Quantifying Nonadiabaticity in Major Families of Superconductors
Abstract
:1. Introduction
2. Utilized Models
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Migdal, A.B. Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 1958, 7, 996–1001. [Google Scholar]
- Eliashberg, G.M. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 1960, 11, 696–702. [Google Scholar]
- Pietronero, L.; Strässler, S.; Grimaldi, C. Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions. Phys. Rev. B 1995, 52, 10516–10529. [Google Scholar] [CrossRef]
- Poole, C.P. Handbook of Superconductivity, 1st ed.; Poole, C.P., Jr., Ed.; Academic Press: New York, NY, USA, 1999; pp. 31–32. [Google Scholar]
- Takada, Y. Theory of superconductivity in polar semiconductors and its application to n-type semiconducting SrTiO3. J. Phys. Soc. Jpn. 1980, 49, 1267–1275. [Google Scholar] [CrossRef]
- Ledbetter, H.; Lei, M.; Kim, S. Elastic constants, Debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides. Phase Transit. 1990, 23, 61–70. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, Z.; Fauque, B.; Behnia, K. Fermi surface of the most dilute superconductor. Phys. Rev. X 2013, 3, 021002. [Google Scholar] [CrossRef] [Green Version]
- Takada, Y. Plasmon mechanism of superconductivity in two- and three-dimensional electron systems. J. Phys. Soc. Jpn. 1978, 45, 786–794. [Google Scholar] [CrossRef]
- Grimaldi, C.; Pietronero, L.; Strässler, S. Nonadiabatic superconductivity. II. Generalized Eliashberg equations beyond Migdal’s theorem. Phys. Rev. B 1995, 52, 10530–10546. [Google Scholar] [CrossRef]
- Grimaldi, C.; Cappelluti, E.; Pietronero, L. Isotope effect on m* in high Tc materials due to the breakdown of Migdal’s theorem. Europhys. Lett. 1998, 42, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Cappelluti, E.; Ciuchi, S.; Grimaldi, C.; Pietronero, L.; Strässler, S. High Tc superconductivity in MgB2 by nonadiabatic pairing. Phys. Rev. Lett. 2002, 88, 117003. [Google Scholar] [CrossRef] [Green Version]
- Pietronero, L.; Boeri, L.; Cappelluti, E.; Ortenzi, L. Conventional/unconventional superconductivity in high-pressure hydrides and beyond: Insights from theory and perspectives. Quantum Stud. Math. Found. 2018, 5, 5–21. [Google Scholar] [CrossRef]
- Klimin, S.N.; Tempere, J.; Devreese, J.T.; He, J.; Franchini, C.; Kresse, G. Superconductivity in SrTiO3: Dielectric function method for non-parabolic bands. J. Supercond. Nov. Magn. 2019, 32, 2739–2744. [Google Scholar] [CrossRef] [Green Version]
- Gor’kov, L.P. Phonon mechanism in the most dilute superconductor n-type SrTiO3. Proc. Natl. Acad. Sci. USA 2016, 113, 4646–4651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresin, V.Z.; Wolf, S.A. Colloquium: Electron-lattice interaction and its impact on high Tc superconductivity. Rev. Mod. Phys. 2009, 81, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Harshman, R.; Fiory, A.T. High-Tc superconductivity in hydrogen clathrates mediated by Coulomb interactions between hydrogen and central-atom electrons. J. Supercond. Nov. Magn. 2020, 33, 2945–2961. [Google Scholar] [CrossRef]
- Uemura, Y.J. Classifying superconductors in a plot of Tc versus Fermi temperature TF. Physical C 1991, 185–189, 733–734. [Google Scholar] [CrossRef]
- Talantsev, E.F.; Crump, W.P.; Tallon, J.L. Universal scaling of the self-field critical current in superconductors: From sub-nanometre to millimetre size. Sci. Rep. 2017, 7, 10010. [Google Scholar] [CrossRef]
- Homes, C.C.; Dordevic, S.V.; Strongin, M.; Bonn, D.A.; Liang, R.; Hardy, W.N.; Komiya, S.; Ando, Y.; Yu, G.; Kaneko, N.; et al. A universal scaling relation in high-temperature superconductors. Nature 2004, 430, 539–541. [Google Scholar] [CrossRef] [Green Version]
- Koblischka, R.; Koblischka-Veneva, A. Calculation of Tc of superconducting elements with the Roeser–Huber formalism. Metals 2022, 12, 337. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, Y.; Song, Z.; Huang, H.; He, Y.; Fang, Z.; Weng, H.; Fang, C. Catalogue of topological electronic materials. Nature 2019, 566, 475–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Vergniory, M.G.; Ma, D.-S.; Mañes, J.L.; Song, Z.-D.; Bernevig, B.A.; Regnault, N.; Elcoro, L. Catalogue of topological phonon materials. arXiv 2022, arXiv:2211.11776. [Google Scholar] [CrossRef]
- Pyon, S.; Kudo, K.; Matsumura, J.-I.; Ishii, H.; Matsuo, G.; Nohara, M.; Hojo, H.; Oka, K.; Azuma, M.; Garlea, V.O.; et al. Superconductivity in noncentrosymmetric iridium silicide Li2IrSi3. J. Phys. Soc. Jpn. 2014, 83, 093706. [Google Scholar] [CrossRef] [Green Version]
- Kudo, K.; Hiiragi, H.; Honda, T.; Fujimura, K.; Idei, H.; Nohara, M. Superconductivity in Mg2Ir3Si: A fully ordered Laves phase. J. Phys. Soc. Jpn. 2020, 89, 013701. [Google Scholar] [CrossRef]
- Sobczak, Z.; Winiarski, M.J.; Xie, W.; Cava, R.J.; Klimczuk, T. Superconductivity in the intermetallic compound Zr5Al4. EPL 2019, 127, 37005. [Google Scholar] [CrossRef]
- Talantsev, E.F. Advanced McMillan’s equation and its application for the analysis of highly-compressed superconductors. Supercond. Sci. Technol. 2020, 33, 094009. [Google Scholar] [CrossRef]
- Talantsev, E.F. The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III. J. Appl. Phys. 2021, 130, 195901. [Google Scholar] [CrossRef]
- Mayoh, D.A.; Barker, J.A.T.; Singh, R.P.; Balakrishnan, G.; Paul, D.M.; Lees, M.R. Superconducting and normal-state properties of the noncentrosymmetric superconductor Re6Zr. Phys. Rev. B 2017, 96, 064521. [Google Scholar] [CrossRef] [Green Version]
- McMillan, W.L. Transition temperature of strong-coupled superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Vignolle, B.; Vignolles, D.; LeBoeuf, D.; Lepault, S.; Ramshaw, B.; Liang, R.; Bonn, D.A.; Hardy, W.N.; Doiron-Leyraud, N.; Carrington, A.; et al. Quantum oscillations and the Fermi surface of high-temperature cuprate superconductors. Comptes Rendus Phys. 2011, 12, 446–460. [Google Scholar] [CrossRef]
- Kleiner, R.; Buckel, W. Superconductivity: An Introduction, 3rd ed.; Wiley-VCH: Berlin, Germany, 2016. [Google Scholar]
- Tinkham, M. Introduction to Superconductivity., 2nd ed.; Dover Publications: New York, NY, USA, 2004. [Google Scholar]
- Talantsev, E.F. Critical de Broglie wavelength in superconductors. Mod. Phys. Lett. B 2018, 32, 1850114. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somayazulu, M.; Ahart, M.; Mishra, A.K.; Geballe, Z.M.; Baldini, M.; Meng, Y.; Struzhkin, V.V.; Hemley, R.J. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 2019, 122, 027001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenok, D.V.; Kvashnin, A.G.; Ivanova, A.G.; Svitlyk, V.; Fominski, V.Y.; Sadakov, A.V.; Sobolevskiy, O.A.; Pudalov, V.M.; Troyan, I.A.; Oganov, A.R. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today 2020, 33, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Semenok, D.V.; Kvashnin, A.G.; Huang, X.; Kruglov, I.A.; Galasso, M.; Song, H.; Duan, D.; Goncharov, A.F.; Prakapenka, V.B.; et al. Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12. Nat. Commun. 2021, 12, 273. [Google Scholar] [CrossRef]
- Troyan, I.A.; Semenok, D.V.; Kvashnin, A.G.; Sadakov, A.V.; Sobolevskiy, O.A.; Pudalov, V.M.; Ivanova, A.G.; Prakapenka, V.B.; Greenberg, E.; Gavriliuk, A.G.; et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 2021, 33, 2006832. [Google Scholar] [CrossRef]
- Kong, P.; Minkov, V.S.; Kuzovnikov, M.A.; Drozdov, A.P.; Besedin, S.P.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Prakapenka, V.B.; Chariton, S.; et al. Superconductivity up to 243 K in yttrium hydrides under high pressure. Nat. Commun. 2021, 12, 5075. [Google Scholar] [CrossRef]
- Ma, L.; Wang, K.; Xie, Y.; Yang, X.; Wang, Y.; Zhou, M.; Liu, H.; Yu, X.; Zhao, Y.; Wang, H.; et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 2022, 128, 167001. [Google Scholar] [CrossRef]
- Semenok, D.V.; Troyan, I.A.; Ivanova, A.G.; Kvashnin, A.G.; Kruglov, I.A.; Hanfland, M.; Sadakov, A.V.; Sobolevskiy, O.A.; Pervakov, K.S.; Lyubutin, I.S.; et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today 2021, 48, 18–28. [Google Scholar] [CrossRef]
- Zhou, D.; Semenok, D.V.; Duan, D.; Xie, H.; Chen, W.; Huang, X.; Li, X.; Liu, B.; Oganov, A.R.; Cui, T. Superconducting praseodymium superhydrides. Sci. Adv. 2020, 6, eaax6849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, F.; Shan, P.F.; Yang, L.X.; Yue, B.B.; Yang, P.T.; Liua, Z.Y.; Sun, J.P.; Dai, J.H.; Yu, H.; Yin, Y.Y.; et al. Possible superconductivity at ∼70 K in tin hydride SnHx under high pressure. Mater. Today Phys. 2022, 22, 100596. [Google Scholar] [CrossRef]
- Chen, W.; Semenok, D.V.; Huang, X.; Shu, H.; Li, X.; Duan, D.; Cui, T.; Oganov, A.R. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 Megabar. Phys. Rev. Lett. 2021, 127, 117001. [Google Scholar] [CrossRef] [PubMed]
- Osmond, I.; Moulding, O.; Cross, S.; Muramatsu, T.; Brooks, A.; Lord, O.; Fedotenko, T.; Buhot, J.; Friedemann, S. Clean-limit superconductivity in Im3m H3S synthesized from sulfur and hydrogen donor ammonia borane. Phys. Rev. B 2022, 105, L220502. [Google Scholar] [CrossRef]
- Semenok, D.V.; Troyan, I.A.; Sadakov, A.V.; Zhou, D.; Galasso, M.; Kvashnin, A.G.; Ivanova, A.G.; Kruglov, I.A.; Bykov, A.A.; Terent’ev, K.Y.; et al. Effect of magnetic impurities on superconductivity in LaH10. Adv. Mater. 2022, 34, 2204038. [Google Scholar] [CrossRef]
- Bi, J.; Nakamoto, Y.; Zhang, P.; Shimizu, K.; Zou, B.; Liu, H.; Zhou, M.; Liu, G.; Wang, H.; Ma, Y. Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9. Nat. Commun. 2022, 13, 5952. [Google Scholar] [CrossRef]
- Li, Z.; He, X.; Zhang, C.; Wang, X.; Zhang, S.; Jia, Y.; Feng, S.; Lu, K.; Zhao, J.; Zhang, J.; et al. Superconductivity above 200 K discovered in superhydrides of calcium. Nat. Commun. 2022, 13, 2863. [Google Scholar] [CrossRef]
- Minkov, V.S.; Bud’ko, S.L.; Balakirev, F.F.; Prakapenka, V.B.; Chariton, S.; Husband, R.J.; Liermann, H.P.; Eremets, M.I. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun. 2022, 13, 3194. [Google Scholar] [CrossRef]
- Minkov, V.S.; Ksenofontov, V.; Budko, S.L.; Talantsev, E.F.; Eremets, M.I. Trapped magnetic flux in hydrogen-rich high-temperature superconductors. arXiv 2022, arXiv:2206.14108. [Google Scholar] [CrossRef]
- Talantsev, E.F. Classifying superconductivity in compressed H3S. Mod. Phys. Lett. B 2019, 33, 1950195. [Google Scholar] [CrossRef] [Green Version]
- Mozaffari, S.; Sun, D.; Minkov, V.S.; Drozdov, A.P.; Knyazev, D.; Betts, J.B.; Einaga, M.; Shimizu, K.; Eremets, M.I.; Balicas, L. Superconducting phase-diagram of H3S under high magnetic fields. Nat. Commun. 2019, 10, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Errea, I.; Calandra, M.; Pickard, C.J.; Nelson, J.; Needs, R.J.; Li, Y.; Liu, H.; Zhang, Y.; Ma, Y.; Mauri, F. High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 2015, 856, 157004. [Google Scholar] [CrossRef] [PubMed]
- Durajski, A.P. Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors. Sci. Rep. 2016, 6, 38570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prozorov, R.; Giannetta, R.W.; Carrington, A.; Fournier, P.; Greene, R.L.; Guptasarma, P.; Hinks, D.G.; Banks, A.R. Measurements of the absolute value of the penetration depth in high-Tc superconductors using a low-Tc superconductive coating. Appl. Phys. Lett. 2000, 77, 4202–4204. [Google Scholar] [CrossRef] [Green Version]
- Poole, P.P.; Farach, H.A.; Creswick, R.J.; Prozorov, R. Superconductivity; Academic Press: London, UK, 2007; Chapter 1. [Google Scholar]
- Carbotte, J.P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 1990, 62, 1027–1157. [Google Scholar] [CrossRef]
- Peabody, G.E.; Meservey, R. Magnetic flux penetration into superconducting thin films. Phys. Rev. B 1972, 6, 2579–2595. [Google Scholar] [CrossRef]
- Guritanu, V.; Goldacker, W.; Bouquet, F.; Wang, Y.; Lortz, R.; Goll, G.; Junod, A. Specific heat of Nb3Sn: The case for a second energy gap. Phys. Rev. B 2004, 70, 184526. [Google Scholar] [CrossRef] [Green Version]
- Orlando, T.P.; McNiff, E.J., Jr.; Foner, S.; Beasley, M.R. Critical fields, Pauli paramagnetic limiting, and material parameters of Nb3Sn and V3Si. Phys. Rev. B 1979, 19, 4545–4561. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, P.; Wang, X.; Zhou, Y. First-principles study on elastic and superconducting properties of Nb3Sn and Nb3Al under hydrostatic pressure. AIP Adv. 2015, 5, 107233. [Google Scholar] [CrossRef] [Green Version]
- Junod, A.; Muller, J. Comment on specific heat of a transforming V3Si crystal. Solid State Commun. 1980, 36, 721–724. [Google Scholar] [CrossRef]
- Yamashita, A.; Matsuda, T.D.; Mizuguchi, Y. Synthesis of new high-entropy alloy-type Nb3(Al, Sn, Ge, Ga, Si) superconductors. J. Alloys Compd. 2021, 868, 159233. [Google Scholar] [CrossRef]
- Winterlik, J.; Fecher, G.H.; Felser, C.; Jourdan, M.; Grube, K.; Hardy, F.; von Löhneysen, H.; Holman, K.L.; Cava, R.J. Ni-based superconductor: Heusler compound ZrNi2Ga. Phys. Rev. B 2008, 78, 184506. [Google Scholar] [CrossRef]
- Klimczuk, T.; Wang, C.H.; Gofryk, K.; Ronning, F.; Winterlik, J.; Fecher, G.H.; Griveau, J.-C.; Colineau, E.; Felser, C.; Thompson, J.D.; et al. Superconductivity in the Heusler family of intermetallics. Phys. Rev. B 2012, 85, 174505. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Barker, J.A.T.; Thamizhavel, A.; Hillier, A.D.; McK Paul, D.; Singh, R.P. Superconducting properties and μSR Study of the noncentrosymmetric superconductor Nb0.5Os0.5. J. Phys. Condens. Matter 2018, 30, 075601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karki, A.B.; Xiong, Y.M.; Vekhter, I.; Browne, D.; Adams, P.W.; Young, D.P.; Thomas, K.R.; Chan, J.Y.; Kim, H.; Prozorov, R. Structure and physical properties of the noncentrosymmetric superconductor Mo3Al2C. Phys. Rev. B 2010, 82, 064512. [Google Scholar] [CrossRef] [Green Version]
- Górnicka, K.; Gui, X.; Wiendlocha, B.; Nguyen, L.T.; Xie, W.; Cava, R.J.; Klimczuk, T. NbIr2B2 and TaIr2B2–New low symmetry noncentrosymmetric superconductors with strong spin–orbit coupling. Adv. Funct. Mater. 2020, 31, 2007960. [Google Scholar] [CrossRef]
- Barker, J.A.T.; Breen, B.D.; Hanson, R.; Hillier, A.D.; Lees, M.R.; Balakrishnan, G.; Paul, D.M.; Singh, R.P. Superconducting and normal-state properties of the noncentrosymmetric superconductor Re3Ta. Phys. Rev. B 2018, 98, 104506. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Wang, Q.; Wang, S.; Lei, H. Superconducting properties of MgCu2-type Laves phase compounds SrRh2 and BaRh2. J. Phys. Condens. Matter 2020, 32, 295601. [Google Scholar] [CrossRef]
- Gutowska, S.; Górnicka, K.; Wójcik, P.; Klimczuk, T.; Wiendlocha, B. Strong-coupling superconductivity of SrIr2 and SrRh2: Phonon engineering of metallic Ir and Rh. Phys. Rev. B 2021, 104, 054505. [Google Scholar] [CrossRef]
- Horie, R.; Horigane, K.; Nishiyama, S.; Akimitsu, M.; Kobayashi, K.; Onari, S.; Kambe, T.; Kubozono, Y.; Akimitsu, J. Superconductivity in 5d transition metal Laves phase SrIr2. J. Phys. Condens. Matter 2020, 32, 175703. [Google Scholar] [CrossRef]
- Mao, Z.Q.; Rosario, M.M.; Nelson, K.D.; Wu, K.; Deac, I.G.; Schiffer, P.; Liu, Y.; He, T.; Regan, K.A.; Cava, R.J. Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3. Phys. Rev. B 2003, 67, 094502. [Google Scholar] [CrossRef] [Green Version]
- Ryżyńska, Z.; Chamorro, J.R.; McQueen, T.M.; Wiśniewski, P.; Kaczorowski, D.; Xie, W.; Cava, R.J.; Klimczuk, T.; Winiarski, M.J. RuAl6—An endohedral aluminide superconductor. Chem. Mater. 2020, 32, 3805–3812. [Google Scholar] [CrossRef]
- Langenberg, E.; Ferreiro-Vila, E.; Leborán, V.; Fumega, A.O.; Pardo, V.; Rivadulla, F. Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides. APL Mater. 2016, 4, 104815. [Google Scholar] [CrossRef] [Green Version]
- Adroja, D.; Bhattacharyya, A.; Biswas, P.K.; Smidman, M.; Hillier, A.D.; Mao, H.; Luo, H.; Cao, G.-H.; Wang, Z.; Wang, C. Multigap superconductivity in ThAsFeN investigated using μSR measurements. Phys. Rev. B 2017, 96, 144502. [Google Scholar] [CrossRef] [Green Version]
- Albedah, M.A.; Nejadsattari, F.; Stadnik, Z.M.; Wang, Z.-C.; Wang, C.; Cao, G.H. Absence of the stripe antiferromagnetic order in the new 30 K superconductor ThFeAsN. J. Alloys Compd. 2017, 695, 1128–1136. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Adroja, D.T.; Smidman, M.; Anand, V.K. A brief review on μSR studies of unconventional Fe- and Cr-based superconductors. Sci. China Phys. Mech. Astron. 2018, 61, 127402. [Google Scholar] [CrossRef] [Green Version]
- Sonier, J.E.; Sabok-Sayr, S.A.; Callaghan, F.D.; Kaiser, C.V.; Pacradouni, V.; Brewer, J.H.; Stubbs, S.L.; Hardy, W.N.; Bonn, D.A.; Liang, R.; et al. Hole-doping dependence of the magnetic penetration depth and vortex core size in YBa2Cu3Oy: Evidence for stripe correlations near 1/8 hole doping. Phys. Rev. B 2007, 76, 134518. [Google Scholar] [CrossRef] [Green Version]
- Kiefl, R.F.; Hossain, M.D.; Wojek, B.M.; Dunsiger, S.R.; Morris, G.D.; Prokscha, T.; Salman, Z.; Baglo, J.; Bonn, D.A.; Liang, R.; et al. Direct measurement of the London penetration depth in YBa2Cu3O6.92 using low-energy µSR. Phys. Rev. B 2010, 81, 180502. [Google Scholar] [CrossRef] [Green Version]
- Uemura, Y.J. Muon spin relaxation studies on high- Tc organic, heavy-fermion, and Chevrel phase superconductors. Physical B 1991, 169, 99–106. [Google Scholar] [CrossRef]
- Talantsev, E.F.; Tallon, J.L. Universal self-field critical current for thin-film superconductors. Nat. Commun. 2015, 6, 7820. [Google Scholar] [CrossRef] [Green Version]
- Talantsev, E.; Crump, W.P.; Tallon, J.L. Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents. Ann. Der Phys. 2017, 529, 1700197. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.; Hillmer, F.; Frey, U.; Adrian, H. Thermally activated flux movement and critical transport current density in epitaxial Bi2Sr2CaCu2O8+δ films. Phys. Rev. B 1994, 49, 13184. [Google Scholar] [CrossRef]
- Holstein, W.L.; Wilker, C.; Laubacher, D.B.; Face, D.W.; Pang, P.; Warrington, M.S.; Carter, C.F.; Parisi, L.A. Critical current density and resistivity measurements for long patterned lines in Tl2Ba2CaCu2O8 thin films. J. Appl. Phys. 1993, 74, 1426–1430. [Google Scholar] [CrossRef]
- Ledbetter, H. Dependence of on Debye temperature θD for various cuprates. Phys. C 1994, 235–240, 1325–1326. [Google Scholar] [CrossRef]
- Krusin-Elbaum, L.; Tsuei, C.C.; Gupta, A. High current densities above 100 K in the high-temperature superconductor HgBa2CaCu2O6+δ. Nature 1995, 373, 679–681. [Google Scholar] [CrossRef]
- Hänisch, J.; Attenberger, A.; Holzapfel, B.; Schultz, L. Electrical transport properties of Bi2Sr2Ca2Cu3O10+δ thin film [001] tilt grain boundaries. Phys. Rev. B 2002, 65, 052507. [Google Scholar] [CrossRef]
- Cava, R.J.; Batlogg, B.; Krajewski, J.J.; Farrow, R.; Rupp, L.W.; White, A.E.; Short, K.; Peck, W.F.; Kometani, T. Superconductivity near 30 K without copper: The Ba0.6K0.4BiO3 perovskite. Nature 1988, 332, 814–816. [Google Scholar] [CrossRef]
- Uemura, Y.J.; Luke, G.M.; Sternlieb, B.J.; Brewer, J.H.; Carolan, J.F.; Hardy, W.N.; Kadono, R.; Kempton, J.R.; Kiefl, R.F.; Kreitzman, S.R. Universal correlations between Tc and (carrier density over effective mass) in high-Tc cuprate. Phys. Rev. Lett. 1989, 62, 2317–2320. [Google Scholar] [CrossRef]
- Szczesniak, D.; Kaczmarek, A.Z.; Drzazga-Szczesniak, E.A.; Szczesniak, R. Phonon-mediated superconductivity in bismuthates by nonadiabatic pairing. Phys. Rev. B 2021, 104, 094501. [Google Scholar] [CrossRef]
- Hundley, M.F.; Thompson, J.D.; Kwei, G.H. Specific heat of the cubic high-Tc superconductor Ba0.6K0.4BiO3. Solid State Commun. 1989, 70, 1155–1158. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Talantsev, E.F.; Mataira, R.C.; Crump, W.P. Classifying superconductivity in Moiré graphene superlattices. Sci. Rep. 2020, 10, 212. [Google Scholar] [CrossRef]
- Cocemasov, A.I.; Nika, D.L.; Balandin, A.A. Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: The role of the out-of-plane phonons. Nanoscale 2015, 7, 12851. [Google Scholar] [CrossRef] [Green Version]
- Ludbrook, B.M.; Levy, G.; Nigge, P.; Zonno, M.; Schneider, M.; Dvorak, D.J.; Veenstra, C.N.; Zhdanovich, S.; Wong, D.; Dosanjh, P.; et al. Evidence for superconductivity in Li-decorated monolayer graphene. Proc. Natl. Acad. Sci. USA 2015, 112, 11795–11799. [Google Scholar] [CrossRef] [Green Version]
- Szczesniak, D.; Szczesniak, R. Signatures of nonadiabatic superconductivity in lithium-decorated graphene. Phys. Rev. B 2019, 99, 224512. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kim, S.Y.; Kim, H.K.; Kim, M.J.; Kim, T.; Kim, H.; Choi, G.S.; Won, C.J.; Kim, S.; Kim, K.; et al. Superconductivity emerging from a stripe charge order in IrTe2 nanoflakes. Nat. Commun. 2021, 12, 3157. [Google Scholar] [CrossRef]
- Eremets, M.I.; Shimizu, K.; Kobayashi, T.C.; Amaya, K. Metallic CsI at pressures of up to 220 gigapascals. Science 1998, 281, 1333–1335. [Google Scholar] [CrossRef]
- Talantsev, E.F. Fermi-liquid nonadiabatic highly compressed cesium iodide superconductor. Condens. Matter 2022, 7, 65. [Google Scholar] [CrossRef]
- Talantsev, E.F. The dominance of non-electron–phonon charge carrier interaction in highly-compressed superhydrides. Supercond. Sci. Technol. 2021, 34, 115001. [Google Scholar] [CrossRef]
- Talantsev, E.F. Universal Fermi velocity in highly compressed hydride superconductors. Mater. Radiat. Extrem. 2022, 7, 058403. [Google Scholar] [CrossRef]
- Talantsev, E.F. Electron–phonon coupling constant and BCS ratios in LaH10−y doped with magnetic rare-earth element. Supercond. Sci. Technol. 2022, 35, 095008. [Google Scholar] [CrossRef]
- Shimizu, K.; Suhara, K.; Ikumo, M.; Eremets, M.I.; Amaya, K. Superconductivity in oxygen. Nature 1998, 393, 767–769. [Google Scholar] [CrossRef]
- Talantsev, E.F. An approach to identifying unconventional superconductivity in highly compressed superconductors. Supercond. Sci. Technol. 2020, 33, 124001. [Google Scholar] [CrossRef]
- Sebastian, S.E.; Harrison, N.; Lonzarich, G.G. Towards resolution of the Fermi surface in underdoped high-Tc superconductors. Rep. Prog. Phys. 2012, 75, 102501. [Google Scholar] [CrossRef] [Green Version]
- Hsua, Y.-T.; Hartstein, M.; Davies, A.J.; Hickey, A.J.; Chan, M.K.; Porras, J.; Loew, T.; Taylor, S.V.; Liua, H.; Eaton, A.G.; et al. Unconventional quantum vortex matter state hosts quantum oscillations in the underdoped high-temperature cuprate superconductors. Proc. Natl. Acad. Sci. USA 2021, 118, e2021216118. [Google Scholar] [CrossRef]
- Padilla, W.J.; Lee, Y.S.; Dumm, M.; Blumberg, G.; Ono, S.; Segawa, K.; Komiya, S.; Ando, Y.; Basov, D.N. Constant effective mass across the phase diagram of high-Tc cuprates. Phys. Rev. B 2005, 72, 060511. [Google Scholar] [CrossRef] [Green Version]
- Talantsev, E.F.; Crump, W.P. Weak-links criterion for pnictide and cuprate superconductors. Supercond. Sci. Technol. 2018, 31, 124001. [Google Scholar] [CrossRef]
- Paturi, P.; and Huhtinen, H. Roles of electron mean free path and flux pinning in optimizing the critical current in YBCO superconductors. Supercond. Sci. Technol. 2022, 35, 065007. [Google Scholar] [CrossRef]
Type/Chemical Composition | λ(0) (nm) | ξ(0) (nm) | λe-ph | Tc (K) | Tθ (K) | TF (103 K) | Tθ/TF | |
---|---|---|---|---|---|---|---|---|
Pure metals | ||||||||
Aluminium | 1.18 [57,58] | 394 [5] | 136 [5] | |||||
Aluminium | 50 [57] | 1550 [58] | 0.43 [59] | 1.18 [57,58] | 394 [5] | 3.535 [59] | 18.9 (Equation (12)) | |
Tin | 3.72 [58] | 170 [5] | 118 [5] | |||||
Tin | 77 [60] | 180 [58] | 0.72 [59] | 3.72 [58] | 170 [5] | 3.705 [59] | 10.0 (Equation (12)) | |
Lead | 7.20 [58] | 88 [5] | 110 [5] | |||||
Lead | 64 [60] | 87 [58] | 1.55 [59] | 7.20 [60] | 88 [5] | 4.497 [59] | 11.2 (Equation (12)) | |
Niobium | 9.25 [58] | 265 [5] | 61.8 [5] | |||||
Niobium | 52 [58] | 39 [58] | 0.98 [59] | 9.25 [58] | 265 [5] | 3.964 [59] | 16.1 (Equation (12)) | |
Gallium | 52 [58] | 39 [58] | 2.25 [59] | 1.09 [5,32,58,59] | 325 [5,32,58,59] | 120 [5,32,58] | ||
A15 Alloys | ||||||||
Nb3Sn | 124 [61] | 3.6 [61] | 1.8 [62] | 17.9 [61] | 234 [61] | 4.2 [62] | 4.5 (Equation (12)) | |
V3Si | 62 [62] | 3.3 [62] | 0.96 [62] | 16.4 [63] | 297 [64] | 3.7 [62] | 12.8 (Equation (12)) | |
Nb3Ge | 90 [58] | 3.0 [58] | 1.60 [59] | 23.2 [58] | 302 [65] | 4.364 [59] | 7.1 (Equation (12)) | |
Heusler alloys | ||||||||
ZrNi2Ga | 350 [66] | 15 [66] | 0.551 [66] | 2.85 [66] | 300 [66] | 1.4 (Equation (12)) | ||
YPd2Sn | 196 [67] | 19 [67] | 0.70 [67] | 4.7 [67] | 210 [67] | 4.1 [67] | 2.9 (Equation (12)) | |
HfPd2Al | 225 [67] | 13 [67] | 0.68 [67] | 3.66 [67] | 182 [67] | 3.74 [67] | 2.4 (Equation (12)) | |
Noncentrosymmetric | ||||||||
Nb0.5Os0.5 | 654 [68] | 7.8 [68] | 0.53 [68] | 3.07 [68] | 367 [68] | 3.62 [68] | 0.60 (Equation (12)) | |
Re6Zr (mSR) | 356 [29] | 3.7 [29] | 0.67 [29] | 6.75 [29] | 338 [29] | 3.72 [29] | 1.3 | |
Re6Zr (magnetization) | 247 [29] | 3.3 [29] | 0.67 [29] | 6.75 [29] | 237 [29] | 3.72 [29] | 2.1 | |
Mo3Al2C | 376 [69] | 4.2 [69] | 0.74 (Equations (7)–(9)) | 9.2 [69] | 339 [69] | 4.03 [69] | 1.2 | |
NbIr2B2 [70] | 223 | 4.5 | 0.74 | 7.18 | 274 | 2.4 | ||
TaIr2B2 [70] | 342 | 4.7 | 0.70 | 5.1 | 230 | 1.4 | ||
Re3Ta [71] | 0.62 | 4.7 | 321 | 0.64 | ||||
Laves phases | ||||||||
BaRh2 [72] | 340 | 8.4 | 0.80 | 5.6 | 178 | 1.4 | ||
SrRh2 [72] | 229 | 9.1 | 0.71 | 5.4 | 237 | 2.3 | ||
SrRh2 [73] | 121 | 8.6 | 0.93 | 5.4 | 250 | 5.3 | ||
SrIr2 [74] | 237 | 7.5 | 0.84 | 5.9 | 180 | 2.3 | ||
Intermetallics | ||||||||
MgCNi3 [75] | 248 | 4.6 | 0.74 (Equations (7)–(9)) | 7.6 | 284 | 2.1 | ||
RuAl6 [76] | 265 | 27.7 | 0.81 | 1.21 | 458 | 1.9 | ||
Perovskite | ||||||||
SrTiO3 | 0.2 [7] | 0.086 [8] | 690 [77] | [8] | ||||
Pnictides | ||||||||
ThFeAsN | 375 [78] | 1.48 [78] | 28.1 [78] | 332 [79] | 0.47 (Equation (17)) [78] | |||
KCa2Fe4As4F2 | 230 [80] | 1.59 [80] | 33.4 [80] | 366 [80] | 1.3 (Equation (17)) [80] | |||
RbCa2Fe4As4F2 | 232 [80] | 1.45 [80] | 29.2 [80] | 332 [80] | 1.2 (Equation (17)) [80] | |||
CsCa2Fe4As4F2 | 244 [80] | 1.44 [80] | 28.3 [80] | 344 [80] | 1.1 (Equation (17)) [80] | |||
Cuprates | ||||||||
YBa2Cu3O7 [81] | 115 [81,82] | 2.5 [81] | 1.5 [83] | 93.2 [81] | 437 [7] | 3.4 (Equation (17)) [83] | ||
(Y,Dy)Ba2Cu3O7 [84] | 128 [84,85] | 2.5 [81] | 1.5 [83] | 90.4 [84,85] | 437 [7] | 4.24 [84,85] | 2.9 (Equation (17)) [83] | |
Bi2Sr2CaCu2O8 [86] | 196 [85] | 1.2 [85] | 4.7 [7] | 82.7 [85] | 240 [7] | 3.9 [85] | 1.2 (Equation (17)) [83] | |
Tl2Ba2CaCu2O8 [87] | 179 [85] | 1.2 [85] | 103 [85] | 425 [88] | 4.3 [85] | 1.5 (Equation (17)) [83] | ||
HgBa2CaCu2O8 [89] | 188 [85] | 1.6 [85] | 120 [85] | 525 [88] | 3.3 [85] | 1.3 (Equation (17)) [83] | ||
Bi2Sr2Ca2Cu3O10 [90] | 175 [85] | 1.0 [85] | 4.5 | 85 [85] | 319 [7] | 4.5 [85] | 1.5 (Equation (17)) [83] | |
Bismuthates | ||||||||
Ba1-xKxBiO3 (x = 0.4) [91,92] | 1.10 [93] | 23 [92] | 210 [94] | 3.8-4.1 [93] | 1.5 [92] | |||
Ba1-xKxBiO3 (x = 0.5) [91,92] | 1.10 [93] | 14 [92] | 210 [94] | 3.8-4.0 [93] | [92] | |||
2D superconductors | ||||||||
MATBG [95] | 2180 [96] | [96] | 1.2 [96] | 1864 [97] | 4.4 [96] | (Equation (15)) | ||
MATBG [95] | 61.4 [96] | [96] | 1.2 [96] | 1864 [97] | 4.4 [96] | (Equation (16)) | ||
Li-doped graphene, LiC6 [98] | 0.61 [99] | 5.9 [98] | 2240 [99] | [99] | ||||
IrTe2 [100] (sample thickness is 21 nm) | 600 [100] | 75 [100] | 1.6 [100] | 5.46 [100] | ||||
Ionic Salt | ||||||||
CsI (P = 206 GPa) [101] | 0.445 [102] | 1.1 [101] | 339 [102] | [102] | [102] | |||
NRTS hydrides | ||||||||
H3S (P = 155 GPa) [35] | 37 [52] | 1.9 [54] | 2.2 [103] | 197 [103] | 1427 [103] | 21.6 (Equation (12)) and [104] | ||
H3S (P = 155 GPa) [35] | 1.9 [54] | 1.76 [55,56] | 197 [103] | 1427 [103] | 3.55 [53] | (Equation (16)) and [104] | ||
LaH10 (P = 150 GPa) [36] | 30 [51] | 1.5 [51] | 2.77 [27] | 240 [27] | 1310 [27] | 27.0 (Equation (12)) | ||
La1-xNdxH10 (x = 0.15) (P = 180 GPa) [48] | 2.3 [105] | 1.65 [105] | 122 [105] | 1156 [105] | 4.0 [105] | [105] (Equation (16)) | ||
Compressed oxygen | ||||||||
ζ-O2 (P = 115 GPa) [106] | 42 [107] | 0.42 [107] | 0.64 [107] | 306 [107] | [107] (Equation (16)) | 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talantsev, E.F. Quantifying Nonadiabaticity in Major Families of Superconductors. Nanomaterials 2023, 13, 71. https://doi.org/10.3390/nano13010071
Talantsev EF. Quantifying Nonadiabaticity in Major Families of Superconductors. Nanomaterials. 2023; 13(1):71. https://doi.org/10.3390/nano13010071
Chicago/Turabian StyleTalantsev, Evgueni F. 2023. "Quantifying Nonadiabaticity in Major Families of Superconductors" Nanomaterials 13, no. 1: 71. https://doi.org/10.3390/nano13010071
APA StyleTalantsev, E. F. (2023). Quantifying Nonadiabaticity in Major Families of Superconductors. Nanomaterials, 13(1), 71. https://doi.org/10.3390/nano13010071