Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Particle Size Distribution and ZP Characterisation
2.3. Dissolution Experiments
2.4. Quality Assurance
2.5. Statistical Analysis
3. Results
3.1. Effect of Particle Size on Dissolution of Five Metal-Oxides (Nano vs. Bulk)
3.2. Effect of Initial Metal-Oxide ENM Concentration on Dissolution
3.3. Effect of Aqueous Media on Dissolution of Metal-Oxide ENMs
3.4. Evidence of Losses by Sedimentation during Control Experiments with Soluble Salts
4. Discussion
4.1. Effect of Particle Size (Nano vs. Bulk) and Initial ENM Concentration on Dissolution
4.2. Effect of Aqueous Media on Dissolution of Metal-Oxide ENMs
4.3. Evidence of Losses by Sedimentation during Control Experiments with Soluble Salts
4.4. Implications for Grouping and Read-Across
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 2012, 14, 1109. [Google Scholar] [CrossRef] [Green Version]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wei, Y.; Zhao, H.; Chen, S.; Bu, X.; Lu, F.; Qu, D.; Yao, L.; Zheng, J.; Zhang, J. The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells. J. Appl. Toxicol. 2015, 35, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, F.J.; Gómez, R.; Alvarez, L.H.; Martinez, C.M.; Hernandez-Montoya, V. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles. Biodegradation 2015, 26, 289–298. [Google Scholar] [CrossRef]
- Sobańska, Z.; Roszak, J.; Kowalczyk, K.; Stępnik, M. Applications and biological activity of nanoparticles of manganese and manganese oxides in in vitro and in vivo models. Nanomaterials 2021, 11, 1084. [Google Scholar] [CrossRef]
- Oberdörster, G.; Kuhlbusch, T.A.J. In vivo effects: Methodologies and biokinetics of inhaled nanomaterials. NanoImpact 2018, 10, 38–60. [Google Scholar] [CrossRef]
- Zhong, L.; Yu, Y.; Lian, H.; Hu, X.; Fu, H.; Chen, Y. Solubility of nano-sized metal oxides evaluated by using in vitro simulated lung and gastrointestinal fluids: Implication for health risks. J. Nanopart. Res. 2017, 19, 375. [Google Scholar] [CrossRef]
- ECHA 2019 (version 2.0, Dec 2019) Guidance on Information Requirements and Chemical Safety Assessment. Appendix R.6-1 for Nanoforms Applicable to the Guidance on QSARs and Grouping of Chemicals Reference: ECHA-19-H-15-EN. European Chemicals Agency (ECHA): Helsinki, Finland. Available online: https://echa.europa.eu/documents/10162/23047722/draft_appendix_r6-1_nano_v2_en.pdf/0d2c1733-03ab-5528-edca-9dbd3104d24c (accessed on 3 March 2022).
- Arts, J.H.E.; Hadi, M.; Irfan, M.-A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. 2015, 71 (Suppl. S2), S1–S27. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD 2012/40: Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials; Series on the Safety of Manufactured Nanomaterials no. 3, ENV/JM/MONO(2012)40; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2012. [Google Scholar]
- Dong, L.; Sun, L.; Li, W.; Jiang, Y.; Zhan, Y.; Yu, L.; Chen, Y.; Hong, G. Degradable and excretable ultrasmall transition metal selenide nanodots for high-performance computed tomography bioimaging-guided photonic tumor nanomedicine in NIR-II Biowindow. Adv. Funct. Mater. 2021, 31, 2008591. [Google Scholar] [CrossRef]
- Torresan, V.; Forrer, D.; Guadagnini, A.; Badocco, D.; Pastore, P.; Casarin, M.; Selloni, A.; Coral, D.; Ceolin, M.; Fernández van Raap, M.B.; et al. 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles. ACS Nano 2020, 14, 12840–12853. [Google Scholar] [CrossRef]
- Staal, A.H.J.; Becker, K.; Tagit, O.; Koen van Riessen, N.; Koshkina, O.; Veltien, A.; Bouvain, P.; Cortenbach, K.R.G.; Scheenen, T.; Flögel, U.; et al. In Vivo clearance of 19F MRI imaging nanocarriers is strongly influenced by nanoparticle ultrastructure. Biomaterials 2020, 261, 120307. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Zheng, Y.; Du, T.; Wang, Y.; Gao, H.; Wang, X.; Jiang, H. Burst release of antibacterial clusters from gold-silver nanoboxes triggered by carboxylates modulating electron compensation effect. Chem. Eng. J. 2022, 450, 138322. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, Q.; Lin, Y.; Pacardo, D.B.; Wang, C.; Sun, W.; Ligler, F.S.; Dickey, M.D.; Gu, Z. Transformable liquid-metal nanomedicine. Nat. Commun. 2015, 6, 10066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO/TR 19057:2017; Nanotechnologies: Use and Application of Acellular In Vitro Tests and Methodologies to Assess Nanomaterial Biodurability. Available online: https://www.iso.org/standard/63836.html?browse=tc (accessed on 13 May 2020).
- OECD. OECD 2018/11: Assessment of Biodurability of Nanomaterials and Their Surface Ligands; Series on the Safety of Manufactured Nanomaterials no. 86, ENV/JM/MONO(2018)11; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2018. [Google Scholar]
- Sohal, I.S.; Cho, Y.K.; O’Fallon, K.S.; Gaines, P.; Demokritou, P.; Bello, D. Dissolution behavior and biodurability of ingested engineered nanomaterials in the gastrointestinal environment. ACS Nano 2018, 12, 8115–8128. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD 2015/44: Considerations for Using Dissolution as a Function of Surface Chemistry to Evaluate Environmental Behaviour of Nanomaterials in Risk Assessments: A Preliminary Case Study Using Silver Nanoparticles; Series on the Safety of Nanufactured Nanomaterials, no. 62, ENV/JM/MONO(2015)44; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2015. [Google Scholar]
- Arts, J.H.E.; Irfan, M.-A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Neubauer, N.; Petry, T.; Sauer, U.G.; et al. Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regul. Toxicol. Pharmacol. 2016, 76, 234–261. [Google Scholar] [CrossRef] [Green Version]
- Park, M.V.D.Z.; Catalán, J.; Ferraz, N.; Cabellos, J.; Vanhauten, R.; Vázquez-Campos, S.; Janer, G. Development of a systematic method to assess similarity between nanomaterials for human hazard evaluation purposes–lessons learnt. Nanotoxicology 2018, 12, 652–676. [Google Scholar] [CrossRef]
- Keller, J.G.; Persson, M.; Müller, P.; Ma-Hock, L.; Werle, K.; Arts, J.; Landsiedel, R.; Wohlleben, W. Variation in dissolution behavior among different nanoforms and its implication for grouping approaches in inhalation toxicity. NanoImpact 2021, 23, 100341. [Google Scholar] [CrossRef]
- ECHA 2013 Assessing Human health and Environmental Hazards of Nanomaterials—Best Practice for REACH Registrants 2nd GAARN Meeting Helsinki, 21–22 January 2013. ECHA-13-R-04-EN. European Chemicals Agency (ECHA): Helsinki, Finland. Available online: https://echa.europa.eu/documents/10162/5399565/best_practices_human_health_environment_nano_en.pdf/8e0adb6a-829c-43aa-84c5-5361f8505996 (accessed on 11 November 2019).
- Avramescu, M.; Chénier, M.; Palaniyandi, S.; Rasmussen, P.E. Dissolution behavior of metal oxide nanomaterials in cell culture medium versus distilled water. J. Nanopart. Res. 2020, 22, 222. [Google Scholar] [CrossRef]
- Avramescu, M.; Chénier, M.; Gardner, H.D.; Rasmussen, P.E. Solubility of metal oxide nanomaterials: Cautionary notes on sample preparation. J. Phys. Conf. Ser. 2019, 1323, 012001. [Google Scholar] [CrossRef]
- Decan, N.; Wu, D.; Williams, A.; Bernatchez, S.; Johnston, M.; Hill, M.; Halappanavar, S. Characterization of in vitro genotoxic, cytotoxic and transcriptomic responses following exposures to amorphous silica of different sizes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 796, 8–22. [Google Scholar] [CrossRef]
- Pelfrêne, A.; Cave, M.R.; Wragg, J.; Douay, F. In vitro investigations of human bioaccessibility from reference materials using simulated lung fluids. Int. J. Environ. Res. Public Health 2017, 14, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefaniak, A.B.; Guilmette, R.A.; Day, G.A.; Hoover, M.D.; Breysse, P.N.; Scripsick, R.C. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicol. Vitr. 2005, 19, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, A.B. Persistence of tungsten oxide particle/fiber mixtures in artificial human lung fluids. Part Fibre Toxicol. 2010, 7, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltermann-Jülly, J.; Keller, J.G.; Vennemann, A.; Werle, K.; Müller, P.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Wohlleben, W. Abiotic dissolution rates of 24 (nano)forms of 6 substances compared to macrophage-assisted dissolution and in vivo pulmonary clearance: Grouping by biodissolution and transformation. NanoImpact 2018, 12, 29–41. [Google Scholar] [CrossRef]
- Keller, J.G.; Graham, U.M.; Koltermann-Jülly, J.; Gelein, R.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Oberdörster, G.; Elder, A.; Wohlleben, W. Predicting dissolution and transformation of inhaled nanoparticles in the lung using abiotic flow cells: The case of barium sulfate. Sci. Rep. 2020, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Zanoni, I.; Keller, I.G.; Sauer, U.G.; Müller, P.; Ma-Hock, L.; Jensen, K.A.; Costa, A.L.; Wohlleben, W. Dissolution Rate of Nanomaterials Determined by Ions and Particle Size under Lysosomal Conditions: Contributions to Standardization of Simulant Fluids and Analytical Methods. Chem. Res. Toxicol. 2022, 35, 963–980. [Google Scholar] [CrossRef]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Diss. Tech. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Stebounova, L.V.; Guio, E.; Grassian, V.H. Silver nanoparticles in simulated biological media: A study of aggregation, sedimentation, and dissolution. J. Nanopart. Res. 2011, 13, 233–244. [Google Scholar] [CrossRef]
- Midander, K.; Wallinder, I.O.; Leygraf, C. In vitro studies of copper release from powder particles in synthetic biological media. Environ. Pollut. 2007, 145, 51–59. [Google Scholar] [CrossRef]
- Stopford, W.; Turner, J.; Cappellini, D.; Brock, T. Bioaccessibility testing of cobalt compounds. J. Environ. Monit. 2003, 5, 675–680. [Google Scholar] [CrossRef]
- Colombo, C.; Monhemius, A.J.; Plant, J.A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008, 71, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Kastury, F.; Smith, E.; Karna, R.R.; Scheckel, K.G.; Juhasz, A.L. Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM2.5 using simulated lung fluid. Environ. Pollut. 2018, 241, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Julien, C.; Esperanza, P.; Bruno, M.; Alleman, L.Y. Development of an in vitro method to estimate lung bioaccessibility of metals from atmospheric particles. J. Environ. Monit. 2011, 13, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.G.; Verougstraete, V.; Anderson, K.; Arbildua, J.J.; Brock, T.O.; Brouwers, T.; Cappellini, D.; Delbeke, K.; Herting, G.; Hixon, G.; et al. Inter-laboratory validation of bioaccessibility testing for metals. Regul. Toxicol. Pharmacol. 2014, 70, 170–181. [Google Scholar] [CrossRef]
- OECD. OECD 1995: Water Solubility, Test No. 105; Organisation for Economic Cooperation and Development (OECD): Paris, France, 1995. [Google Scholar]
- Bian, S.; Mudunkotuwa, I.A.; Rupasinghe, T.; Grassian, V.H. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 2011, 27, 6059–6068. [Google Scholar] [CrossRef]
- Cardoso, D.; Narcy, A.; Durosoy, S.; Bordes, C.; Chevalier, Y. Dissolution kinetics of zinc oxide and its relationship with physicochemical characteristics. Powder Technol. 2021, 378, 746–759. [Google Scholar] [CrossRef]
- Dahle, J.T.; Livi, K.; Arai, Y. Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere 2015, 119, 1365–1371. [Google Scholar] [CrossRef]
- Schwabe, F.; Schulin, R.; Rupper, P.; Rotzetter, A.; Stark, W.; Nowack, B. Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J. Nanopart. Res. 2014, 16, 2688. [Google Scholar] [CrossRef]
- Avramescu, M.; Rasmussen, P.E.; Chénier, M.; Gardner, H.D. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. Environ. Sci. Pollut. Res. 2017, 24, 1553–1564. [Google Scholar] [CrossRef] [Green Version]
- Misra, S.K.; Dybowska, A.; Berhanu, D.; Luoma, S.N.; Valsami-Jones, E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 2012, 438, 225–232. [Google Scholar] [CrossRef]
- Mudunkotuwa, I.A.; Rupasinghe, T.; Wu, C.; Grassian, V.H. Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid. Langmuir 2012, 28, 396–403. [Google Scholar] [CrossRef]
- Grulke, E.A.; Beck, M.J.; Yokel, R.A.; Unrine, J.M.; Graham, U.M.; Hancock, M.L. (Surface-controlled dissolution rates: A case study of nanoceria in carboxylic acid solutions. Environ. Sci. Nano 2019, 6, 1478–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokel, R.A.; Hancock, M.L.; Grulke, E.A.; Unrine, J.M.; Dozier, A.K.; Graham, U.M. Carboxylic acids accelerate acidic environment-mediated nanoceria dissolution. Nanotoxicology 2019, 13, 455–475. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, S.; Patil, S.; Kuchibhatla, S.V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 1–3. [Google Scholar] [CrossRef]
- Grulke, E.; Reed, K.; Beck, M.; Huang, X.; Cormack, A.; Seal, S. Nanoceria: Factors Affecting Its Pro- and antioxidant Properties. Environ. Sci. Nano 2014, 1, 429–444. [Google Scholar] [CrossRef]
- Wang, G.; Ma, Y.; Zhang, P.; He, X.; Zhang, Z.; Qu, M.; Ding, Y.; Zhang, J.; Xie, C.; Luo, W.; et al. Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. Environ. Pollut. 2017, 224, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Cervini-Silva, J.; Fowle, D.A.; Banfield, J. Biogenic dissolution of a soil cerium-phosphate mineral. Am. J. Sci. 2005, 305, 711–726. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Dosani, T.; Karakoti, A.S.; Kumar, A.; Seal, S.; Self, W.T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011, 32, 6745–6753. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Lin, Z.; Wang, T.; Yao, Z.; Qin, M.; Zheng, S.; Lu, W. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? J. Hazard. Mater. 2016, 308, 328–334. [Google Scholar] [CrossRef]
- Gray, E.P.; Browning, C.L.; Vaslet, C.A.; Gion, K.D.; Green, A.; Liu, M.; Kane, A.B.; Hurt, R.H. Chemical and Colloidal Dynamics of MnO2 Nanosheets in Biological Media Relevant for Nanosafety Assessment. Small 2020, 16, 2000303. [Google Scholar] [CrossRef]
- Meißner, T.; Oelschlägel, K.; Potthoff, A. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies. Int. Nano Lett. 2014, 4, 116. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Ivask, A.; Scheckel, K.G.; Kapruwan, P.; Stone, V.; Yin, H.; Voelcker, N.H.; Lombi, E. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. Nanotoxicology 2017, 11, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Boyadzhiev, A.; Avramescu, M.-L.; Wu, D.; Williams, A.; Rasmussen, P.; Halappanavar, S. Impact of copper oxide particle dissolution on lung epithelial cell toxicity: Response characterization using global transcriptional analysis. Nanotoxicology 2021, 15, 380–399. [Google Scholar] [CrossRef]
- Boyadzhiev, A.; Solorio-Rodriguez, A.; Wu, D.; Avramescu, M.-L.; Rasmussen, P.; Halappanavar, S. The High-Throughput In Vitro CometChip Assay for the Analysis of Metal Oxide Nanomaterial Induced DNA Damage. Nanomaterials 2022, 12, 1844. [Google Scholar] [CrossRef]
- Zhang, Y.; Nguyen, K.C.; Lefebvre, D.E.; Shwed, P.S.; Crosthwait, J.; Bondy, G.S.; Tayabali, A.F. Critical experimental parameters related to the cytotoxicity of zinc oxide nanoparticles. J. Nanopart. Res. 2014, 16, 2440. [Google Scholar] [CrossRef] [Green Version]
- Bove, P.; Malvindi, M.A.; Kote, S.S.; Bertorelli, R.; Summa, M.; Sabella, S. Dissolution test for risk assessment of nanoparticles: A pilot study. Nanoscale 2017, 9, 6315–6326. [Google Scholar] [CrossRef] [Green Version]
- Mujika, J.I.; Dalla Torre, G.; Formoso, E.; Grande-Aztatzi, R.; Grabowski, S.J.; Exley, C.; Lopez, X. Aluminum’s preferential binding site in proteins: Sidechain of amino acids versus backbone interactions. J. Inorg. Biochem. 2018, 181, 111–116. [Google Scholar] [CrossRef]
- Helmig, S.; Haibel, N.; Walter, D. In vitro toxicity studies of aluminum compounds. J. Therm. Anal. Calorim. 2018, 134, 643–651. [Google Scholar] [CrossRef]
- Kürsteiner, R.; Ritter, M.; Ding, Y.; Panzarasa, G. Dissolution of Zinc Oxide Nanoparticles in the Presence of Slow Acid Generators. Materials 2022, 15, 1166. [Google Scholar] [CrossRef] [PubMed]
- Holmfred, E.; Sloth, J.J.; Loeschner, K.; Jensen, K.A. Influence of Pre-Dispersion Media on the Batch Reactor Dissolution Behavior of Al2O3 Coated TiO2 (NM-104) and Two ZnO (NM-110 and NM-111) Nanomaterials in Biologically Relevant Test Media. Nanomaterials 2022, 12, 566. [Google Scholar] [CrossRef] [PubMed]
- Holmfred, E.; Loeschner, K.; Sloth, J.J.; Jensen, K.A. Validation and Demonstration of an Atmosphere-Temperature-pH-Controlled Stirred Batch Reactor System for Determination of (Nano)Material Solubility and Dissolution Kinetics in Physiological Simulant Lung Fluids. Nanomaterials 2022, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Uski, O.; Torvela, T.; Sippula, O.; Karhunen, T.; Koponen, H.; Peräniemi, S.; Jalava, P.; Happo, M.; Jokiniemi, J.; Hirvonen, M.; et al. In vitro toxicological effects of zinc containing nanoparticles with different physico-chemical properties. Toxicol. Vitr. 2017, 42, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Ji, Z.; Chang, C.H.; Dunphy, D.R.; Cai, X.; Meng, H.; Zhang, H.; Sun, B.; Wang, X.; Dong, J.; et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano 2014, 8, 1771–1783. [Google Scholar] [CrossRef]
- Guo, C.; Robertson, S.; Weber, R.J.M.; Buckley, A.; Warren, J.; Hodgson, A.; Rappoport, J.Z.; Ignatyev, K.; Meldrum, K.; Römer, I.; et al. Pulmonary toxicity of inhaled nano-sized cerium oxide aerosols in Sprague–Dawley rats. Nanotoxicology 2019, 13, 733–750. [Google Scholar] [CrossRef] [Green Version]
- Szymanski, C.J.; Munusamy, P.; Mihai, C.; Xie, Y.; Hu, D.; Gilles, M.K.; Tyliszczak, T.; Thevuthasan, S.; Baer, D.R.; Orr, G. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 2015, 62, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Innes, E.; Yiu, H.H.P.; McLean, P.; Brown, W.; Boyles, M. Simulated biological fluids—A systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit. Rev. Toxicol. 2021, 51, 217–248. [Google Scholar] [CrossRef]
- Hedberg, J.; Karlsson, H.L.; Hedberg, Y.; Blomberg, E.; Odnevall Wallinder, I. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids Surf. B Biointerfaces 2016, 141, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Semisch, A.; Ohle, J.; Witt, B.; Hartwig, A. Cytotoxicity and genotoxicity of nano and microparticulate copper oxide: Role of solubility and intracellular bioavailability. Part Fibre Toxicol. 2014, 11, 10. [Google Scholar] [CrossRef]
- Wang, Z.; Von Dem Bussche, A.; Kabadi, P.K.; Kane, A.B.; Hurt, R.H. Biological and environmental transformations of copper-based nanomaterials. ACS Nano 2013, 7, 8715–8727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Wang, X.; Wang, L.; Hou, X.; Liu, W.; Chen, C. Interaction of gold nanoparticles with proteins and cells. Sci. Technol. Adv. Mater. 2015, 16, 034610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Habibul, N.; He, D.; Li, W.; Zhang, X.; Jiang, H.; Yu, H. Copper release from copper nanoparticles in the presence of natural organic matter. Water Res. 2015, 68, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, A.S.; Conway, J.R.; Perez, T.; Rutten, P.; Keller, A.A. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ. Sci. Technol. 2014, 48, 12561–12568. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Ma, J.; Pan, C.; Guo, A.; Li, Y.; Xing, B. Citric acid enhances Ce uptake and accumulation in rice seedlings exposed to CeO2 nanoparticles and iron plaque attenuates the enhancement. Chemosphere 2020, 240, 124897. [Google Scholar] [CrossRef]
- Liu, X.; Ray, J.R.; Neil, C.W.; Li, Q.; Jun, Y. Enhanced colloidal stability of CeO2 nanoparticles by ferrous ions: Adsorption, redox reaction, and surface precipitation. Environ. Sci. Technol. 2015, 49, 5476–5483. [Google Scholar] [CrossRef]
Media | Time | n | ZnO | MnO2 | CeO2 | Al2O3 | Fe2O3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 mg/L | 10 mg/L | 100 mg/L | 10 mg/L | 100 mg/L | 10 mg/L | 100 mg/L | 10 mg/L | 100 mg/L | 10 mg/L | |||
Water | 0 h | 3 | 90 min | 90 min | 90 min | 90 min | 90 min | 90 min | 90 min | 90 min | 90 min | 90 min |
pH = 6.4 ± 0.5 | 24 h | 3 | ||||||||||
48 h | 3 | |||||||||||
DMEM + 2% FBS | 0 h | 3 | 90 min | 90 min | 90 min | 90 min | 90 min | 90 min | 60 min | 60 min | 90 min | 90 min |
pH = 7.6 ± 0.1 | 24 h | 3 | ||||||||||
48 h | 3 | |||||||||||
PSF | 0 h | 3 | 60 min | 60 min | 90 min | |||||||
pH = 4.5 ± 0.02 | 24 h | 3 | ||||||||||
Gamble | 0 h | 3 | 60 min | 60 min | 60 min | |||||||
pH = 7.5 ± 0.1 | 24 h | 3 | ||||||||||
Element, wavelength (ICP-OES) | Zn 213.857 nm | Mn 257.610 nm | Ce 418.659 nm | Al 396.152 nm | Fe 238.204 nm |
Media | Form (Initial Concentration) | MeOx | High (>70%) | Moderate (10–70%) | Low (1–10%) | Negligible (<1%) |
---|---|---|---|---|---|---|
Water | Nano (100 ppm) | ZnO | ZnO, 2.83% (2.28 mg/L) | |||
MnO2 | MnO2, 0.03% (0.02 mg/L) | |||||
CeO2 | CeO2, 1.07% (0.87 mg/L) | |||||
Al2O3 | Al2O3, 1.38% (0.73 mg/L) | |||||
Fe2O3 | Fe2O3, <0.01% (<10 ug/L) | |||||
CuO * | CuO, 0.99% (0.79 mg/L) | |||||
NiO | NiO, 1.22% (0.96 mg/L) | |||||
TiO2 * | TiO2, <0.01% (<10 ug/L) | |||||
Bulk (100 ppm) | ZnO | ZnO, 0.87% (0.70 mg/L) | ||||
MnO2 | MnO2, 0.11% (0.08 mg/L) | |||||
CeO2 | CeO2, nd | |||||
Al2O3 | Al2O3, <0.01% (<10 ug/L) | |||||
Fe2O3 | Fe2O3, <LOD | |||||
CuO * | CuO, 0.17% (0.19 mg/L) | |||||
NiO | NiO, 0.05% (0.05 mg/L) | |||||
TiO2 * | TiO2, <0.01% (<1 ug/L) | |||||
DMEM | Nano (100 ppm) | ZnO | ZnO, 19.3% (15.5 mg/L) | |||
MnO2 | MnO2, 3.87% (2.44 mg/L) | |||||
CeO2 | CeO2, 0.42% (0.34 mg/L) | |||||
Al2O3 | Al2O3, 0.73% (0.39 mg/L) | |||||
Fe2O3 | Fe2O3, nd | |||||
CuO | CuO, 51.5% (41.1 mg/L) | |||||
NiO | NiO, 1.81% (1.42 mg/L) | |||||
TiO2 * | TiO2, 0.04% (0.03 mg/L) | |||||
Bulk (100 ppm) | ZnO | ZnO, 11.8% (9.8 mg/L) | ||||
MnO2 | MnO2, 1.37% (0.94 mg/L) | |||||
CeO2 | CeO2, nd | |||||
Al2O3 | Al2O3, 0.02% (0.01 mg/L) | |||||
Fe2O3 | Fe2O3, nd | |||||
CuO | CuO, 1.51% (1.39 mg/L) | |||||
NiO | NiO, 0.07% (0.06 mg/L) | |||||
TiO2 * | TiO2, <0.01% (<1 ug/L) |
MeOx (Initial Concentration) | Media | High (>70%) | Moderate (10–70%) | Low (1–10%) | Negligible (<1%) |
---|---|---|---|---|---|
nano-ZnO (100 ppm) | Water | ZnO, 2.83% (2.27 mg/L) | |||
DMEM | ZnO, 18.5% (14.9 mg/L) | ||||
Gamble | ZnO, 4.62% (3.71 mg/L) | ||||
PSF | ZnO, 91.2% (73.3 mg/L) | ||||
nano-MnO2 (100 ppm) | Water | MnO2, 0.03% (0.02 mg/L) | |||
DMEM | MnO2, 0.76% (0.48 mg/L) | ||||
Gamble | MnO2, <LOD | ||||
PSF | MnO2, 3.88% (2.45 mg/L) | ||||
nano-CeO2 (100 ppm) | Water | CeO2, 1.11% (0.90 mg/L) | |||
DMEM | CeO2, 0.36% (0.29 mg/L) | ||||
Gamble | CeO2, 0.01% (<0.01 mg/L) | ||||
PSF | CeO2, 0.02% (0.01 mg/L) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 His Majesty the King in Right of Canada as represented by the Minister of Health. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avramescu, M.-L.; Chénier, M.; Beauchemin, S.; Rasmussen, P. Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media. Nanomaterials 2023, 13, 26. https://doi.org/10.3390/nano13010026
Avramescu M-L, Chénier M, Beauchemin S, Rasmussen P. Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media. Nanomaterials. 2023; 13(1):26. https://doi.org/10.3390/nano13010026
Chicago/Turabian StyleAvramescu, Mary-Luyza, Marc Chénier, Suzanne Beauchemin, and Pat Rasmussen. 2023. "Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media" Nanomaterials 13, no. 1: 26. https://doi.org/10.3390/nano13010026
APA StyleAvramescu, M. -L., Chénier, M., Beauchemin, S., & Rasmussen, P. (2023). Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media. Nanomaterials, 13(1), 26. https://doi.org/10.3390/nano13010026