, J.A.; Kochat, V.; Apte, A.; Vajtai, R.; Idrobo, J.C.; Yakobson, B.I.; Tiwary, C.S.; Ajayan, P.M. Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. Adv. Mater. 2017, 29, 1702457. [Google Scholar] [CrossRef]
- Mann, J.; Ma, Q.; Odenthal, P.M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; von Son Palacio, G.; Nguyen, A.; et al. 2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1-x)Se2x Monolayers. Adv. Mater. 2014, 26, 1399–1404. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, P.; Ito, Y.; Ning, S.; Tan, Y.; Fujita, T.; Hirata, A.; Chen, M. Chemical Vapor Deposition of Monolayer Mo1-XWxS2 Crystals with Tunable Band Gaps. Sci. Rep. 2016, 6, 21536. [Google Scholar] [CrossRef] [Green Version]
- Mouloua, D.; Kotbi, A.; Deokar, G.; Kaja, K.; el Marssi, M.; el Khakani, M.A.; Jouiad, M. Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials 2021, 14, 3283. [Google Scholar] [CrossRef]
- Liu, H.F.; Wong, S.L.; Chi, D.Z. CVD Growth of MoS2-Based Two-Dimensional Materials. Chem. Vap. Depos. 2015, 21, 241–259. [Google Scholar] [CrossRef]
- Zhao, W.; Ghorannevis, Z.; Amara, K.K.; Pang, J.R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P.H.; Eda, G. Lattice Dynamics in Mono- and Few-Layer Sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683. [Google Scholar] [CrossRef]
- Lan, F.; Lai, Z.; Xu, Y.; Cheng, H.; Wang, Z.; Qi, C.; Chen, J.; Zhang, S. Synthesis of Vertically Standing MoS2 Triangles on SiC. Sci. Rep. 2016, 6, 31980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, N.S.; Kotbi, A.; Kaja, K.; Jouiad, M. Long-Term Aging of CVD Grown 2D-MoS2 Nanosheets in Ambient Environment. npj Mater. Degrad. 2022, 6, 75. [Google Scholar] [CrossRef]
- Zhao, W.; Pan, J.; Fang, Y.; Che, X.; Wang, D.; Bu, K.; Huang, F. Metastable MoS2: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chemistry—Eur. J. 2018, 24, 15942–15954. [Google Scholar] [CrossRef]
- Wang, L.; Kutana, A.; Yakobson, B.I. Many-Body and Spin-Orbit Effects on Direct-Indirect Band Gap Transition of Strained Monolayer MoS2 and WS2. Ann. Phys. 2014, 526, L7–L12. [Google Scholar] [CrossRef] [Green Version]
- Brumme, T.; Calandra, M.; Mauri, F. First-Principles Theory of Field-Effect Doping in Transition-Metal Dichalcogenides: Structural Properties, Electronic Structure, Hall Coefficient, and Electrical Conductivity. Phys. Rev. B Cover. Condens. Matter Mater. Phys. 2015, 91, 155436. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, T.; Dai, X.; Wang, X.; Zhai, C.; Ma, Y.; Chang, S.; Tang, Y. Electric Field Modulation of the Band Structure in MoS2/WS2 van Der Waals Heterostructure. Solid State Commun. 2017, 250, 9–13. [Google Scholar] [CrossRef]
- dos Santos, R.B.; Rivelino, R.; Mota, F.D.B.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Feasibility of Novel (H3C)NX(SiH3)3-n Compounds (X = B, Al, Ga, In): Structure, Stability, Reactivity, and Raman Characterization from Ab Initio Calculations. Dalton Trans. 2015, 44, 3356–3366. [Google Scholar] [CrossRef] [Green Version]
- Kakanakova-Georgieva, A.; Giannazzo, F.; Nicotra, G.; Cora, I.; Gueorguiev, G.K.; Persson, P.O.Å.; Pécz, B. Material Proposal for 2D Indium Oxide. Appl. Surf. Sci. 2021, 548, 149275. [Google Scholar] [CrossRef]
- Mukherjee, B.; Tseng, F.; Gunlycke, D.; Amara, K.K.; Eda, G.; Simsek, E. Complex Electrical Permittivity of the Monolayer Molybdenum Disulfide (MoS_2) in near UV and Visible. Opt. Mater. Express 2015, 5, 447. [Google Scholar] [CrossRef] [Green Version]
- Vaquero, D.; Clericò, V.; Salvador-Sánchez, J.; Martín-Ramos, A.; Díaz, E.; Domínguez-Adame, F.; Meziani, Y.M.; Diez, E.; Quereda, J. Excitons, Trions and Rydberg States in Monolayer MoS2 Revealed by Low-Temperature Photocurrent Spectroscopy. Commun. Phys. 2020, 3, 194. [Google Scholar] [CrossRef]
- Mouloua, D.; Rajput, N.S.; Blach, J.-F.; Lejeune, M.; El Marssi, M.; El Khakani, M.A.; Jouiad, M. Fabrication Control of MoS2/MoO2 Nanocomposite via Chemical Vapor Deposition for Optoelectronic Applications. Mater. Sci. Eng. B 2022, 286, 116035. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and Misuse of the Kubelka-Munk Function to Obtain the Band Gap Energy from Diffuse Reflectance Measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Tan, H.; Xu, W.; Sheng, Y.; Lau, C.S.; Fan, Y.; Chen, Q.; Tweedie, M.; Wang, X.; Zhou, Y.; Warner, J.H. Lateral Graphene-Contacted Vertically Stacked WS2/MoS2 Hybrid Photodetectors with Large Gain. Adv. Mater. 2017, 29, 1702917. [Google Scholar] [CrossRef] [PubMed]
- Kufer, D.; Konstantatos, G. Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. Nano Lett. 2015, 15, 7307–7313. [Google Scholar] [CrossRef]
- Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. MoS2 Based Photodetectors: A Review. Sensors 2021, 21, 2758. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, S.; Lin, Z.; Li, X.; Song, L.; Yu, W.; Wang, Q.; He, W. High-Performance MoS2 Photodetectors Prepared Using a Patterned Gallium Nitride Substrate. ACS Appl. Mater. Interfaces 2021, 13, 15820–15826. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Marie, L.S.; Wang, Q.X.; Quirk, N.; El Fatimy, A.; Ishigami, M.; Barbara, P. Highly Sensitive MoS2 Photodetectors with Graphene Contacts. Nanotechnology 2018, 29, 20LT01. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.H.; Gu, H.H.; Yoon, Y.J. Large-Area and Low-Temperature Synthesis of Few-Layered WS2 Films for Photodetectors. 2D Mater. 2018, 5, 045030. [Google Scholar] [CrossRef]
- Zeng, L.; Tao, L.; Tang, C.; Zhou, B.; Long, H.; Chai, Y.; Lau, S.P.; Tsang, Y.H. High-Responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Sci. Rep. 2016, 6, 20343. [Google Scholar] [CrossRef] [Green Version]
- Lan, C.; Zhou, Z.; Zhou, Z.; Li, C.; Shu, L.; Shen, L.; Li, D.; Dong, R.; Yip, S.P.; Ho, J.C. Wafer-Scale Synthesis of Monolayer WS2 for High-Performance Flexible Photodetectors by Enhanced Chemical Vapor Deposition. Nano Res. 2018, 11, 3371–3384. [Google Scholar] [CrossRef]
Material | Crystal System | Cut Off/ Wave Function (Ryd) | Lattice Parameters (Å) |
---|---|---|---|
MoS2 | P63/mmc | 70/700 | a = b = 3.18; c = 15 |
WS2 | P63/mmc | 50/500 | a = b = 3.19; c = 15 |
MoxW1-xS2 | P63/mmc | 60/600 | a = b = 3.18; c = 15 |
Material | Fabrication | Bias (V) | Power Density (mW cm−2) | Active Area (cm2) | Excitation | Responsivity | Detectivity (Jones) | Ref. |
---|---|---|---|---|---|---|---|---|
(nm) | (mA W−1) | |||||||
MoS2 | PLD | 10 | 8 | 1.2 × 10−3 | 445–2717 | 50.7 | 1.55 × 109 | [18] |
MoS2-HfO2 | Exfoliation | 5 | - | 1.5 × 10−7 | 550–800 | 104 | 7.7 × 1011 | [45] |
MoS2/GaN substrate | CVD | 20 | 2.9 | 4.7 × 10−4 | 460 | 25 × 103 | 5.6 × 108 | [47] |
MoS2/Graphene | CVD | 10 | 1 | 6 × 10−6 | 532–633 | 1.4 × 103 | 8.7 × 1014 | [48] |
MoS2 | CVD | 50 | 7 | 6.8 × 10−7 | 450–750 | 105 | 9.4 × 1012 | [19] |
MoS2 | CVD | 5 | 70 | 7.5 × 10−2 | 400–700 | 77.2 | 7.2 × 1011 | [This study] |
WS2 | Sputtering | 10 | 14.9 | 9 × 10−7 | 450–635 | 0.4 | 4.4 × 106 | [49] |
WS2 | Sputtering | 5 | - | - | 365 | 53.3 × 103 | 1.22 × 1011 | [50] |
WS2-Graphene | CVD | 5 | 2.5 × 107 | 4 × 10−12 | 532 | 3.5 × 103 | 1.6 × 1010 | [23] |
WS2 | Exfoliation | 5 | 11.7 | - | 532–1064 | 4.1 | 2.6 × 109 | [22] |
WS2 | CVD | 10 | 0.07 | 1.7 × 10−6 | 532 | 0.5 | 4.9 × 109 | [51] |
WS2 | CVD | 5 | 70 | 7.5 × 10−2 | 400–700 | 11.8 | 2.9 × 1010 | [This study] |
MoS2/WS2 Graphene | CVD | 10 | 1.7 × 102 | 3.1 × 10−8 | 532 | 2340 × 103 | 4.1 × 1011 | [44] |
MoS2/WS2 | 2-steps CVD | 4 | - | 1.2 × 10−5 | 450 | 2.3 × 103 | - | [24] |
WS2/MoS2 | 2-steps CVD | 5 | 1.3 × 103 | 6.2 × 10−7 | 457–671 | 6.7 × 103 | 3.1 × 1013 | [25] |
MoxW1-xS2 | CVD | 5 | 70 | 7.5 × 10−2 | 400–700 | 47.4 | 1.4 × 1011 | [This study] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Qaydi, M.; Kotbi, A.; Rajput, N.S.; Bouchalkha, A.; El Marssi, M.; Matras, G.; Kasmi, C.; Jouiad, M. Photodetection Properties of MoS2, WS2 and MoxW1-xS2 Heterostructure: A Comparative Study. Nanomaterials 2023, 13, 24. https://doi.org/10.3390/nano13010024
Al Qaydi M, Kotbi A, Rajput NS, Bouchalkha A, El Marssi M, Matras G, Kasmi C, Jouiad M. Photodetection Properties of MoS2, WS2 and MoxW1-xS2 Heterostructure: A Comparative Study. Nanomaterials. 2023; 13(1):24. https://doi.org/10.3390/nano13010024
Chicago/Turabian StyleAl Qaydi, Maryam, Ahmed Kotbi, Nitul S. Rajput, Abdellatif Bouchalkha, Mimoun El Marssi, Guillaume Matras, Chaouki Kasmi, and Mustapha Jouiad. 2023. "Photodetection Properties of MoS2, WS2 and MoxW1-xS2 Heterostructure: A Comparative Study" Nanomaterials 13, no. 1: 24. https://doi.org/10.3390/nano13010024
APA StyleAl Qaydi, M., Kotbi, A., Rajput, N. S., Bouchalkha, A., El Marssi, M., Matras, G., Kasmi, C., & Jouiad, M. (2023). Photodetection Properties of MoS2, WS2 and MoxW1-xS2 Heterostructure: A Comparative Study. Nanomaterials, 13(1), 24. https://doi.org/10.3390/nano13010024