Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Liposome Preparation
2.3. Spectral Measurements
2.4. Dynamic Light Scattering
2.5. In Vitro Release of PARP1 Inhibitors
2.6. Release Kinetic Models
3. Results and Discussion
3.1. Development of the PARP1i Lipidic Nano-Delivery System
3.1.1. Optimization of the Sonication Process
3.1.2. Optimization of PARP1 Inhibitor Veliparib Encapsulation in DPPC and DPPG Liposomes
3.1.3. Ascertaining PARP1 Inhibitor Encapsulation in Single and Bi-Lipid Formulations
3.2. Lipid Delivery System Characterization—Quality Assessment
3.3. Drug Release Analysis and Kinetics—Time of Circulation Determination
3.4. PARPi and Lipid Delivery System Biophysical Interaction—Spectroscopic Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sonication Cycle | Z-Average * (nm) | PdI * | Pop.1 * (nm) | Pop.2 * (nm) |
---|---|---|---|---|
15× | 74.2 ± 0.3 | 0.19 ± 0.01 | 77 ± 2 | 4650 ± 230 |
20× | 71.0 ± 0.5 | 0.18 ± 0.01 | 75 ± 2 | 4693 ± 220 |
25× | 67.6 ± 0.3 | 0.21 ± 0.01 | 71.4 ± 0.9 | 3163 ± 150 |
Sonication Cycle | Z-Average * (nm) | PdI * | Pop.1 * (nm) | Pop.2 * (nm) |
---|---|---|---|---|
15× | 55 ± 1 | 0.25 ± 0.03 | 54.0 ± 0.5 | 3830± 560 |
20× | 56.2 ± 0.4 | 0.27 ± 0.01 | 56 ± 2 | 1925 ± 240 |
25× | 54.0 ± 0.6 | 0.21 ± 0.01 | 55.6 ± 0.2 | 4460 ± 30 |
Inhibitor Concentration (µM) | EE * (%) | LC * (%) |
---|---|---|
100 | 49 ± 2 | 3.9 ± 0.2 |
200 | 55 ± 1 | 10.20 ± 0.09 |
Phase (200 µM) | EE * (%) | LC * (%) |
---|---|---|
Organic phase | 55 ± 1 | 10.20 ± 0.09 |
Both phases | 31 ± 4 | 4.9 ± 0.7 |
Veliparib (µM) | Particle Size * | Zeta Potential * (mV) | |||
---|---|---|---|---|---|
Z-Average (d.nm) | PdI | Pop.1 (d.nm) | Pop.2 (d.nm) | ||
Organic phase | 91± 2 | 0.28 ± 0.03 | 134 ± 6 | --- | −39 ± 2 |
Both phases | 93 ± 2 | 0.32 ± 0.02 | 135 ± 11 | ~36,805 | −42 ± 3 |
DPPG Band Frequency (cm−1) | Assignment |
---|---|
1052 | Symmetric stretch of C-O-C |
1097 | PO2− symmetric stretch |
1166 | C-O stretch |
1224 | PO2− asymmetric stretch hydrogen-bonded |
1242 | PO2− asymmetric stretch |
1416 | In-plane bend of C-O-H group |
1468 | CH2 scissoring |
1736 | Stretch of carbonyl group (C=O) |
2850 | Symmetric C-H stretch of phospholipid hydrocarbon (CH2) |
2917 | Anti-symmetric C-H stretch of phospholipid hydrocarbon (CH2) |
2956 | Asymmetric stretch C-H (CH3) |
3286 | OH group from glycerol and H2O retained in liposomes |
Veliparib Band Frequency (cm−1) | Assignment |
---|---|
790 and 868 | Aromatic C-H out-of-plane bend |
986 | Aromatic C-H in-plane bend |
1008 | C-C stretch, cyclohexane ring vibrations |
1054 | S-O stretch and CH3 rocking vibrations from not self-associated DMSO |
1134 | C-N stretch from aromatic rings |
1244 | C-O/C-C stretch |
1306 | C-N stretch from aromatic secondary amine |
1375 and 1410 | S-O stretch and C-H bending from DMSO |
1439 | C-H asymmetric bend from -CH3 methyl functional group |
1493 | C=C-C aromatic stretch |
1524 | Aromatic amine CH2 scissoring/C-N and C-C ring stretch |
1600 | Secondary amine N-H weak bending and NH2 scissoring from amine group in benzamide |
1660 | C=O stretch from benzamide |
2850–3000 | C-H symmetric and asymmetric stretch from CH3 and C-H stretch from aromatic ring |
3180 | N-H symmetric stretch from benzamide |
>3200 | N-H stretch from aromatic ring and OH group from H2O |
Rucaparib Band Frequency (cm−1) | Assignment |
---|---|
843 | Aromatic C-H out-of-plane bend |
934; 954 | Aromatic C-H in-plane bend |
1016 | P-O asymmetric stretch from phosphate ion |
1042 | S-O stretch and CH3 rocking vibrations from self-associated DMSO |
1130 | C-F stretch from Fluorobenzene |
1263 | C-N stretch from aromatic secondary amine |
1315 | C-C vibrations and C-N stretch from aromatic secondary amine |
1349 1366 | C-H bend from -CH- functional group C-H symmetric bend from -CH3 functional group |
1413 | In-plane C-H bend from vinyl functional group in N-methylbenzylamine |
1453 | C-H bend from aromatic ring |
1507 | C=C-C aromatic stretch |
1614 | C=C stretch from conjugated double bonds in aromatic rings |
1642 | C=O stretch from Cycloheptanone |
2740–2980 | C-H symmetric and asymmetric stretch from CH3 |
>3000 | N-H stretch from aromatic ring and OH group from H2O |
Niraparib Band Frequency (cm−1) | Assignment |
---|---|
830 | Aromatic C-H out-of-plane bend |
960 | Aromatic C-H in-plane bend |
1054 | S-O stretch and CH3 rocking vibrations from not self-associated DMSO |
1205 | C-C stretch aromatic skeletal vibration |
1275 and 1303 | C-N stretch from aromatic secondary amine |
1323 | C-N stretch from aromatic secondary and tertiary amine |
1352 | C-N stretch from aromatic tertiary amine |
1413 | In-plane C-H bend from vinyl functional group in N-methylbenzylamine |
1378 | S=O stretch and C-H bending from DMSO |
1428 | C-N stretching from aromatic ring |
1511 | C=C-C aromatic stretch |
1524 | Aromatic amine CH2 scissoring, C-N and C-C ring stretching |
1553 | C=C-C stretch and C=N stretch from aromatic ring |
1602 | N-H bend from secondary and primary amine |
1627 | In-plane NH2 scissoring |
1642 | C=O stretch from benzamide |
2690–2980 | C-H symmetric and asymmetric stretch from CH3 |
>3000 | N-H stretch from aromatic ring and OH group from H2O |
References
- Citrin, D.E.; Mitchell, J.B. Altering the Response to Radiation: Sensitizers and Protectors. Semin. Oncol. 2014, 41, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.K.; Olive, P.L.; Bristow, R.G. Biomarkers for DNA DSB Inhibitors and Radiotherapy Clinical Trials. Cancer Metastasis Rev. 2008, 27, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of Natural Radioprotectors. Arch. Pharm. Res. 2018, 41, 1033–1050. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Ashworth, A. PARP Inhibitors: The First Synthetic Lethal Targeted Therapy Europe PMC Funders Group. Science 2017, 355, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- O′Sullivan Coyne, G.; Chen, A.; Kummar, S. Delivering on the Promise: Poly ADP Ribose Polymerase Inhibition as Targeted Anticancer Therapy. Curr. Opin. Oncol. 2015, 27, 475–481. [Google Scholar] [CrossRef]
- Steffen, J.D.; McCauley, M.M.; Pascal, J.M. Fluorescent Sensors of PARP-1 Structural Dynamics and Allosteric Regulation in Response to DNA Damage. Nucleic Acids Res. 2016, 44, 9771–9783. [Google Scholar] [CrossRef]
- Chen, H.H.W.; Kuo, M.T. Improving Radiotherapy in Cancer Treatment: Promises and Challenges. Oncotarget 2017, 8, 62742–62758. [Google Scholar] [CrossRef]
- Gan, N.; Sun, Q.; Tang, P.; Wu, D.; Xie, T.; Zhang, Y.; Li, H. Determination of Interactions between Human Serum Albumin and Niraparib through Multi-Spectroscopic and Computational Methods. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 206, 126–134. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, P.; Wu, S.; Yang, T.; Chen, Y.; Zhang, X.; He, C.; Zheng, C.; Li, K.; Ma, X.; et al. Cisplatin and Curcumin Co-Loaded Nano-Liposomes for the Treatment of Hepatocellular Carcinoma. Int. J. Pharm. 2018, 545, 261–273. [Google Scholar] [CrossRef]
- Has, C.; Phapal, S.M.; Sunthar, P. Rapid Single-Step Formation of Liposomes by Flow Assisted Stationary Phase Interdiffusion. Chem. Phys. Lipids 2018, 212, 144–151. [Google Scholar] [CrossRef]
- Chen, B.-H.; Inbaraj, B.S. Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients 2019, 11, 1052. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Li, X.; Chen, J.; Jiang, X.; Ma, X.; Sun, J.; Tian, L.; Vidyarthi, S.K.; Xu, J.; Pan, Z.; et al. A Comprehensive Review on Innovative and Advanced Stabilization Approaches of Anthocyanin by Modifying Structure and Controlling Environmental Factors. Food Chem. 2022, 366, 130611. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Asghar, W.; Akhtar, A.; Ayub, H.; Aslam, I.; Khalid, N.; Al-Mssallem, M.Q.; Alessa, F.M.; Ghazzawy, H.S.; Attimarad, M. Anthocyanin Delivery Systems: A Critical Review of Recent Research Findings. Appl. Sci. 2022, 12, 12347. [Google Scholar] [CrossRef]
- Ioele, G.; De Luca, M.; Garofalo, A.; Ragno, G. Photosensitive Drugs: A Review on Their Photoprotection by Liposomes and Cyclodextrins. Drug Deliv. 2017, 24, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Ruano, M.; Mateos-Maroto, A.; Ortega, F.; Ritacco, H.; Rubio, J.E.F.; Guzmán, E.; Rubio, R.G. Fabrication of Robust Capsules by Sequential Assembly of Polyelectrolytes onto Charged Liposomes. Langmuir 2021, 37, 6189–6200. [Google Scholar] [CrossRef]
- Moraes, M.L.; Gomes, P.J.; Ribeiro, P.A.; Vieira, P.; Freitas, A.A.; Köhler, R.; Oliveira, O.N.; Raposo, M. Polymeric Scaffolds for Enhanced Stability of Melanin Incorporated in Liposomes. J. Colloid Interface Sci. 2010, 350, 268–274. [Google Scholar] [CrossRef]
- Duarte, A.A.; do Rego, A.M.B.; Salerno, M.; Ribeiro, P.A.; El Bari, N.; Bouchikhi, B.; Raposo, M. DPPG Liposomes Adsorbed on Polymer Cushions: Effect of Roughness on Amount, Surface Composition and Topography. J. Phys. Chem. B 2015, 119, 8544–8552. [Google Scholar] [CrossRef]
- Pires, F.; Geraldo, V.P.N.; Antunes, A.; Marletta, A.; Oliveira, O.N.; Raposo, M. On the Role of Epigallocatechin-3-Gallate in Protecting Phospholipid Molecules against UV Irradiation. Colloids Surf. B Biointerfaces 2019, 173, 312–319. [Google Scholar] [CrossRef]
- Sivadasan, D.; Sultan, M.H.; Madkhali, O.A.; Alsabei, S.H.; Alessa, A.A. Stealth Liposomes (PEGylated) Containing an Anticancer Drug Camptothecin: In Vitro Characterization and In Vivo Pharmacokinetic and Tissue Distribution Study. Molecules 2022, 27, 1086. [Google Scholar] [CrossRef]
- Adamala, K.; Engelhart, A.E.; Kamat, N.P.; Jin, L.; Szostak, J.W. Construction of a Liposome Dialyzer for the Preparation of High-Value, Small-Volume Liposome Formulations. Nat. Protoc. 2015, 10, 927–938. [Google Scholar] [CrossRef]
- Mendyk, A.; Jachowicz, R. Unified Methodology of Neural Analysis in Decision Support Systems Built for Pharmaceutical Technology. Expert Syst. Appl. 2007, 32, 1124–1131. [Google Scholar] [CrossRef]
- Mendyk, A.; Jachowicz, R.; Fijorek, K.; Dorozyński, P.; Kulinowski, P.; Polak, S. KinetDS: An Open Source Software for Dissolution Test Data Analysis. Dissolution Technol. 2012, 19, 6–11. [Google Scholar] [CrossRef]
- Nascentes, C.C.; Korn, M.; Sousa, C.S.; Arruda, M.A.Z. Use of Ultrasonic Baths for Analytical Applications: A New Approach for Optimisation Conditions. J. Braz. Chem. Soc. 2001, 12, 57–63. [Google Scholar] [CrossRef]
- Dhanalakshmi, N.P.; Nagarajan, R. Ultrasonic Intensification of the Chemical Degradation of Methyl Violet: An Experimental Study. Int. J. Chem. Mol. Eng. 2011, 5, 1019–1024. [Google Scholar]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manyes, S.; Redondo-Morata, L.; Oncins, G.; Sanz, F. Nanomechanics of Lipid Bilayers: Heads or Tails? J. Am. Chem. Soc. 2010, 132, 12874–12886. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Heberle, F.A.; Tristram-Nagle, S.; Szymanski, M.; Koepfinger, M.; Katsaras, J.; Kučerka, N. Molecular Structures of Fluid Phase Phosphatidylglycerol Bilayers as Determined by Small Angle Neutron and X-ray Scattering. Biochim. Biophys. Acta 2012, 1818, 2135–2148. [Google Scholar] [CrossRef]
- Wohnhaas, C.T.; Leparc, G.G.; Fernandez-Albert, F.; Kind, D.; Gantner, F.; Viollet, C.; Hildebrandt, T.; Baum, P. DMSO Cryopreservation Is the Method of Choice to Preserve Cells for Droplet-Based Single-Cell RNA Sequencing. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Song, J.; Pas, J.; Meijer, L.H.H.; Han, S. DMSO Induces Dehydration near Lipid Membrane Surfaces. Biophys. J. 2015, 109, 330–339. [Google Scholar] [CrossRef]
- Gallardo-Villagrán, M.; Paulus, L.; Leger, D.Y.; Therrien, B.; Liagre, B. Dimethyl Sulfoxide: A Bio-Friendly or Bio-Hazard Chemical? The Effect of DMSO in Human Fibroblast-like Synoviocytes. Molecules 2022, 27, 4472. [Google Scholar] [CrossRef]
- Gironi, B.; Kahveci, Z.; McGill, B.; Lechner, B.D.; Pagliara, S.; Metz, J.; Morresi, A.; Palombo, F.; Sassi, P.; Petrov, P.G. Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophys. J. 2020, 119, 274–286. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 24958200, Niraparib. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Niraparib (accessed on 14 February 2023).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 9931953, Rucaparib Phosphate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Rucaparib-phosphate (accessed on 14 February 2023).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 11960529, Veliparib. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Veliparib (accessed on 14 February 2023).
- Kirby, I.T.; Cohen, M.S. Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics. Curr. Top. Microbiol. Immunol. 2019, 420, 211–231. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yan, Z.; Wang, Y.; Miao, H.; Zhao, J.; Pang, C.; Li, S. Recent Advances in Structural Types and Medicinal Chemistry of PARP-1 Inhibitors. Med. Chem. Res. 2022, 31, 1265–1276. [Google Scholar] [CrossRef]
- Thorsell, A.; Ekblad, T.; Karlberg, T.; Low, M.; Pinto, A.F.; Trésaugues, L.; Moche, M.; Cohen, M.S.; Schuler, H. Structural Basis for Potency and Promiscuity in Poly(ADP-Ribose) Polymerase (PARP) and Tankyrase Inhibitors. J. Med. Chem. 2017, 60, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Ogden, T.E.H.; Yang, J.-C.; Schimpl, M.; Easton, L.E.; Underwood, E.; Rawlins, P.B.; McCauley, M.M.; Langelier, M.-F.; Pascal, J.M.; Embrey, K.J.; et al. Dynamics of the HD Regulatory Subdomain of PARP-1; Substrate Access and Allostery in PARP Activation and Inhibition. Nucleic Acids Res. 2021, 49, 2266–2288. [Google Scholar] [CrossRef]
- RCSB Protein Data Banck. Available online: http://www.rcsb.org/ (accessed on 14 February 2023).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful New Tools for Exploring 3D Structures of Biological Macromolecules for Basic and Applied Research and Education in Fundamental Biology, Biomedicine, Biotechnology, Bioengineering and Energy Sciences. Nucleic Acids Res. 2021, 49, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodov, R.; Berka, K.; Velankar, S.; Burley, S.K.; Rose, A.S. Mol * Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures Jaroslav Ko Ca. Nucleic Acids Res. 2021, 49, 431–437. [Google Scholar] [CrossRef]
- Briuglia, M.L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of Cholesterol on Liposome Stability and on in Vitro Drug Release. Drug Deliv. Transl. Res. 2015, 5, 231–242. [Google Scholar] [CrossRef]
- Dan, N. Core–Shell Drug Carriers: Liposomes, Polymersomes, and Niosomes. In Nanostructures for Drug Delivery; Andronescu, E., Grumezescu, A.M., Eds.; Elsevier: Cambridge, MA, USA, 2017; pp. 63–105. [Google Scholar]
- Pires, F.; Santos, J.F.; Bitoque, D.; Araujo, G.; Marletta, A.; Nunes, V.A.; Ribeiro, P.A.; Silva, J.C.; Raposo, M. Polycaprolactone/Gelatin Nano Fi Ber Membranes Containing EGCG- Loaded Liposomes and Their Potential Use for Skin Regeneration. ACS Appl. Bio Mater. 2019, 2, 4790–4800. [Google Scholar] [CrossRef]
- Hama, S.; Sakai, M.; Itakura, S.; Majima, E.; Kogure, K. Rapid Modification of Antibodies on the Surface of Liposomes Composed of High-Affinity Protein A-Conjugated Phospholipid for Selective Drug Delivery. Biochem. Biophys. Rep. 2021, 27, 101067. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Chu, I.-M. Methoxy Poly(Ethylene Glycol)-b-Poly(Valerolactone) Diblock Polymeric Micelles for Enhanced Encapsulation and Protection of Camptothecin. Eur. Polym. J. 2008, 44, 3922–3930. [Google Scholar] [CrossRef]
- Unagolla, J.M.; Jayasuriya, A.C. Drug Transport Mechanisms and In Vitro Release Kinetics of Vancomycin Encapsulated Chitosan-Alginate Polyelectrolyte Microparticles as a Controlled Drug Delivery System. Eur. J. Pharm. Sci. 2018, 114, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Danyuo, Y.; Ani, C.J.; Salifu, A.A.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Obanawu, V.O.; Akpan, U.M.; Odusanya, O.S.; Abade-Abugre, M.; McBagonluri, F.; et al. Anomalous Release Kinetics of Prodigiosin from Poly-N-Isopropyl-Acrylamid Based Hydrogels for the Treatment of Triple Negative Breast Cancer. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Corsaro, C.; Neri, G.; Mezzasalma, A.M.; Fazio, E. Weibull Modeling of Controlled Drug Release from Ag-PMA Nanosystems. Polymers 2021, 13, 2897. [Google Scholar] [CrossRef]
- Bruschi, M.L. Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–86. ISBN 9780081000922. [Google Scholar]
- Duarte, A.A.; Gomes, P.J.; Ribeiro, J.H.F.; Ribeiro, P.A.; Hoffmann, S.V.; Mason, N.J.; Oliveira, O.N.; Raposo, M. Characterization of PAH/DPPG Layer-by-Layer Films by VUV Spectroscopy. Eur. Phys. J. E 2013, 36, 98. [Google Scholar] [CrossRef]
- Grante, I.; Actins, A.; Orola, L. Protonation Effects on the UV/Vis Absorption Spectra of Imatinib: A Theoretical and Experimental Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 326–332. [Google Scholar] [CrossRef]
- Springer, J.W.; Faries, K.M.; Diers, J.R.; Muthiah, C.; Mass, O.; Kee, H.L.; Kirmaier, C.; Lindsey, J.S.; Bocian, D.F.; Holten, D. Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 3: The Distinctive Impact of Auxochromes at the 7-versus 3-Positions. Photochem. Photobiol. 2012, 88, 651–674. [Google Scholar] [CrossRef]
- Zhao, T.; Sha, F.; Xiao, J.; Xu, Q.; Xie, X.; Zhang, J.; Wei, X. Absorption, Desorption and Spectroscopic Investigation of Sulfur Dioxide in the Binary System Ethylene Glycol+dimethyl Sulfoxide. Fluid Phase Equilib. 2015, 405, 7–16. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 1–23. [Google Scholar]
- Larkin, P.J. General Outline for IR and Raman Spectral Interpretation. In Infrared and Raman Spectroscopy; Morrissey, K., Ed.; Elsevier: Stamford, CT, USA, 2018; pp. 135–151. ISBN 9780128041628. [Google Scholar]
- Pires, F.; Geraldo, V.P.N.; Antunes, A.; Marletta, A.; Oliveira, O.N.; Raposo, M. Effect of Blue Light Irradiation on the Stability of Phospholipid Molecules in the Presence of Epigallocatechin-3-Gallate. Colloids Surf. B Biointerfaces 2019, 177, 50–57. [Google Scholar] [CrossRef]
- Levinger, N.E.; Costard, R.; Nibbering, E.T.J.; Elsaesser, T. Ultrafast Energy Migration Pathways in Self-Assembled Phospholipids Interacting with Confined Water. J. Phys. Chem. A 2011, 115, 11952–11959. [Google Scholar] [CrossRef] [PubMed]
- Dreier, L.B.; Bonn, M.; Backus, E.H.G. Hydration and Orientation of Carbonyl Groups in Oppositely Charged Lipid Monolayers on Water. J. Phys. Chem. B 2019, 123, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Arrondo, J.L.R.; Goñi, F.M.; Macarulla, J. Infrared Spectroscopy of Phosphatidylcholines in Aqueous Suspension a Study of the Phosphate Group Vibrations. Biochim. Biophys. Acta-Lipids Lipid Metab. 1984, 794, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Dicko, A.; Bourque, H.; Pézolet, M. Study by Infrared Spectroscopy of the Conformation of Dipalmitoylphosphatidylglycerol Monolayers at the Air-Water Interface and Transferred on Solid Substrates. Chem. Phys. Lipids 1998, 96, 125–139. [Google Scholar] [CrossRef]
- Wallace, V.M.; Dhumal, N.R.; Zehentbauer, F.M.; Kim, H.J.; Kiefer, J. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations. J. Phys. Chem. B 2015, 119, 14780–14789. [Google Scholar] [CrossRef]
- Jastrzbski, W.; Sitarz, M.; Rokita, M.; Bułat, K. Infrared Spectroscopy of Different Phosphates Structures. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2011, 79, 722–727. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, S.; Yu, J.S. Novel Ordered Nanoporous Graphitic C3N4 as a Support for Pt-Ru Anode Catalyst in Direct Methanol Fuel Cell. J. Mater. Chem. 2007, 17, 1656–1659. [Google Scholar] [CrossRef]
Lipid Formulation * | Z-Average (nm) | PdI | Pop.1 (nm) | Pop.2 (nm) | Zeta Potential (mV) |
---|---|---|---|---|---|
DPPC (20×) | 71.0 ± 0.5 | 0.18 ± 0.01 | 75 ± 2 | 4700 ± 200 | −17.9 ± 0.9 |
DPPG (20×) | 56.2 ± 0.4 | 0.27 ± 0.01 | 56 ± 2 | 1900 ± 200 | −43 ± 2 mV |
Veliparib (µM) | EE * (%) | LC * (%) |
---|---|---|
20 | 99.9 ± 0.2 | 1.99 ± 0.01 |
100 | 49± 2 | 3.9 ± 0.2 |
200 | 55 ± 1 | 10.20 ± 0.09 |
Veliparib (µM) | Particle Size * | Zeta Potential * (mV) | |||
---|---|---|---|---|---|
Z-Average (d.nm) | PdI | Pop.1 (d.nm) | Pop.2 (d.nm) | ||
20 | 60 ± 2 | 0.40 ± 0.04 | 48 ± 1 | 741 ± 86 | −31 ± 2 |
100 | 79.4 ± 0.4 | 0.29 ± 0.02 | 116 ± 7 | ~2700 | −41 ± 2 |
200 | 91 ± 2 | 0.28 ± 0.03 | 134 ± 6 | --- | −39 ± 2 |
PARP1 Inhibitor | Molecular Structure | DPPG (200 µM) * | DPPG/DPPC 1:1 (100 µM) * | ||
---|---|---|---|---|---|
EE + (%) | LC + (%) | EE + (%) | LC + (%) | ||
Veliparib | 55 ± 1 | 10.20 ± 0.09 | 38 ± 2 | 3.3 ± 0.3 | |
Rucaparib | 49.2 ± 0.3 | 9.2 ± 0.1 | 40 ± 1 | 2.80 ± 0.03 | |
Niraparib | 50.7 ± 0.9 | 9.0 ± 0.1 | 33.7 ± 0.9 | 3.1 ± 0.2 |
Liposome | PARP1 Inhibitor | Particle Size * | Zeta Potential * (mV) | |||
---|---|---|---|---|---|---|
Z-Average (d.nm) | PdI | Pop.1 (d.nm) | Pop.2 (d.nm) | |||
DPPG | Veliparib | 91 ± 2 | 0.28 ± 0.02 | 130 ± 3 | ---- | −39 ± 2 |
Rucaparib | 94 ± 8 | 0.25 ± 0.01 | 135 ± 10 | ---- | −33 ± 1 | |
Niraparib | 94 ± 4 | 0.25 ± 0.01 | 132 ± 7 | ---- | −36 ± 2 | |
DPPG/DPPC 1:1 | Veliparib | 88 ± 2 | 0.22 ± 0.01 | 115 ± 4 | ---- | −29 ± 4 |
Rucaparib | 97 ± 3 | 0.28 ± 0.02 | 130 ± 40 | ~117 | −25 ± 4 | |
Niraparib | 101 ± 2 | 0.31 ± 0.05 | 156 ± 11 | ---- | −25 ± 4 |
Model | Veliparib | Rucaparib | Niraparib | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | K | β | AIC | R2 | K | β | AIC | R2 | K | β | AIC | |
Weibull | 0.999 | 4.33 | 0.94 | 31.76 | 0.992 | 0.75 | 1.02 | 60.29 | 0.999 | 4.63 | 0.93 | 54.15 |
Weibull (TLAG) | 0.999 | 3.78 | 0.83 | 16.64 | 0.989 | 0.75 | 1.02 | 62.29 | 0.999 | 3.59 | 0.73 | 50.60 |
R2 | Km | AIC | R2 | Km | AIC | R2 | Km | AIC | ||||
Michaelis–Menten | 1.00 | 0.55 | 60.89 | 1.00 | 1.15 | 54.16 | 1.00 | 0.54 | 55.53 | |||
Michaelis–Menten (TLAG) | 1.00 | 0.55 | 62.92 | 1.00 | 1.13 | 56.22 | 1.00 | 0.53 | 57.56 | |||
R2 | Km | AIC | R2 | Km | AIC | R2 | Km | AIC | ||||
Hixson–Crowell | 0.629 | 0.45 | 67.81 | 0.512 | 0.47 | 78.78 | 0.537 | 0.40 | 69.72 | |||
R2 | n | AIC | R2 | n | AIC | R2 | n | AIC | ||||
Korsmeyer–Peppas | 0.999 | 0.92 | 58.91 | 0.998 | 0.94 | 76.55 | 0.998 | 0.92 | 65.36 | |||
Korsmeyer–Pepas (TLAG) | 0.999 | 0.72 | 47.65 | 0.999 | 0.73 | 72.48 | 0.999 | 0.72 | 60.68 |
Hydrogen-Bonded Phosphate Band (1224 cm−1) Shift | |||
---|---|---|---|
DPPG | DPPG + Veliparib | DPPG + Rucaparib | DPPG + Niraparib |
1224 (0) | 1227.7 (+3.7) | 1226.5 (+2.5) | 1223.4 (−0.6) |
- | → | → | ← |
DPPG Formulation | Ratios (A x cm−1/A total) | |||
---|---|---|---|---|
A 1699 cm−1 | A 1725 cm−1 | A 1699+1725 cm−1 | A 1740 cm−1 | |
Control | 0.066 | 0.373 | 0.439 | 0.560 |
Veliparib | 0.179 | 0.035 | 0.214 | 0.774 |
Rucaparib | 0.170 | 0.038 | 0.208 | 0.792 |
Niraparib | 0.074 | 0.340 | 0.414 | 0.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conceição, C.J.F.; Moe, E.; Ribeiro, P.A.; Raposo, M. Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization. Nanomaterials 2023, 13, 1613. https://doi.org/10.3390/nano13101613
Conceição CJF, Moe E, Ribeiro PA, Raposo M. Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization. Nanomaterials. 2023; 13(10):1613. https://doi.org/10.3390/nano13101613
Chicago/Turabian StyleConceição, Carlota J. F., Elin Moe, Paulo A. Ribeiro, and Maria Raposo. 2023. "Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization" Nanomaterials 13, no. 10: 1613. https://doi.org/10.3390/nano13101613
APA StyleConceição, C. J. F., Moe, E., Ribeiro, P. A., & Raposo, M. (2023). Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization. Nanomaterials, 13(10), 1613. https://doi.org/10.3390/nano13101613