Inhibiting the Laydown of Polymeric Carbon and Simultaneously Promoting Its Facile Burn-Off during the Industrial-Scale Production of Hydrogen with Nickel-Based Catalysts: Insights from Ab Initio Calculations
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Mechanistic Model of Carbon laydown on Nickel Catalysts
3.1.1. Nucleation of Carbon Clusters from Methane Decomposition
3.1.2. Understanding the Growth of Polymeric Carbon on Nickel Surfaces
3.1.3. Thermodynamics of Carbon Chains Branching during Polymeric Carbon Laydown
3.2. Correlations between the Free Energy of Nickel Surfaces and The Carbon Adsorption Energy
3.2.1. Effect of Dopants on the Thermodynamics of Coking
3.2.2. Relationship with Other Models of Carbon Formation on Metals
3.3. Rational Promotion of Carbon Burn-Off in Methane Steam Reforming
3.3.1. Facile Routes for Monomeric Carbon Burn-Off
3.3.2. Role of Steam in the Burn-Off of Polymeric Carbon
3.3.3. Facile Routes for Polymeric Carbon Burn-Off
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meloni, E.; Martino, M.; Palma, V. A short review on Ni based catalysts and related engineering issues for methane steam reforming. Catalysts 2020, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Iulianelli, A.; Liguori, S.; Wilcox, J.; Basile, A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catal. Rev. 2016, 58, 1–35. [Google Scholar] [CrossRef]
- Bawadi, A.; Ghani, N.A.A.; Vo, D.-V. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 2017, 162, 170–185. [Google Scholar]
- Jang, W.; Shim, J.; Kim, H.; Yoo, S.; Roh, H. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26. [Google Scholar] [CrossRef]
- Zhang, Z.; Xenophon, V.E. Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts. Appl. Catal. A Gen. 1996, 138, 109–133. [Google Scholar] [CrossRef]
- Zhang, Z.; Verykios, X.E.; MacDonald, S.M.; Affrossman, S. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J. Phys. Chem. 1996, 100, 744–754. [Google Scholar] [CrossRef]
- Ratnasamy, C.; Jon, P.W. Water gas shift catalysis. Catal. Rev. 2009, 51, 325–440. [Google Scholar] [CrossRef]
- Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938. [Google Scholar] [CrossRef]
- McFarlane, A.R.; Silverwood, I.P.; Warringham, R.; Norris, E.L.; Ormerod, R.M.; Frost, C.D.; Parker, S.F.; Lennon, D. The application of inelastic neutron scattering to investigate the ‘dry’ reforming of methane over an alumina-supported nickel catalyst operating under conditions where filamentous carbon formation is prevalent. RSC Adv. 2013, 3, 16577–16589. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ye, J.; Jiang, J.; Pan, Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529–541. [Google Scholar] [CrossRef]
- Behnam, M.; Dixon, A.G. 3D CFD simulations of local carbon formation in steam methane reforming catalyst particles. Int. J. Chem. React. Eng. 2017, 15, 6. [Google Scholar] [CrossRef]
- Carlsson, M. Carbon formation in steam reforming and effect of potassium promotion. Johns. Matthey Technol. Rev. 2015, 59, 313–318. [Google Scholar] [CrossRef]
- Lefrancois, P.A.; Hoyt, W.B. Chemical thermodynamics of high temperature reactions in metal dusting corrosion. Corrosion 1963, 19, 360t–368t. [Google Scholar] [CrossRef]
- Schlereth, C.; Hack, K.; Galetz, M.C. Parameters to estimate the metal dusting attack in different gases. Corros. Sci. 2022, 206, 110483. [Google Scholar] [CrossRef]
- Luo, W.; Hu, W.; Su, K.; Liu, F. The calculation of surface free energy based on embedded atom method for solid nickel. Appl. Surf. Sci. 2013, 265, 375–378. [Google Scholar] [CrossRef]
- Larsen, A.H.; Mortensen, J.J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.; Hammer, B.; Hargus, C.; et al. The atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, J.J.; Hansen, L.B.; Jacobsen, K.W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 2005, 71, 035109. [Google Scholar] [CrossRef] [Green Version]
- Enkovaara, J.; Rostgaard, C.; Mortensen, J.J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H.A.; et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 2010, 22, 253202. [Google Scholar] [CrossRef]
- Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D.C.; Lundqvist, B.I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Murray, É.D.; Kong, L.; Lundqvist, B.I.; Langreth, D.C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101. [Google Scholar] [CrossRef] [Green Version]
- Murray, D.E.; Lee, K.; Langreth, D.C. Investigation of exchange energy density functional accuracy for interacting molecules. J. Chem. Theory Comput. 2009, 5, 2754–2762. [Google Scholar] [CrossRef] [PubMed]
- John, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822. [Google Scholar]
- Berland, K.; Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 2014, 89, 035412. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Jorgensen, J.J.; Hart, G.L.W. Effectiveness of smearing and tetrahedron methods: Best practices in DFT codes. Model. Simul. Mater. Sci. Eng. 2021, 29, 065014. [Google Scholar] [CrossRef]
- Ukpong, A.M. Ab initio studies of propane dehydrogenation to propene with graphene. Mol. Phys. 2020, 118, e1798527. [Google Scholar] [CrossRef]
- Monnerat, B.; Kiwi-Minsker, L.; Renken, A.J.C.E.S. Hydrogen production by catalytic cracking of methane over nickel gauze under periodic reactor operation. Chem. Eng. Sci. 2001, 56, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Mel’nichenko, V.M.; Sladkov, A.M.; Nikulin, Y.N. Structure of polymeric carbon. Russ. Chem. Rev. 1982, 51, 421. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, C.; Zhang, S. Equilibrium crystal shape of Ni from first principles. J. Phys. Chem. C 2013, 117, 21274–21280. [Google Scholar] [CrossRef]
- Saadi, S.; Abild-Pedersen, F.; Helveg, S.; Sehested, J.; Hinnemann, B.; Appel, C.C.; Nørskov, J.K. On the role of metal step-edges in graphene growth. J. Phys. Chem. C 2010, 114, 11221–11227. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, W.; Zhang, Z. Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys. Rev. Lett. 2010, 104, 186101. [Google Scholar] [CrossRef] [PubMed]
- McCarty, K.F.; Feibelman, P.J.; Loginova, E.; Bartelt, N.C. Kinetics and thermodynamics of carbon segregation and graphene growth on Ru (0 0 0 1). Carbon 2009, 47, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Croiset, E.; Ricardez-Sandoval, L. Carbon clusters on the Ni (111) surface: A density functional theory study. Phys. Chem. Chem. Phys. 2014, 16, 2954–2961. [Google Scholar] [CrossRef] [PubMed]
- Loginova, E.; Bartelt, N.C.; Feibelman, P.J.; McCarty, K.F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026. [Google Scholar] [CrossRef]
- Bao, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Significant advances in C1 catalysis: Highly efficient catalysts and catalytic reactions. ACS Catal. 2019, 9, 3026–3053. [Google Scholar] [CrossRef]
Size, Cn | Ni Surface | Adsorption Energy (eV) | Laydown Model |
---|---|---|---|
C1 (at 0.5 ML coverage) | Ni(100) | 0.25 * [31] | Monomeric |
C1 (at 1.0 ML coverage) | Ni(100) | 0.70 * [31] | Monomer |
C1 | Ni(111) | 1.25 * [31] | Monomeric |
C1 | Ni(211) | −0.95 [This work] | Monomeric |
C2 | Ni(111) | −0.56 [34], −0.58 [This work] | Polymeric |
C2 | Ni(211) | −0.89 [This work] | Monomeric |
C3 | Ni(111) | −0.85 [34] | Polymeric |
C3 | Ni(322) | −0.88 [This work] | Monomeric |
C4 | Ni(111) | −1.59 [34], −1.71 [This work] | Polymeric |
C4 | Ni(322) | −1.88 [This work] | Polymeric |
C4–C6 | Ni(322) | −1.94 [This work] | Polymeric |
C6–C10 | Ni(322) | −2.02 [This work] | Polymeric |
C10–C16 | Ni(111) | −2.08 [This work] | Polymeric |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ukpong, A.M. Inhibiting the Laydown of Polymeric Carbon and Simultaneously Promoting Its Facile Burn-Off during the Industrial-Scale Production of Hydrogen with Nickel-Based Catalysts: Insights from Ab Initio Calculations. Nanomaterials 2023, 13, 40. https://doi.org/10.3390/nano13010040
Ukpong AM. Inhibiting the Laydown of Polymeric Carbon and Simultaneously Promoting Its Facile Burn-Off during the Industrial-Scale Production of Hydrogen with Nickel-Based Catalysts: Insights from Ab Initio Calculations. Nanomaterials. 2023; 13(1):40. https://doi.org/10.3390/nano13010040
Chicago/Turabian StyleUkpong, Aniekan Magnus. 2023. "Inhibiting the Laydown of Polymeric Carbon and Simultaneously Promoting Its Facile Burn-Off during the Industrial-Scale Production of Hydrogen with Nickel-Based Catalysts: Insights from Ab Initio Calculations" Nanomaterials 13, no. 1: 40. https://doi.org/10.3390/nano13010040
APA StyleUkpong, A. M. (2023). Inhibiting the Laydown of Polymeric Carbon and Simultaneously Promoting Its Facile Burn-Off during the Industrial-Scale Production of Hydrogen with Nickel-Based Catalysts: Insights from Ab Initio Calculations. Nanomaterials, 13(1), 40. https://doi.org/10.3390/nano13010040