Sample Size Effects on Petrophysical Characterization and Fluid-to-Pore Accessibility of Natural Rocks
Abstract
:1. Introduction
2. Samples and Methods
2.1. Sample Collection and Preparation
2.2. X-ray Diffraction (XRD)
2.3. Petrographic Microscopy
2.4. Helium Expansion Pycnometry (HEP)
2.5. Water Immersion Porosimetry (WIP)
2.6. Mercury Intrusion Porosimetry (MIP)
2.7. (Ultra-) Small-Angle X-ray Scattering [(U)SAXS]
3. Results
3.1. Mineral Composition and Petrographic Observation of Thin Section Samples
3.2. Sample Size-Dependent Particle Density from HEP
3.3. WIP Analyses of Samples at the Centimeter Scale
3.4. Conformance Effect and MIP Results
3.5. (U)SAXS Analyses
4. Discussion
4.1. Influences of Crushing Process on Microfractures, Pores, and Framework Grains
4.2. Sample Size Effect on Pore/Pore-Throat Diameter and Its Implications
4.3. A Sample Size-Dependent Concept of Fluid-to-Pore Accessibility and Its Application to Laboratory Tests
4.4. Some Considerations of Representative Sample Size
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Q.; Ewing, R.P.; Dultz, S. Low pore connectivity in natural rock. J. Contam. Hydrol. 2012, 133, 76–83. [Google Scholar] [CrossRef]
- Siratovich, P.; Heap, M.; Villenueve, M.C.; Cole, J.W.; Reuschlé, T. Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand. Geotherm. Energy 2014, 2, 10. [Google Scholar] [CrossRef]
- Grima, M.A.; Miedema, S.A.; van de Ketterij, R.G.; Yenigül, N.B.; van Rhee, C. Effect of high hyperbaric pressure on rock cutting process. Eng. Geol. 2015, 196, 24–36. [Google Scholar] [CrossRef]
- Li, Z.; Elsworth, D. Controls of CO2-N2 gas flood ratios on enhanced shale gas recovery and CO2 sequestration. J. Pet. Sci. Eng. 2019, 179, 1037–1045. [Google Scholar] [CrossRef]
- Alcorn, Z.P.; Føyen, T.; Gauteplass, J.; Benali, B.; Soyke, A.; Fernø, M. Pore- and core-scale insights of nanoparticle-stabilized foam for CO2-enhanced oil recovery. Nanomaterials 2020, 10, 1917. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Q.; Larsen, C.; Zhao, C.; Sun, M.; Zhang, Y.; Zhang, T. Microfracture-pore structure characterization and water-rock interaction in three lithofacies of the Lower Eagle Ford Formation. Eng. Geol. 2021, 292, 106276. [Google Scholar] [CrossRef]
- Scheurer, C.; Hincapie, R.; Neubauer, E.; Metz, A.; Ness, D. Sorption of nanomaterials to sandstone rock. Nanomaterials 2022, 12, 200. [Google Scholar] [CrossRef]
- Hu, Q.H.; Ewing, R.P.; Rowe, H.D. Low nanopore connectivity limits gas production in Barnett Formation. J. Geophys. Res. Solid Earth 2015, 120, 8073–8087. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Q.; Zhao, C.; Yang, X.; Zhang, T.; Ilavsky, J.; Kuzmenko, I.; Ma, B.; Tachi, Y. Micro- to nano-scale areal heterogeneity in pore structure and mineral compositions of a sub-decimeter-sized Eagle Ford Shale. Int. J. Coal. Geol. 2022, 261, 104093. [Google Scholar] [CrossRef]
- Luffel, D.L.; Guidry, F.K. New core analysis methods for measuring reservoir rock properties of Devonian Shale. J. Pet. Technol. 1992, 44, 1184–1190. [Google Scholar] [CrossRef]
- Comisky, J.T.; Santiago, M.; McCollom, B.; Buddhala, A.; Newsham, K.E. Sample size effects on the application of mercury injection capillary pressure for determining the storage capacity of tight gas and oil shales. In Proceedings of the Canadian Unconventional Resources Conference, CSUG/SPE149432, Calgary, AB, Canada, 15–17 November 2011. [Google Scholar] [CrossRef]
- Hu, Q. Quantifying effective porosity of oil and gas reservoirs. In Proceedings of the 2018 International Conference and Exhibition, Cape Town, South Africa, 4–7 November 2018; AAPG Search and Discovery 2018, Article #70376, 5 Pages. Available online: https://www.searchanddiscovery.com/abstracts/html/2018/ice2018/abstracts/3003833.html (accessed on 13 May 2023).
- Luffel, D.L.; Hopkins, C.W.; Schettler, P.D. Matrix permeability measurement of gas productive shales. In Proceedings of the SPE Annual Technical Conference and Exhibition, SPE 26633, Houston, TX, USA, 3–6 October 1993. [Google Scholar] [CrossRef]
- Tinni, A.; Fathi, E.; Agarwal, R.; Sondergeld, C.; Akkutlu, Y.; Rai, C. Shale Permeability Measurements on plugs and crushed samples. In Proceedings of the SPE Canadian Unconventional Resources Conference, SPE 162235, Calgary, AB, Canada, 30 October–1 November 2012. [Google Scholar] [CrossRef]
- Heller, R.; Vermylen, J.; Zoback, M. Experimental investigation of matrix permeability of gas shales. AAPG Bull. 2014, 98, 975–995. [Google Scholar] [CrossRef]
- Peng, S.; Loucks, B. Permeability measurements in mudrocks using gas-expansion methods on plug and crushed-rock samples. Mar. Pet. Geol. 2016, 73, 299–310. [Google Scholar] [CrossRef]
- Achang, M.; Pashin, J.C.; Cui, X. The influence of particle size, microfractures, and pressure decay on measuring the permeability of crushed shale samples. Int. J. Coal. Geol. 2017, 183, 174–187. [Google Scholar] [CrossRef]
- Fisher, Q.; Lorinczi, P.; Grattoni, C.; Rybalcenko, K.; Crook, A.J.; Allshorn, S.; Burns, A.D.; Shafagh, I. Laboratory characterization of the porosity and permeability of gas shales using the crushed shale method: Insights from experiments and numerical modelling. Mar. Pet. Geol. 2017, 86, 95–110. [Google Scholar] [CrossRef]
- Davudov, D.; Moghanloo, R.G. Scale-dependent pore and hydraulic connectivity of shale matrix. Energy Fuels 2018, 32, 99–106. [Google Scholar] [CrossRef]
- Shu, Y.; Xu, Y.; Jiang, S.; Zhang, L.; Zhao, X.; Pan, Z.; Blach, T.P.; Sun, L.; Bai, L.; Hu, Q.; et al. Effect of particle size on pore characteristics of organic-rich shales: Investigations from small-angle neutron scattering (SANS) and fluid intrusion techniques. Energies 2021, 13, 6049. [Google Scholar] [CrossRef]
- Gao, Z.; Duan, L.; Hu, Q.; Xiong, S.; Zhang, T. Effect of shale sample particle size on pore structure obtained from high pressure mercury intrusion porosimetry. Geofluids 2021, 2021, 5581541. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, L.; Mastalerz, M.; Schimmelmann, A. The effect of analytical particle size on gas adsorption porosimetry of shale. Int. J. Coal. Geol. 2015, 138, 103–112. [Google Scholar] [CrossRef]
- Han, H.; Cao, Y.; Chen, S.; Lu, J.; Huang, C.; Zhu, H.; Zhan, P.; Gao, Y. Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin, China. Fuel 2016, 186, 750–757. [Google Scholar] [CrossRef]
- Lutynski, M.; González, M. Characteristics of carbon dioxide sorption in coal and gas shale—The effect of particle size. J. Nat. Gas Sci. Eng. 2016, 28, 558–565. [Google Scholar] [CrossRef]
- Mastalerz, M.; Hampton, L.; Drobniak, A.; Loope, H. Significance of analytical particle size in low-pressure N2 and CO2 adsorption of coal and shale. Int. J. Coal. Geol. 2017, 178, 122–131. [Google Scholar] [CrossRef]
- Liu, K.; Zakharova, N.; Adeyilola, A.; Zeng, L. Experimental study on the pore shape damage of shale samples during the crushing process. Energy Fuels 2021, 35, 2183–2191. [Google Scholar] [CrossRef]
- Klaja, J.; Łykowska, G.; Przelaskowska, A. Helium porosity measurements for rocks from unconventional reservoirs performed on crushed samples. Nafta-Gaz 2015, 71, 856–863. [Google Scholar] [CrossRef]
- Gaus, G.; Kalmykov, A.; Krooss, B.M.; Fink, R. Experimental investigation of the dependence of accessible porosity and methane sorption capacity of carbonaceous shales on particle size. Geofluids 2020, 2020, 2382153. [Google Scholar] [CrossRef]
- Handwerger, D.A.; Suarez-Rivera, R.; Vaughn, K.I.; Keller, J.F. Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples. In Proceedings of the SPE Annual Technical Conference and Exhibition, SPE147456, Denver, CO, USA, 30 October–2 November 2011. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, W.; Hu, Q.H.; Xu, H.; Zhang, T.; Zhang, C. Porosity measurement of granular rock samples by modified bulk density analyses with particle envelopment. Mar. Pet. Geol. 2021, 133, 105273. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a method of determining the distribution of pore size in a porous material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef]
- Ilavsky, J.; Zhang, F.; Andrews, R.N.; Kuzmenko, I.; Jemian, P.R.; Levine, L.E.; Allen, A.J. Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source. J. Appl. Crystallogr. 2018, 51, 867–882. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Q.; Ning, X.; Ilavsky, J.; Kuzmenko, I.; Tom, T. Spatial heterogeneity analyses of pore structure and mineral composition of Barnett Shale using X-ray scattering techniques. Mar. Pet. Geol. 2021, 134, 105354. [Google Scholar] [CrossRef]
- Ilavsky, J.; Jemian, P. Irena, tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 2009, 42, 347–353. [Google Scholar] [CrossRef]
- Shafer, J.; Neasham, J. Mercury porosimetry protocol for rapid determination of petrophysical and reservoir quality properties. In International Symposium of the Society of Core Analysts; SPE SCA2000-21; Society for Core Analysts: Fredericton, NB, Canada, 2000; pp. 18–22. [Google Scholar]
- Webb, P.A. Volume and Density Determinations for Particle Technologists; Micromeritics Instrument Corp.: Norcross, GA, USA, 2001; 23p. [Google Scholar]
- Sigal, R.F. A methodology for blank and conformance corrections for high pressure mercury porosimetry. Meas. Sci. Technol. 2009, 20, 045108. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, T.; Loucks, R.G.; Shultz, J. Application of mercury injection capillary pressure to mudrocks: Conformance and compression corrections. Mar. Pet. Geol. 2017, 88, 30–40. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R. Natural microfractures in unconventional shale-oil and shale gas systems: Real, hypothetical, or wrongly defined? GCAGS J. 2016, 5, 64–72. [Google Scholar]
- Tinni, A.; Sondergeld, C.; Rai, C. Particle size effect on porosity and specific surface area measurements of shale. In Proceedings of the International Symposium of the Society of Core Analysis, SCA2014-013, Avignon, France, 8–11 September 2014. [Google Scholar]
- Zhang, R.; Liu, S.; Bahadur, J.; Elsworth, D.; Melnichenko, Y.; He, L.; Wang, Y. Estimation and modeling of coal pore accessibility using small angle neutron scattering. Fuel 2015, 161, 323–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Q.; Barber, T.J.; Bleuel, M.; Anovitz, L.M.; Littrell, K. Quantifying fluid-wettable effective pore space in the Utica and Bakken Oil Shale formation. Geophys. Res. Lett. 2020, 47, e2020GL087896. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Q.; Long, S.; Zhao, J.; Peng, N.; Wang, H.; Lin, X.; Sun, M. Mineral-controlled nm-μm-scale pore structure of saline lacustrine shale in Qianjiang Depression, Jianghan Basin, China. Mar. Pet. Geol. 2019, 99, 347–354. [Google Scholar] [CrossRef]
- Dehghanpour, H.; Lan, Q.; Saeed, Y.; Fei, H.; Qi, Z. Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures. Energy Fuels 2013, 27, 3039–3049. [Google Scholar] [CrossRef]
- Yuan, L.; Dehghanpour, H.; Ceccanese, A. Imbibition oil recovery from the Montney core plugs: The interplay of wettability, osmotic potential and microemulsion effects. In Proceedings of the SPE Western Regional Meeting, SPE-195362-MS, San Jose, CA, USA, 23–26 April 2019. [Google Scholar] [CrossRef]
- Kelly, S.; El-Sobky, H.; Torres-Verdín, C.; Balhoff, M.T. Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 2015, 95, 302–316. [Google Scholar] [CrossRef]
- Giesche, H. Mercury porosimetry: A general (practical) overview. Part. Part. Syst. Charact. 2006, 23, 19. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.B.; Mastalerz, M.; Bustin, R.M.; Blach, T.P. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Zhang, Y.; Barber, T.J.; Hu, Q.; Bleuel, M.; El-Sobky, H. Complementary neutron scattering, mercury intrusion and SEM imaging approaches to micro- and nano-pore structure characterization of tight rocks: A case study of the Bakken Shale. Int. J. Coal. Geol. 2019, 212, 103252. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, L.; Hu, Q.; Pan, Z.; Yu, B.; Sun, L.; Bai, L.; Fu, H.; Zhang, Y.; Zhang, C.; et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM. Mar. Pet. Geol. 2020, 112, 104101. [Google Scholar] [CrossRef]
- Tokunaga, T.K.; Wan, J. Surface-zone flow along unsaturated rock fractures. Water Resour. 2001, 37, 287–296. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, H.; Zuo, Y.; Peng, G.; Guang, Y. Relationship between the size of the samples and the interpretation of the mercury intrusion results of an artificial sandstone. Materials 2019, 11, 201. [Google Scholar] [CrossRef] [PubMed]
Methods | Sample Sizes | ||||||||
---|---|---|---|---|---|---|---|---|---|
Intact Samples | Crushed Samples | ||||||||
3 cm Cubed | 2 cm Cubed | 1 cm Cubed | 0.8 mm Thick Wafer | 1.70–2.38 mm | 500–841 μm | 177–500 μm | 75–177 μm | <75 μm | |
XRD | √ | ||||||||
Petrography | √ | √ | √ | √ | |||||
HEP | √ | √ | √ | √ | √ | ||||
WIP | √ | √ | √ | ||||||
MIP | √ | √ | √ | √ | √ | ||||
(U)SAXS | √ | √ | √ | √ |
Sample ID | Age | Lithology | Mineral Composition (wt.%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Orthoclase | Albite | Anorthite | Calcite | Ankerite | Kutnohorite | Pyrite | Magnetite | Goethite | Fluorapatite | Ulvospine | Clays | |||
Atco Chalk | Late Cretaceous | Limestone | 1.0 | 99.0 | |||||||||||
Eagle Ford B Calcareous Shale | Late Cretaceous | Shale | 15.5 | 79.6 | 1.2 | 0.8 | 2.9 | ||||||||
Eagle Ford A Dolomitic Ash Bed | Late Cretaceous | Dolomite | 9.8 | 0.7 | 44.8 | 36.5 | 0.2 | 2.0 | 6.0 | ||||||
Buda Limestone | Late Cretaceous | Limestone | 1.3 | 98.7 | |||||||||||
Salmon Peak Limestone | Early Cretaceous | Limestone | 0.2 | 99.8 | |||||||||||
Woodbine Sandstone | Late Cretaceous | Sandstone | 91.8 | 8.2 | |||||||||||
Paluxy Sandstone | Early Cretaceous | Sandstone | 42.5 | 57.5 | |||||||||||
Haynesville Shale | Late Jurassic | Shale | 25.1 | 2.7 | 1.0 | 48.3 | 5.6 | 1.5 | 15.8 | ||||||
Barnett Shale | Mississippian | Shale | 40.7 | 1.0 | 1.3 | 2.2 | 13.1 | 41.7 |
Sample | WIP Porosity (%) | Conformance Correction | MIP Porosity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
3 cm Cubed | 2 cm Cubed | 1 cm Cubed | 1 cm Cubed | 1.70–2.38 mm | 500–841 μm | 177–500 μm | 75–177 μm | ||
Atco Chalk | 7.92 | 7.38 ± 0.33 | 8.50 ± 0.60 | Before | 7.73 | 8.02 | 7.28 | 9.79 | 35.69 |
After | 7.64 | 6.40 | 7.46 | 9.14 | |||||
Eagle Ford B Calcareous Shale | 4.27 ± 0.11 | 1.64 ± 0.16 | 1.37 ± 0.38 | Before | 2.05 | 3.25 | 6.51 | 8.99 | 33.01 |
After | 2.85 | 5.43 | 7.54 | 9.67 | |||||
Eagle ford A Dolomitic Ash Bed | 15.10 ± 0.32 | 15.49 ± 0.06 | 15.92 ± 0.19 | Before | 15.39 | 16.04 | 15.92 | 15.43 | 39.04 |
After | 15.72 | 15.09 | 13.46 | 13.00 | |||||
Buda Limestone | 3.53 ± 0.10 | 3.468 ± 0.30 | 3.70 ± 0.26 | Before | 3.17 | 2.89 | 4.27 | 6.50 | 40.60 |
After | 2.56 | 3.23 | 3.72 | 6.77 | |||||
Salmon Peak Limestone | 7.16 ± 0.16 | 7.74 ± 1.00 | 8.21 ± 0.91 | Before | 7.20 | 8.00 | 9.28 | 12.62 | 25.38 |
After | 7.47 | 8.06 | 8.59 | 5.79 | |||||
Woodbine Sandstone | 32.75 ± 0.29 | 32.33 ± 0.24 | 31.68 ± 0.17 | Before | 28.22 | 22.97 | 22.25 | 10.05 | 35.28 |
After | 1.66 | ||||||||
Paluxy Sandstone | 11.08 ± 0.09 | 10.81 ± 0.70 | 10.97 ± 1.00 | Before | 10.01 | 9.27 | 9.07 | 11.73 | 34.98 |
After | 8.92 | 7.73 | 8.44 | 11.30 | |||||
Haynesville Shale | 4.73 | 5.36 ± 0.82 | 5.46 ± 0.48 | Before | 4.26 | 2.48 | 4.15 | 5.26 | 38.86 |
After | 2.17 | 2.84 | 2.27 | 7.06 | |||||
Barnett Shale | 14.38 ± 0.53 | 16.38 ± 0.53 | 17.2 ± 0.44 | Before | 13.14 | 13.82 | 13.81 | 13.86 | 47.23 |
After | 12.39 | 12.61 | 9.81 | 12.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Hu, Q.; Zhao, C.; Wang, Y.; Zhang, T.; Ilavsky, J.; Sun, M.; Zhang, L.; Shu, Y. Sample Size Effects on Petrophysical Characterization and Fluid-to-Pore Accessibility of Natural Rocks. Nanomaterials 2023, 13, 1651. https://doi.org/10.3390/nano13101651
Wang Q, Hu Q, Zhao C, Wang Y, Zhang T, Ilavsky J, Sun M, Zhang L, Shu Y. Sample Size Effects on Petrophysical Characterization and Fluid-to-Pore Accessibility of Natural Rocks. Nanomaterials. 2023; 13(10):1651. https://doi.org/10.3390/nano13101651
Chicago/Turabian StyleWang, Qiming, Qinhong Hu, Chen Zhao, Yang Wang, Tao Zhang, Jan Ilavsky, Mengdi Sun, Linhao Zhang, and Yi Shu. 2023. "Sample Size Effects on Petrophysical Characterization and Fluid-to-Pore Accessibility of Natural Rocks" Nanomaterials 13, no. 10: 1651. https://doi.org/10.3390/nano13101651
APA StyleWang, Q., Hu, Q., Zhao, C., Wang, Y., Zhang, T., Ilavsky, J., Sun, M., Zhang, L., & Shu, Y. (2023). Sample Size Effects on Petrophysical Characterization and Fluid-to-Pore Accessibility of Natural Rocks. Nanomaterials, 13(10), 1651. https://doi.org/10.3390/nano13101651