Modeling and Experiments of Droplet Evaporation with Micro or Nano Particles in Coffee Ring or Coffee Splat
Abstract
:1. Introduction
2. Experimental Methods
2.1. Setup and Procedure
2.2. Experimental Results
3. Numerical Simulation Model
3.1. Governing Equations
3.2. Particle Modeling
3.3. Numerical Setup
3.3.1. Boundary Condition
3.3.2. Initial Condition
3.3.3. Parallel Computing Method
3.3.4. Simulation Parameters in SPH Modeling
4. Numerical Model Validation
4.1. Flow Past a Sphere
4.2. Droplet Flow Structure
4.3. Evaporation of a Sessile Droplet
4.4. Particle Distribution Pattern
5. Numerical Results and Discussion
5.1. Effect of Rigid Particles
5.2. Effect of Point–Particles
5.3. Effect of Wall Superheat Degree
5.4. Effect of Surface Wettability
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zang, D.; Tarafdar, S.; Tarasevich, Y.Y.; Dutta Choudhury, M.; Dutta, T. Evaporation of a Droplet: From physics to applications. Phys. Rep. 2019, 804, 1–56. [Google Scholar] [CrossRef]
- Yang, M.; Chen, D.; Hu, J.; Zheng, X.; Lin, Z.-J.; Zhu, H. The application of coffee-ring effect in analytical chemistry. TrAC Trends Anal. Chem. 2022, 157, 116752. [Google Scholar] [CrossRef]
- Liamtsau, V.; Fan, C.; Liu, G.; McGoron, A.J.; Cai, Y. Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2020, 1106, 88–95. [Google Scholar] [CrossRef]
- Liang, K.; Wang, R.; Ren, H.; Li, D.; Tang, Y.; Wang, Y.; Chen, Y.; Song, C.; Li, F.; Liu, G.; et al. Printable Coffee-Ring Structures for Highly Uniform All-Oxide Optoelectronic Synaptic Transistors. Adv. Opt. Mater. 2022, 10, 2201754. [Google Scholar] [CrossRef]
- Lee, J.; Yang, J.C.; Lone, S.; Park, W.I.; Lin, Z.; Park, J.; Hong, S.W. Enabling the Selective Detection of Endocrine-Disrupting Chemicals via Molecularly Surface-Imprinted “Coffee Rings”. Biomacromolecules 2021, 22, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, C.; Li, Z.; Quere, D.; Zheng, Q. From coffee rings to coffee eyes. Soft Matter 2015, 11, 4669–4673. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Qi, L.; Luo, J.; Hu, K. Experimental study and mechanism analysis on the effect of substrate wettability on graphene sheets distribution morphology within uniform printing droplets. J. Phys. Condens. Matter 2018, 30, 335001. [Google Scholar] [CrossRef]
- Yang, Q.; Ding, Y.; Xu, X.; Lu, H.; Wang, H.; Liu, H. Droplet Evaporation on a Hydrophilic Mesh Considering Their Sunken Shapes in Holes. Chem. Eng. Technol. 2019, 43, 143–149. [Google Scholar] [CrossRef]
- Shen, X.Y.; Ho, C.M.; Wong, T.S. Minimal Size of Coffee Ring Structure. J. Phys. Chem. B 2010, 114, 5269–5274. [Google Scholar] [CrossRef]
- Moore, M.R.; Vella, D.; Oliver, J.M. The nascent coffee ring: How solute diffusion counters advection. J. Fluid. Mech. 2021, 920, A54. [Google Scholar] [CrossRef]
- Dugyala, V.R.; Basavaraj, M.G. Evaporation of sessile drops containing colloidal rods: Coffee-ring and order-disorder transition. J. Phys. Chem. B 2015, 119, 3860–3867. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.D.; Bange, P.G.; Bhardwaj, R.; Sharma, A. Effects of Substrate Heating and Wettability on Evaporation Dynamics and Deposition Patterns for a Sessile Water Droplet Containing Colloidal Particles. Langmuir 2016, 32, 11958–11972. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Derby, B. Controlling Coffee Ring Formation during Drying of Inkjet Printed 2D Inks. Adv. Mater. Interfaces 2017, 4, 1700944. [Google Scholar] [CrossRef]
- Crivoi, A.; Zhong, X.; Duan, F. Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation. Phys. Rev. E 2015, 92, 032302. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.L.; Kumar, S. Fast evaporation of spreading droplets of colloidal suspensions. Langmuir 2011, 27, 11347–11363. [Google Scholar] [CrossRef]
- Zhao, M.; Yong, X. Nanoparticle motion on the surface of drying droplets. Phys. Rev. Fluids 2018, 3, 034201. [Google Scholar] [CrossRef]
- Xu, T.; Lam, M.L.; Chen, T.H. Discrete Element Model for Suppression of Coffee-Ring Effect. Sci. Rep. 2017, 7, 42817. [Google Scholar] [CrossRef] [PubMed]
- Manoylov, A.; Bojarevics, V.; Pericleous, K. Modeling the Break-up of Nano-particle Clusters in Aluminum- and Magnesium-Based Metal Matrix Nano-composites. Metall. Mater. Trans. A 2015, 46, 2893–2907. [Google Scholar] [CrossRef]
- Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed Particle Hydrodynamics-Theory and Application To Non-Spherical Stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Nugent, S.; Posch, H.A. Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E 2000, 62, 4968–4975. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, J.J. An Introduction To Sph. Comput. Phys. Commun. 1988, 48, 89–96. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759. [Google Scholar] [CrossRef]
- Yang, X.; Liu, M.; Peng, S. Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput. Fluids 2014, 92, 199–208. [Google Scholar] [CrossRef]
- Sigalotti, L.D.; Troconis, J.; Sira, E.; Pena-Polo, F.; Klapp, J. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics. Phys. Rev. E 2014, 90, 013021. [Google Scholar] [CrossRef] [PubMed]
- Sigalotti, L.D.G.; López, H. Adaptive kernel estimation and SPH tensile instability. Comput. Math. Appl. 2008, 55, 23–50. [Google Scholar] [CrossRef]
- Sun, P.; Ming, F.; Zhang, A. Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean. Eng. 2015, 98, 32–49. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R.G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110, 7090–7094. [Google Scholar] [CrossRef]
- Tafuni, A.; Domínguez, J.M.; Vacondio, R.; Crespo, A.J.C. A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models. Comput. Method. Appl. M 2018, 342, 604–624. [Google Scholar] [CrossRef]
- Sengers, J.V. Non-equilibrium thermodynamics of heterogeneous systems. Energy 2021, 219, 119601. [Google Scholar] [CrossRef]
- Xiong, H.-B.; Zhang, C.-Y.; Yu, Z.-S. Multiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfaces. Int. J. Heat Mass Transf. 2019, 130, 680–692. [Google Scholar] [CrossRef]
- Dicuangco, M.; Dash, S.; Weibel, J.A.; Garimella, S.V. Effect of superhydrophobic surface morphology on evaporative deposition patterns. Appl. Phys. Lett. 2014, 104, 201604. [Google Scholar] [CrossRef]
Name | Symbol | Value | Units |
---|---|---|---|
Length scale | L* | 2.81 × 10−9 | Meter |
Time scale | t* | 1 × 10–9 | Second |
Mass scale | M* | 1.247 × 10−23 | Kilogram |
Temperature scale | T* | 562 | Kelvin |
Van der Waals equation constant | 74,379.1386 | - | |
Van der Waals equation constant | 0.583371015 | - | |
Boltzmann constant | 32,846.97509 | - | |
Liquid shear Viscosity | μl | 101 | - |
Vapor shear Viscosity | μv | 10 | - |
Liquid thermal conductivity | κl | 10,425,020.05 | - |
Vapor thermal conductivity | κv | 104,250.2005 | - |
Section | Superheat Degree (ΔT) | Wettability |
---|---|---|
5.1 | 0.1, 0.2, 0.3 | Hydrophilic |
5.2 | 0.2, 1.2 | Hydrophilic |
5.3 | 0.1 | Hydrophilic and Hydrophobic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.; Wang, Q.; Yuan, L.; Liang, J.; Lin, J. Modeling and Experiments of Droplet Evaporation with Micro or Nano Particles in Coffee Ring or Coffee Splat. Nanomaterials 2023, 13, 1609. https://doi.org/10.3390/nano13101609
Xiong H, Wang Q, Yuan L, Liang J, Lin J. Modeling and Experiments of Droplet Evaporation with Micro or Nano Particles in Coffee Ring or Coffee Splat. Nanomaterials. 2023; 13(10):1609. https://doi.org/10.3390/nano13101609
Chicago/Turabian StyleXiong, Hongbing, Qichao Wang, Lujie Yuan, Junkai Liang, and Jianzhong Lin. 2023. "Modeling and Experiments of Droplet Evaporation with Micro or Nano Particles in Coffee Ring or Coffee Splat" Nanomaterials 13, no. 10: 1609. https://doi.org/10.3390/nano13101609
APA StyleXiong, H., Wang, Q., Yuan, L., Liang, J., & Lin, J. (2023). Modeling and Experiments of Droplet Evaporation with Micro or Nano Particles in Coffee Ring or Coffee Splat. Nanomaterials, 13(10), 1609. https://doi.org/10.3390/nano13101609