Construction of CoP2-Mo4P3/NF Heterogeneous Interfacial Electrocatalyst for Boosting Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Synthesis
2.2.1. Synthesis of Co-MoOx/NF and MoOx/NF
2.2.2. Synthesis of CoP2-Mo4P3/NF and Mo4P3/NF
2.2.3. Materials Characterization
2.2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Catalyst Synthesis and Characterization
3.2. Electrocatalytic HER Performance
3.3. Electrocatalytic OER Performance
3.4. Overall Water Splitting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.-J. Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change. Int. J. Hydrogen Energy 2009, 34, S1–S52. [Google Scholar] [CrossRef]
- Rana, A.G.; Schwarze, M.; Tasbihi, M.; Sala, X.; Garcia-Anton, J.; Minceva, M. Influence of Cocatalysts (Ni, Co, and Cu) and Synthesis Method on the Photocatalytic Activity of Exfoliated Graphitic Carbon Nitride for Hydrogen Production. Nanomaterials 2022, 12, 4006. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.Y.; Duan, Y.; Feng, X.Y.; Yu, X.; Gao, M.R.; Yu, S.H. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, e2007100. [Google Scholar] [CrossRef]
- Roy, S.; Bagchi, D.; Dheer, L.; Sarma, S.C.; Rajaji, V.; Narayana, C.; Waghmare, U.V.; Peter, S.C. Mechanistic insights into the promotional effect of Ni substitution in non-noble metal carbides for highly enhanced water splitting. Appl. Catal. B 2021, 298, 120560. [Google Scholar] [CrossRef]
- Zhai, Y.; Ren, X.; Yan, J.; Liu, S. High Density and Unit Activity Integrated in Amorphous Catalysts for Electrochemical Water Splitting. Small Struct. 2020, 2, 2000096. [Google Scholar] [CrossRef]
- Tian, L.; Li, Z.; Xu, X.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting. Adv. Mater. 2022, 34, e2108133. [Google Scholar] [CrossRef]
- Yu, W.; Gao, Y.; Chen, Z.; Zhao, Y.; Wu, Z.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902. [Google Scholar] [CrossRef]
- Wang, T.; Wu, H.; Feng, C.; Zhang, L.; Zhang, J. MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea-water electrolysis. J. Mater. Chem. A 2020, 8, 18106–18116. [Google Scholar] [CrossRef]
- Du, C.; Shang, M.; Mao, J.; Song, W. Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting. J. Mater. Chem. A 2017, 5, 15940–15949. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y.; Lin, J.; Wang, X.; Shen, Z. A Hierarchical MoP Nanoflake Array Supported on Ni Foam: A Bifunctional Electrocatalyst for Overall Water Splitting. Small Methods 2018, 2, 1700369. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, Z.; Shang, X.; Li, S.; Jiang, Z.-J. Accelerated hydrogen evolution reaction in Ni3P/MoP2/MoO2 tri-phase composites with rich crystalline interfaces and oxygen vacancies achieved by plasma assisted phosphorization. J. Mater. Chem. A 2021, 9, 25934–25943. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Y.; Li, Y.; Gao, Q.; Shen, W.; Jiang, Y.; He, R.; Li, M. Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting. Chem. Eng. J. 2021, 425, 130651. [Google Scholar] [CrossRef]
- Zhu, W.; Tang, C.; Liu, D.; Wang, J.; Asiri, A.M.; Sun, X. A self-standing nanoporous MoP2 nanosheet array: An advanced pH-universal catalytic electrode for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 7169–7173. [Google Scholar] [CrossRef]
- Wang, F.; Chen, J.; Qi, X.; Yang, H.; Jiang, H.; Deng, Y.; Liang, T. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting. Appl. Surf. Sci. 2019, 481, 1403–1411. [Google Scholar] [CrossRef]
- Jiang, E.; Li, J.; Li, X.; Ali, A.; Wang, G.; Ma, S.; Kang Shen, P.; Zhu, J. MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 2022, 431, 133719. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, L.; Bukhvalov, D.; Chen, Z.; Zou, Z.; Shang, L.; Yang, X.; Yan, D.; Han, F.; Zhang, T. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 2020, 70, 104445. [Google Scholar] [CrossRef]
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, B.; Sun, M.; Liu, C.; Shi, Y.; Yu, Y.; Zhang, B. Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Res. 2022, 15, 10134–10141. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Wang, R.; Wang, X.; Zhang, X.; Qiang, L.; Wang, W.; Wang, Q.; Hu, Z. Rhombic porous CoP2 nanowire arrays synthesized by alkaline etching as highly active hydrogen-evolution-reaction electrocatalysts. J. Mater. Chem. A 2018, 6, 19038–19046. [Google Scholar] [CrossRef]
- Cheng, C.; Zong, S.; Shi, J.; Xue, F.; Zhang, Y.; Guan, X.; Zheng, B.; Deng, J.; Guo, L. Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl. Catal. B 2020, 265, 118620. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, Z.; Jia, B.; Liu, Q.; Liu, K.; Lin, Y.; Liu, M.; Li, Y.; Li, G. Hierarchical Nanorods of MoS2/MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction. Small 2020, 16, e2002482. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wu, A.; Jiao, Y.; Zheng, H.; Wang, X.; Xie, Y.; Wang, L.; Tian, C.; Fu, H. Two-Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pH-Universal Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. Engl. 2021, 60, 6673–6681. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Cao, B.; Jiang, J.; Gao, R.; Zhang, J. Few Layered N, P Dual-Doped Carbon-Encapsulated Ultrafine MoP Nanocrystal/MoP Cluster Hybrids on Carbon Cloth: An Ultrahigh Active and Durable 3D Self-Supported Integrated Electrode for Hydrogen Evolution Reaction in a Wide pH Range. Adv. Funct. Mater. 2018, 28, 1801527. [Google Scholar] [CrossRef]
- Zhao, Y.; Wan, W.; Chen, Y.; Erni, R.; Triana, C.A.; Li, J.; Mavrokefalos, C.K.; Zhou, Y.; Patzke, G.R. Understanding and Optimizing Ultra-Thin Coordination Polymer Derivatives with High Oxygen Evolution Performance. Adv. Energy Mater. 2020, 10, 2002228. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, H.; Kong, F.; Tian, H.; Meng, G.; Wang, S.; Mao, X.; Cui, X.; Hou, X.; Shi, J. V2C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction. Appl. Catal. B 2021, 297, 120474. [Google Scholar] [CrossRef]
- Meng, G.; Chen, Y.; Wang, R.; Zhu, L.; Yao, H.; Chen, C.; Chang, Z.; Tian, H.; Kong, F.; Cui, X.; et al. Co-W Bimetallic Carbide Nanocatalysts: Computational Exploration, Confined Disassembly-Assembly Synthesis and Alkaline/Seawater Hydrogen Evolution. Small 2022, 18, e2204443. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, G.; Yang, T.; Chen, C.; Chang, Z.; Kong, F.; Tian, H.; Cui, X.; Hou, X.; Shi, J. Interfacial engineering of Co-doped 1T-MoS2 coupled with V2C MXene for efficient electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138157. [Google Scholar] [CrossRef]
- Zhang, H.; Xi, B.; Gu, Y.; Chen, W.; Xiong, S. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Ju, H.; Kim, J.Y.; Cho, H.-S.; Kim, C.-H.; Kim, B.-H.; Lee, S.W. Understanding synergistic metal–oxide interactions of in situ exsolved metal nanoparticles on a pyrochlore oxide support for enhanced water splitting. Energy Environ. Sci. 2021, 14, 3053–3063. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Luyen Doan, T.L.; Prabhakaran, S.; Tran, D.T.; Kim, D.H.; Lee, J.H.; Kim, N.H. Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy 2021, 82, 105750. [Google Scholar] [CrossRef]
- Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, Y.; Wu, Y.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Sun, L.; Hou, J. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Liao, T.; Ge, R.; Liu, Y.; Zhang, J.; Li, Y.; Zhu, M.; Li, S.; Li, W. Bifunctional water splitting enhancement by manipulating Mo-H bonding energy of transition Metal-Mo2C heterostructure catalysts. Chem. Eng. J. 2022, 431, 134126. [Google Scholar] [CrossRef]
- Yang, L.; Yang, T.; Chen, Y.; Zheng, Y.; Wang, E.; Du, Z.; Chou, K.C.; Hou, X. FeNi LDH/V2CTx/NF as Self-Supported Bifunctional Electrocatalyst for Highly Effective Overall Water Splitting. Nanomaterials 2022, 12, 2640. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Meng, G.; Chang, Z.; Dai, N.; Chen, C.; Hou, X.; Cui, X. Construction of CoP2-Mo4P3/NF Heterogeneous Interfacial Electrocatalyst for Boosting Water Splitting. Nanomaterials 2023, 13, 74. https://doi.org/10.3390/nano13010074
Chen Y, Meng G, Chang Z, Dai N, Chen C, Hou X, Cui X. Construction of CoP2-Mo4P3/NF Heterogeneous Interfacial Electrocatalyst for Boosting Water Splitting. Nanomaterials. 2023; 13(1):74. https://doi.org/10.3390/nano13010074
Chicago/Turabian StyleChen, Yafeng, Ge Meng, Ziwei Chang, Ningning Dai, Chang Chen, Xinmei Hou, and Xiangzhi Cui. 2023. "Construction of CoP2-Mo4P3/NF Heterogeneous Interfacial Electrocatalyst for Boosting Water Splitting" Nanomaterials 13, no. 1: 74. https://doi.org/10.3390/nano13010074
APA StyleChen, Y., Meng, G., Chang, Z., Dai, N., Chen, C., Hou, X., & Cui, X. (2023). Construction of CoP2-Mo4P3/NF Heterogeneous Interfacial Electrocatalyst for Boosting Water Splitting. Nanomaterials, 13(1), 74. https://doi.org/10.3390/nano13010074