Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators
Abstract
:1. Introduction
2. Calculation Details
3. Results and Discussion
3.1. Magnetic State of TlGd
3.2. Electronic Structure of TlGd ( Se, Te)
3.3. TlGdTe/(TlBiTe) Superlattices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MTI | Magnetic topological insulator |
FM | Ferromagnetic |
AFM | Antiferromagnetic |
NCAFM | Noncollinear antiferromagnetic |
QAHE | quantum anomalous Hall effect |
TME | Topological magnetoelectric effect |
DFT | Density functional theory |
SOC | Spin-orbit coupling |
References
- Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 2019, 1, 126–143. [Google Scholar] [CrossRef]
- Otrokov, M.M.; Klimovskikh, I.I.; Bentmann, H.; Estyunin, D.; Zeugner, A.; Aliev, Z.S.; Gaß, S.; Wolter, A.U.B.; Koroleva, A.V.; Shikin, A.M.; et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 2019, 576, 416–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rienks, E.; Wimmer, S.; Sánchez-Barriga, J.; Caha, O.; Mandal, P.; Ružička, J.; Ney, A.; Steiner, H.; Volobuev, V.; Groiss, H.; et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 2019, 576, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.F.; Zhang, R.; Mei, R.; Zhou, L.J.; Yi, H.; Zhang, Y.Q.; Yu, J.; Xiao, R.; Wang, K.; Samarth, N.; et al. Tuning the Chern number in quantum anomalous Hall insulators. Nature 2020, 588, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Li, H.; Wu, Y.; Li, Y.; Li, J.; He, K.; Xu, Y.; Zhang, J.; Wang, Y. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 2020, 19, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Yu, Y.; Shi, M.Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X.H.; Zhang, Y. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Elcoro, L.; Song, Z.D.; Wieder, B.J.; Vergniory, M.; Regnault, N.; Chen, Y.; Felser, C.; Bernevig, B.A. High-throughput calculations of magnetic topological materials. Nature 2020, 586, 702–707. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Z.; Wołoś, A.; Konczykowski, M.; Sobczak, K.; Sitnicka, J.; Fedorchenko, I.V.; Borysiuk, J.; Heider, T.; Pluciński, L.; et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 2020, 17, 36–42. [Google Scholar] [CrossRef]
- Gao, A.; Liu, Y.F.; Hu, C.; Qiu, J.X.; Tzschaschel, C.; Ghosh, B.; Ho, S.C.; Bérubé, D.; Chen, R.; Sun, H.; et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 2021, 595, 521–525. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.C. Chiral interconnects based on topological insulators. Proc. SPIE 2012, 8373, 837309. [Google Scholar] [CrossRef]
- Alam, S.; Hossain, M.S.; Aziz, A. A non-volatile cryogenic random-access memory based on the quantum anomalous Hall effect. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lian, B.; Sun, X.Q.; Vaezi, A.; Qi, X.L.; Zhang, S.C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl. Acad. Sci. USA 2018, 115, 10938–10942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grushin, A.G.; Cortijo, A. Tunable Casimir Repulsion with Three-Dimensional Topological Insulators. Phys. Rev. Lett. 2011, 106, 020403. [Google Scholar] [CrossRef] [PubMed]
- Tajik, F.; Allameh, N.; Masoudi, A.; Palasantzas, G. Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic motion: Sensitivity on magnetization and dielectric properties. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 093149. [Google Scholar] [CrossRef]
- Qi, X.L.; Hughes, T.L.; Zhang, S.C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.L.; et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 2013, 340, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Essin, A.M.; Moore, J.E.; Vanderbilt, D. Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators. Phys. Rev. Lett. 2009, 102, 146805. [Google Scholar] [CrossRef] [Green Version]
- Tse, W.K.; MacDonald, A.H. Giant Magneto-Optical Kerr Effect and Universal Faraday Effect in Thin-Film Topological Insulators. Phys. Rev. Lett. 2010, 105, 057401. [Google Scholar] [CrossRef] [Green Version]
- Katmis, F.; Lauter, V.; Nogueira, F.S.; Assaf, B.A.; Jamer, M.E.; Wei, P.; Satpati, B.; Freeland, J.W.; Eremin, I.; Heiman, D.; et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 2016, 533, 513–516. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Akhgar, G.; Gebert, M.; Karel, J.; Edmonds, M.T.; Fuhrer, M.S. Recent Progress in Proximity Coupling of Magnetism to Topological Insulators. Adv. Mater. 2021, 33, 2007795. [Google Scholar] [CrossRef]
- Mogi, M.; Yoshimi, R.; Tsukazaki, A.; Yasuda, K.; Kozuka, Y.; Takahashi, K.S.; Kawasaki, M.; Tokura, Y. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, R.; Yoshimi, R.; Kawamura, M.; Mogi, M.; Tsukazaki, A.; Yu, X.; Nakajima, K.; Takahashi, K.S.; Kawasaki, M.; Tokura, Y. Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure. Appl. Phys. Lett. 2019, 115, 102403. [Google Scholar] [CrossRef]
- Okada, K.N.; Takahashi, Y.; Mogi, M.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K.S.; Ogawa, N.; Kawasaki, M.; Tokura, Y. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nat. Commun. 2016, 7, 12245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijalkowski, K.M.; Liu, N.; Hartl, M.; Winnerlein, M.; Mandal, P.; Coschizza, A.; Fothergill, A.; Grauer, S.; Schreyeck, S.; Brunner, K.; et al. Any axion insulator must be a bulk three-dimensional topological insulator. Phys. Rev. B 2021, 103, 235111. [Google Scholar] [CrossRef]
- Mogi, M.; Okamura, Y.; Kawamura, M.; Yoshimi, R.; Yasuda, K.; Tsukazaki, A.; Takahashi, K.; Morimoto, T.; Nagaosa, N.; Kawasaki, M.; et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator. Nat. Phys. 2022, 18, 390–394. [Google Scholar] [CrossRef]
- Lee, I.; Kim, C.K.; Lee, J.; Billinge, S.J.L.; Zhong, R.; Schneeloch, J.A.; Liu, T.; Valla, T.; Tranquada, J.M.; Gu, G.; et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. Proc. Natl. Acad. Sci. USA 2015, 112, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Lachman, E.O.; Young, A.F.; Richardella, A.; Cuppens, J.; Naren, H.; Anahory, Y.; Meltzer, A.Y.; Kandala, A.; Kempinger, S.; Myasoedov, Y.; et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 2015, 1, e1500740. [Google Scholar] [CrossRef] [Green Version]
- Krieger, J.A.; Chang, C.Z.; Husanu, M.A.; Sostina, D.; Ernst, A.; Otrokov, M.M.; Prokscha, T.; Schmitt, T.; Suter, A.; Vergniory, M.G.; et al. Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators. Phys. Rev. B 2017, 96, 184402. [Google Scholar] [CrossRef] [Green Version]
- Otrokov, M.M.; Menshchikova, T.V.; Vergniory, M.G.; Rusinov, I.P.; Vyazovskaya, A.Y.; Koroteev, Y.M.; Bihlmayer, G.; Ernst, A.; Echenique, P.M.; Arnau, A.; et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 2017, 4, 025082. [Google Scholar] [CrossRef] [Green Version]
- Otrokov, M.M.; Menshchikova, T.V.; Rusinov, I.P.; Vergniory, M.G.; Kuznetsov, V.M.; Chulkov, E.V. Magnetic extension as an efficient method for realizing the quantum anomalous Hall state in topological insulators. JETP Lett. 2017, 105, 297–302. [Google Scholar] [CrossRef]
- Eremeev, S.V.; Otrokov, M.M.; Chulkov, E.V. Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4 compounds: An ab initio study. J. Alloys Compd. 2017, 709, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, T.; Eremeev, S.V.; Shirasawa, T.; Okuyama, Y.; Kubo, T.; Nakanishi, R.; Akiyama, R.; Takayama, A.; Hajiri, T.; Ideta, S.; et al. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer. Nano Lett. 2017, 17, 3493–3500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagmann, J.A.; Li, X.; Chowdhury, S.; Dong, S.N.; Rouvimov, S.; Pookpanratana, S.J.; Yu, K.M.; Orlova, T.A.; Bolin, T.B.; Segre, C.U.; et al. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures. New J. Phys. 2017, 19, 085002. [Google Scholar] [CrossRef]
- Otrokov, M.M.; Rusinov, I.P.; Blanco-Rey, M.; Hoffmann, M.; Vyazovskaya, A.Y.; Eremeev, S.V.; Ernst, A.; Echenique, P.M.; Arnau, A.; Chulkov, E.V. Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi2Te4 Films. Phys. Rev. Lett. 2019, 122, 107202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, Y.; Du, S.; Wang, Z.; Gu, B.L.; Zhang, S.C.; He, K.; Duan, W.; Xu, Y. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 2019, 5, eaaw5685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Shi, M.; Zhu, T.; Xing, D.; Zhang, H.; Wang, J. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect. Phys. Rev. Lett. 2019, 122, 206401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Guo, J.; Li, J.; Zhu, K.; Liao, M.; Liu, X.; Zhang, Q.; Gu, L.; Tang, L.; Feng, X.; et al. Experimental realization of an intrinsic magnetic topological insulator. Chinese Phys. Lett. 2019, 36, 076801. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Zhu, Y.; Wang, Y.; Miao, L.; Pillsbury, T.; Yi, H.; Kempinger, S.; Hu, J.; Heikes, C.A.; Quarterman, P.; et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 2019, 1, 012011. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.Q.; Zhang, Q.; Heitmann, T.; Huang, Z.; Chen, K.Y.; Cheng, J.G.; Wu, W.; Vaknin, D.; Sales, B.C.; McQueeney, R.J. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 2019, 3, 064202. [Google Scholar] [CrossRef] [Green Version]
- Vidal, R.C.; Bentmann, H.; Peixoto, T.R.F.; Zeugner, A.; Moser, S.; Min, C.H.; Schatz, S.; Kißner, K.; Ünzelmann, M.; Fornari, C.I.; et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4(0001). Phys. Rev. B 2019, 100, 121104. [Google Scholar] [CrossRef]
- Chen, B.; Fei, F.; Zhang, D.; Zhang, B.; Liu, W.; Zhang, S.; Wang, P.; Wei, B.; Zhang, Y.; Zuo, Z.; et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 2019, 10, 4469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liu, F.; Sasase, M.; Ienaga, K.; Obata, Y.; Yukawa, R.; Horiba, K.; Kumigashira, H.; Okuma, S.; Inoshita, T.; et al. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Sci. Adv. 2019, 5, eaax9989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Yan, J.Q.; Pajerowski, D.M.; Gordon, E.; Nedić, A.M.; Sizyuk, Y.; Ke, L.; Orth, P.P.; Vaknin, D.; McQueeney, R.J. Competing Magnetic Interactions in the Antiferromagnetic Topological Insulator MnBi2Te4. Phys. Rev. Lett. 2020, 124, 167204. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Gordon, K.N.; Liu, P.; Liu, J.; Zhou, X.; Hao, P.; Narayan, D.; Emmanouilidou, E.; Sun, H.; Liu, Y.; et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 2020, 11, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimovskikh, I.I.; Otrokov, M.M.; Estyunin, D.; Eremeev, S.V.; Filnov, S.O.; Koroleva, A.; Shevchenko, E.; Voroshnin, V.; Rusinov, I.P.; Blanco-Rey, M.; et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2T3)m topological insulators family. Npj Quantum Mater. 2020, 5, 54. [Google Scholar] [CrossRef]
- Shikin, A.M.; Estyunin, D.A.; Zaitsev, N.L.; Glazkova, D.; Klimovskikh, I.I.; Filnov, S.O.; Rybkin, A.G.; Schwier, E.F.; Kumar, S.; Kimura, A.; et al. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study. Phys. Rev. B 2021, 104, 115168. [Google Scholar] [CrossRef]
- Petrov, E.K.; Men’shov, V.N.; Rusinov, I.P.; Hoffmann, M.; Ernst, A.; Otrokov, M.M.; Dugaev, V.K.; Menshchikova, T.V.; Chulkov, E.V. Domain wall induced spin-polarized flat bands in antiferromagnetic topological insulators. Phys. Rev. B 2021, 103, 235142. [Google Scholar] [CrossRef]
- Wang, P.; Ge, J.; Li, J.; Liu, Y.; Xu, Y.; Wang, J. Intrinsic magnetic topological insulators. Innovation 2021, 2, 100098. [Google Scholar] [CrossRef]
- Garnica, M.; Otrokov, M.M.; Aguilar, P.C.; Klimovskikh, I.I.; Estyunin, D.; Aliev, Z.S.; Amiraslanov, I.R.; Abdullayev, N.A.; Zverev, V.N.; Babanly, M.B.; et al. Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). Npj Quantum Mater. 2022, 7, 7. [Google Scholar] [CrossRef]
- Mong, R.S.K.; Essin, A.M.; Moore, J.E. Antiferromagnetic topological insulators. Phys. Rev. B 2010, 81, 245209. [Google Scholar] [CrossRef]
- Aliev, Z.S.; Amiraslanov, I.R.; Nasonova, D.I.; Shevelkov, A.V.; Abdullayev, N.A.; Jahangirli, Z.A.; Orujlu, E.N.; Otrokov, M.M.; Mamedov, N.T.; Babanly, M.B.; et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure. J. Alloys Compd. 2019, 789, 443–450. [Google Scholar] [CrossRef]
- Vidal, R.C.; Zeugner, A.; Facio, J.I.; Ray, R.; Haghighi, M.H.; Wolter, A.U.; Bohorquez, L.T.C.; Caglieris, F.; Moser, S.; Figgemeier, T.; et al. Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2 Te3 Derivative with a Periodic Mn Sublattice. Phys. Rev. X 2019, 9, 041065. [Google Scholar] [CrossRef] [Green Version]
- Jahangirli, Z.A.; Alizade, E.H.; Aliev, Z.S.; Otrokov, M.M.; Ismayilova, N.A.; Mammadov, S.N.; Amiraslanov, I.R.; Mamedov, N.T.; Orudjev, G.S.; Babanly, M.B.; et al. Electronic structure and dielectric function of Mn-Bi-Te layered compounds. J. Vac. Sci. Technol. B 2019, 37, 062910. [Google Scholar] [CrossRef]
- Yan, J.Q.; Okamoto, S.; McGuire, M.A.; May, A.F.; McQueeney, R.J.; Sales, B.C. Evolution of structural, magnetic, and transport properties in MnBi2-xSbxTe4. Phys. Rev. B 2019, 100, 104409. [Google Scholar] [CrossRef] [Green Version]
- Eremeev, S.V.; Rusinov, I.P.; Koroteev, Y.M.; Vyazovskaya, A.Y.; Hoffmann, M.; Echenique, P.M.; Ernst, A.; Otrokov, M.M.; Chulkov, E.V. Topological Magnetic Materials of the (MnSb2Te4)·(Sb2Te3)n van der Waals Compounds Family. J. Phys. Chem. Lett. 2021, 12, 4268. [Google Scholar] [CrossRef]
- Wimmer, S.; Sánchez-Barriga, J.; Küppers, P.; Ney, A.; Schierle, E.; Freyse, F.; Caha, O.; Michalicka, J.; Liebmann, M.; Primetzhofer, D.; et al. Mn-Rich MnSb2Te4: A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45–50 K. Adv. Mater. 2021, 33, 2102935. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Zhang, J.; Liu, Z.; Yang, Z.; Wang, J. Intrinsic topological phases in Mn2Bi2Te5 tuned by the layer magnetization. Phys. Rev. B 2020, 102, 121107(R). [Google Scholar] [CrossRef]
- Cao, L.; Han, S.; Lv, Y.Y.; Wang, D.; Luo, Y.C.; Zhang, Y.Y.; Yao, S.H.; Zhou, J.; Chen, Y.B.; Zhang, H.; et al. Growth and characterization of the dynamical axion insulator candidate Mn2Bi2Te5 with intrinsic antiferromagnetism. Phys. Rev. B 2021, 104, 054421. [Google Scholar] [CrossRef]
- Eremeev, S.V.; Otrokov, M.M.; Ernst, A.; Chulkov, E.V. Magnetic ordering and topology in Mn2Bi2Te5 and Mn2Sb2Te5 van der Waals materials. Phys. Rev. B 2022, 105, 195105. [Google Scholar] [CrossRef]
- Chowdhury, S.; Garrity, K.F.; Tavazza, F. Prediction of Weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4. npj Comput. Mater. 2019, 5, 33. [Google Scholar] [CrossRef]
- Zhu, T.; Bishop, A.J.; Zhou, T.; Zhu, M.; O’Hara, D.J.; Baker, A.A.; Cheng, S.; Walko, R.C.; Repicky, J.J.; Liu, T.; et al. Synthesis, Magnetic Properties, and Electronic Structure of Magnetic Topological Insulator MnBi2Se4. Nano Lett. 2021, 21, 5083–5090. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Liu, Y.; Li, J.; Li, H.; Luo, T.; Wu, Y.; Xu, Y.; Wang, J. High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl. Sci. Rev. 2020, 7, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Song, Z.; Wang, Z.; Weng, H.; Dai, X. Higher-Order Topology of the Axion Insulator EuIn2As2. Phys. Rev. Lett. 2019, 122, 256402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Wang, Z.; Takane, D.; Souma, S.; Cui, C.; Li, Y.; Nakayama, K.; Kawakami, T.; Kubota, Y.; Cacho, C.; et al. Signature of band inversion in the antiferromagnetic phase of axion insulator candidate EuIn2As2. Phys. Rev. Res. 2020, 2, 033342. [Google Scholar] [CrossRef]
- Riberolles, S.X.M.; Trevisan, T.V.; Kuthanazhi, B.; Heitmann, T.W.; Ye, F.; Johnston, D.C.; Bud’ko, S.L.; Ryan, D.H.; Canfield, P.C.; Kreyssig, A.; et al. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Eremeev, S.V.; Landolt, G.; Menshchikova, T.V.; Slomski, B.; Koroteev, Y.M.; Aliev, Z.S.; Babanly, M.B.; Henk, J.; Ernst, A.; Patthey, L.; et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat. Commun. 2012, 3, 635. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, K.; Ye, M.; Kimura, A.; Eremeev, S.V.; Krasovskii, E.E.; Chulkov, E.V.; Ueda, Y.; Miyamoto, K.; Okuda, T.; Shimada, K.; et al. Experimental Realization of a Three-Dimensional Topological Insulator Phase in Ternary Chalcogenide TlBiSe2. Phys. Rev. Lett. 2010, 105, 146801. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Segawa, K.; Guo, H.; Sugawara, K.; Souma, S.; Takahashi, T.; Ando, Y. Direct Evidence for the Dirac-Cone Topological Surface States in the Ternary Chalcogenide TlBiSe2. Phys. Rev. Lett. 2010, 105, 136802. [Google Scholar] [CrossRef] [Green Version]
- Eremeev, S.V.; Koroteev, Y.M.; Chulkov, E.V. Ternary thallium-based semimetal chalcogenides Tl-V-VI2 as a new class of three-dimensional topological insulators. JETP Lett. 2010, 91, 594–598. [Google Scholar] [CrossRef]
- Eremeev, S.V.; Bihlmayer, G.; Vergniory, M.; Koroteev, Y.M.; Menshchikova, T.V.; Henk, J.; Ernst, A.; Chulkov, E.V. Ab initio electronic structure of thallium-based topological insulators. Phys. Rev. B 2011, 83, 205129. [Google Scholar] [CrossRef]
- Duczmal, M.; Pawlak, L. Magnetic and structural characterization of TlLnSe2 compounds (Ln ≡ Nd to Yb). J. Alloys Compd. 1995, 225, 181–184. [Google Scholar] [CrossRef]
- Duczmal, M.; Pawlak, L. Magnetic properties and crystal field effects in TlLnX2 compounds (X = S, Se, Te). J. Alloys Compd. 1997, 262, 316–319. [Google Scholar] [CrossRef]
- Sankar, C.R.; Bangarigadu-Sanasy, S.; Kleinke, H. Thermoelectric Properties of TlGdQ2 (Q = Se, Te) and Tl9GdTe6. J. Electron. Mater. 2012, 41, 1662–1666. [Google Scholar] [CrossRef]
- Imamaliyeva, S.Z.; Babanly, D.M.; Gasanly, T.M.; Tagiyev, D.B.; Babanly, M.B. Thermodynamic Properties of Tl9GdTe6 and TlGdTe2. Russ. J. Phys. Chem. 2018, 92, 2111–2117. [Google Scholar] [CrossRef]
- Duczmal, M.; Mosiniewicz-Szablewska, E.; Pokrzywnicki, S. Electron paramagnetic resonance of Gd3+ in TlGdSe2. Phys. Status Solidi A 2003, 196, 321–324. [Google Scholar] [CrossRef]
- Gautam, R.; Kumar, A.; Singh, R.P. First Principle Investigations on Electronic, Magnetic, Thermodynamic, and Transport Properties of TlGdX2 (X = S, Se, Te). Acta Phys. Pol. B 2017, 132, 1371–1378. [Google Scholar] [CrossRef]
- Godzhaev, E.M.; Dzhafarova, G.S. Phase Relations and Properties of Phases in the TlInSe2–TlPrSe2 System. Inorg. Mater. 2003, 39, 6–9. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelling, D.D.; Harmon, B.N. A technique for relativistic spin-polarised calculations. J. Phys. Solid State Phys. 1977, 10, 3107. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudarev, S.; Botton, G.; Savrasov, S.; Humphreys, C.; Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Aryasetiawan, F.; Lichtenstein, A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method. J. Phys. Condens. Matter 1997, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Schulz, S.; Vyazovskaya, A.Y.; Poelchen, G.; Generalov, A.; Güttler, M.; Mende, M.; Danzenbächer, S.; Otrokov, M.M.; Balasubramanian, T.; Polley, C.; et al. Classical and cubic Rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2. Phys. Rev. B 2021, 103, 035123. [Google Scholar] [CrossRef]
- Wimmer, E.; Krakauer, H.; Weinert, M.; Freeman, A.J. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 1981, 24, 864. [Google Scholar] [CrossRef]
- Shick, A.B.; Liechtenstein, A.I.; Pickett, W.E. Implementation of the LDA+ U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 1999, 60, 10763. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.I.; Solovyev, I.V.; Korotin, M.A.; Czyżyk, M.T.; Sawatzky, G.A. Density-functional theory and NiO photoemission spectra. Phys. Rev. B 1993, 48, 16929. [Google Scholar] [CrossRef]
- Fleur Site. Available online: http://www.flapw.de (accessed on 20 November 2022).
- Marzari, N.; Vanderbilt, D. Maximally Localized Generalized Wannier Functions for Composite Energy Bands. Phys. Rev. B 1997, 56, 12847. [Google Scholar] [CrossRef]
- Mostofi, A.; Yates, J.R.; Pizzi, G.; Lee, Y.S.; Souza, I.; Vanderbilt, D.; Marzari, N. An Updated Version of wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions. Comput. Phys. Commun. 2014, 185, 2309–2310. [Google Scholar] [CrossRef] [Green Version]
- Sancho, M.P.L.; Sancho, J.M.L.; Sancho, J.M.L.; Rubio, J. Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions. J. Phys. F Met. Phys. 1985, 15, 851–858. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Song, H.F.; Troyer, M.; Soluyanov, A. WannierTools: An Open-Source Software Package for Novel Topological Materials. Comput. Phys. Commun. 2018, 224, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Kane, C.L.; Mele, E.J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, R.; Tanaka, Y.; Murakami, S. Bulk-edge and bulk-hinge correspondence in inversion-symmetric insulators. Phys. Rev. Res. 2020, 2, 013300. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Joannopoulos, J.D.; Negele, J.W.; Landau, D.P. Symmetry analysis and Monte Carlo study of a frustrated antiferromagnetic planar (XY) model in two dimensions. Phys. Rev. B 1986, 33, 450–475. [Google Scholar] [CrossRef]
- Duczmal, M.; Pawlak, L.; Pokrzywnicki, S. Magnetic Properties of Layer-Type Compounds TlGdS2 and TlGdSe2. Acta Phys. Pol. A 2000, 5, 839–842. [Google Scholar] [CrossRef]
- Clark, J.K.; Pak, C.; Cao, H.; Shatruk, M. Helimagnetism in MnBi2Se4 driven by spin-frustrating interactions between antiferromagnetic chains. Crystals 2021, 11, 242. [Google Scholar] [CrossRef]
- Sukhanov, A.; Tymoshenko, Y.; Kulbakov, A.; Cameron, A.; Kocsis, V.; Walker, H.; Ivanov, A.; Park, J.; Pomjakushin, V.; Nikitin, S.; et al. Frustration model and spin excitations in the helimagnet FeP. Phys. Rev. B 2022, 105, 134424. [Google Scholar] [CrossRef]
- Hayashida, S.; Ishikawa, H.; Okamoto, Y.; Okubo, T.; Hiroi, Z.; Avdeev, M.; Manuel, P.; Hagihala, M.; Soda, M.; Masuda, T. Magnetic state selected by magnetic dipole interaction in the kagome antiferromagnet NaBa2Mn3F11. Phys. Rev. B 2018, 97, 054411. [Google Scholar] [CrossRef]
- Maksymenko, M.; Chandra, V.R.; Moessner, R. Classical dipoles on the kagome lattice. Phys. Rev. B 2015, 91, 184407. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.C. Magnetic dipole interactions in crystals. Phys. Rev. B 2016, 93, 014421. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.X.; Wu, F.; Das Sarma, S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1. Phys. Rev. Lett. 2020, 124, 136407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Ding, L.; Gordon, K.N.; Ghosh, B.; Tien, H.J.; Li, H.; Linn, A.G.; Lien, S.W.; Huang, C.Y.; Mackey, S.; et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13. Sci. Adv. 2020, 6, eaba4275. [Google Scholar] [CrossRef] [PubMed]
- Jo, N.H.; Wang, L.L.; Slager, R.J.; Yan, J.; Wu, Y.; Lee, K.; Schrunk, B.; Vishwanath, A.; Kaminski, A. Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10. Phys. Rev. B 2020, 102, 045130. [Google Scholar] [CrossRef]
- Filnov, S.O.; Klimovskikh, I.I.; Estyunin, D.A.; Fedorov, A.V.; Voroshnin, V.Y.; Koroleva, A.V.; Rybkin, A.G.; Shevchenko, E.V.; Aliev, Z.S.; Babanly, M.B.; et al. Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2. Phys. Rev. B 2020, 102, 085149. [Google Scholar] [CrossRef]
- Otrokov, M.M.; Ernst, A.; Tugushev, V.V.; Ostanin, S.; Buczek, P.; Sandratskii, L.M.; Fischer, G.; Hergert, W.; Mertig, I.; Kuznetsov, V.M.; et al. Ab initio study of the magnetic ordering in Si/Mn digital alloys. Phys. Rev. B 2011, 84, 144431. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, T.; Otrokov, M.M.; Sasaki, T.; Sumida, K.; Tomohiro, Y.; Kusaka, S.; Okuyama, Y.; Ichinokura, S.; Kobayashi, M.; Takeda, Y.; et al. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone. Nat. Commun. 2020, 11, 4821. [Google Scholar] [CrossRef]
- Su, S.H.; Chang, J.T.; Chuang, P.Y.; Tsai, M.C.; Peng, Y.W.; Lee, M.K.; Cheng, C.M.; Huang, J.C.A. Epitaxial Growth and Structural Characterizations of MnBi2Te4 Thin Films in Nanoscale. Nanomaterials 2021, 11, 3322. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
Compound | a | c | m | |||
---|---|---|---|---|---|---|
4.24 | 23.25 | 7.00 | −9.5 | −1.3 | 1.26 | |
4.49 | 24.53 | 7.02 | −11.7 | −2.5 | 0.56 |
Superlattice | a | c | |||
---|---|---|---|---|---|
4.54 | 48.46 | −11.8 | −0.19 | 0.086 | |
4.56 | 24.02 | −11.3 | −0.02 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vyazovskaya, A.Y.; Petrov, E.K.; Koroteev, Y.M.; Bosnar, M.; Silkin, I.V.; Chulkov, E.V.; Otrokov, M.M. Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators. Nanomaterials 2023, 13, 38. https://doi.org/10.3390/nano13010038
Vyazovskaya AY, Petrov EK, Koroteev YM, Bosnar M, Silkin IV, Chulkov EV, Otrokov MM. Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators. Nanomaterials. 2023; 13(1):38. https://doi.org/10.3390/nano13010038
Chicago/Turabian StyleVyazovskaya, Alexandra Yu., Evgeniy K. Petrov, Yury M. Koroteev, Mihovil Bosnar, Igor V. Silkin, Evgueni V. Chulkov, and Mikhail M. Otrokov. 2023. "Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators" Nanomaterials 13, no. 1: 38. https://doi.org/10.3390/nano13010038
APA StyleVyazovskaya, A. Y., Petrov, E. K., Koroteev, Y. M., Bosnar, M., Silkin, I. V., Chulkov, E. V., & Otrokov, M. M. (2023). Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators. Nanomaterials, 13(1), 38. https://doi.org/10.3390/nano13010038