Structure–Property Relationship of Macrocycles in Organic Photoelectric Devices: A Comprehensive Review
Abstract
:1. Introduction
2. Application of Macrocycles in OFET Device
2.1. p-Type Macrocycle Semiconductors
2.1.1. Phthalocyanine
Material | LUMO (eV) | HOMO (eV) | µ (cm2 V−1 s−1) | Ion/Ioff | VT/V | Ref. |
---|---|---|---|---|---|---|
2a | 1.3 ± 0.02 | 3.08 × 105 | 2 | [25] | ||
2b | 0.75 | 7.34 × 103 | [39] | |||
2b/p-6P | 0.32 | [38] | ||||
2d | 0.2 | 103 | −0.8 | [35] | ||
3 | 1.12 × 10−2 | [36] | ||||
4a | 9.77 × 10−2 | 103 | 11 | [37] | ||
4b | 6.12 × 10−4 | 102 | 57 | [37] | ||
4c | 2.32 × 10−2 | 104 | 35 | [37] | ||
5a | 26.8 | 104–107 | [42] | |||
5b | 0.3–1.0 | 106–108 | [43] | |||
5b/p-6p | 1.23 | 106 | [44] | |||
5b/F2-P4T | 1.2–2.6 | 106–107 | −1 to −5 | [45] | ||
6/2a | 4.08 | 3.76 × 106 | −2.66 | [47] | ||
8a | −5.38 | −6.45 | 1.7 × 10−3 | [50] | ||
8b | −5.27 | −6.43 | 6.4 × 10−4 | [50] | ||
9a | 10−4 | [51] | ||||
9b | 10−4 | [51] | ||||
10 | −3.41 | −4.63 | 0.1 | [52] | ||
11a | 0.6 | [53] | ||||
11b | 0.4 | [53] | ||||
11c | 0.24 | [53] | ||||
12 | 0.11 | −8 | [54] | |||
13 | 18 | 103–104 | [55] | |||
14a | 5.2 × 10−3 | −2.5 | [56] | |||
14b | 6.7 × 10−3 | −4.0 | [56] | |||
14c | 4.4 × 10−2 | −27.6 | [56] |
2.1.2. Porphyrin
2.1.3. Thiophene-Containing Macrocycles
2.1.4. Triarylamine-, Carbazole-, and Acene-Containing Macrocycles
Material | LUMO (eV) | HOMO (eV) | µ (cm2 V−1 s−1) | Ion/Ioff | VT/V | Ref. |
---|---|---|---|---|---|---|
30 | 1.5 × 10−2 | 107 | [87] | |||
31a | −5.09 | 5.3 × 10−3 | 106 | −4.7 | [89] | |
31b | −5.22 | 1.3 × 10−2 | 107 | −22.0 | [89] | |
32a | −2.22 | −5.17 | 2.71 × 10−4 | −13.1 | [91] | |
32b | −2.40 | −5.18 | 2.78 × 10−4 | −12.8 | [91] | |
32c | −2.21 | −5.19 | 1.37 × 10−4 | −13.9 | [91] | |
33 | 3.6 × 10−3 | 105 | [92] | |||
34 | 0.05 | 104 | [93] | |||
35 | −2.31 | −5.32 | 7.0 × 10−4 | [94] | ||
36 | −2.42 | −5.54 | 2.4 × 10−4 | [94] | ||
37 | −1.92 | −5.45 | 4.4 × 10−5 | [94] |
2.2. n-Type Macrocycle Semiconductors
2.2.1. Phthalocyanine
Material | LUMO (eV) | HOMO (eV) | µ (cm2 V−1 s−1) | Ion/Ioff | VT/V | Ref. |
---|---|---|---|---|---|---|
38a | 1.1 | [98] | ||||
38b | 0.8 | [98] | ||||
38d | 0.12 ± 0.01 | 1 × 105 | +(7 to 25) | [101] | ||
39a | (2.0 ± 0.1) × 10−3 | [102] | ||||
39b | 0.44 | 1 × 103 | 37 | [103] | ||
40 | 0.3 | 106 | [104] | |||
41 | (0.02–0.7) × 10−2 | 100–104 | 24–53 | [105] | ||
42a | 9.25 × 10−4 | 102–103 | 23.0 ± 1.3 | [106] | ||
42b | 3.28 × 10−4 | 102–103 | 17.5 ± 2.7 | [106] | ||
42c | 5.56 × 10−5 | 101–102 | 15.0 ± 0.6 | [106] | ||
42d | −4.1 | −5.77 | 0.27 ± 0.10 | 23.5 ± 0.4 | [110] | |
42e | −3.9 | −5.4 | 1.3 ± 0.70 | 103−104 | 24 ± 1.7 | [112] |
42f | −3.9 | −5.4 | 8.8 ± 3.8 | 105 | 24 ± 4.2 | [112] |
42g | −3.9 | −5.4 | 0.90 ± 0.69 | 103−104 | 8.1 ± 5.0 | [112] |
42h | −3.9 | −5.5 | 0.52 ± 0.43 | 102−103 | 4.8 ± 3.1 | [112] |
43a | 0.17 | 105 | 11.4 ± 2.1 | [114] | ||
43b | 0.061 | 105 | 3.3 ± 3.2 | [114] |
2.2.2. Perylene Imide-Containing Macrocycles
3. Application of Macrocycles in OLED Devices
3.1. Phthalocyanine
Material | HOMO/LUMO (eV) | Von/DV (V) | CE (cd A−1) | PE (lm W−1) | EQE (%) | Ref. |
---|---|---|---|---|---|---|
2a | −5.2/−3.5 | 3.5/ | 3.57 | 1.32 | [129] | |
42d | −5.7/−3.8 | 7.5/ | 0.15 | [138] | ||
42m | −5.5/−3.6 | 4.7/ | 1.4 | [138] | ||
42r | −5.8/−3.9 | 7.0/ | <0.1 | <0.1 | [136] | |
49a | −5.1/−3.4 | 4.6/ | 4.08 | 1.26 | [129] | |
49b | −5.3/−3.5 | 3.3/ | 4.74 | 2.81 | [135] | |
50a | −5.1/−3.4 | 4.0/ | 3.24 | 1.36 | [131] | |
50b | −5.2/−3.4 | 4.1/ | 3.26 | 1.18 | [131] | |
51 | −5.52/−3.81 | [132] | ||||
52 | −5.7/−4.0 | 2.8/ | 1.4 | 1.4 | 0.32 | [136] |
53a | −5.8/−3.9 | 4.2/ | <0.1 | <0.1 | [136] | |
53b | −5.8/−3.7 | 9.0/ | <0.1 | <0.1 | [136] | |
54a | −5.39/−3.64 | 9.9/ | 0.64 | [137] | ||
54b | −5.4/−3.66 | 7.4/ | 1.4 | [137] |
3.2. Porphyrin
Material | HOMO/LUMO (eV) | Von/DV(V) | CE (cd A−1) | PE (lm W−1) | EQE (%) | Ref. |
---|---|---|---|---|---|---|
55a | 3/ | 2.5 | [140] | |||
55b | 13.5/ | 19.7 × 10−3 | [141] | |||
55c | 15.5/ | 19.3 × 10−3 | [141] | |||
55d | 14.5/ | 18.9 × 10−3 | [141] | |||
55e | 18.0/ | 16.8 × 10−3 | [141] | |||
55f | 18.8/ | 15.2 × 10−3 | [141] | |||
55g | 19.2/ | 11.5 × 10−3 | [141] | |||
56a | 1 | [143] | ||||
56b | 4.2 | [143] | ||||
56c | 7.3 | [143] | ||||
57 | 8.2 | [143] | ||||
58 | −4.9/−2.5 | 8.5 ± 0.3 | [145] | |||
59 | 2.2/ | 3.8 | [146] | |||
61 | 2.3/ | 9.2 ± 0.6 | [147] | |||
62 | 2.2/ | 7.8 ± 0.5 | [147] | |||
63 | 2.2/ | 6.8 ± 0.4 | [147] | |||
64 | 2.5/ | 5.0 ± 0.3 | [147] | |||
65 | 2.5/ | 3.2 ± 0.3 | [147] | |||
66 | 8/ | 2.8 | [149] | |||
67 | 8/ | 1.5 | [149] | |||
68a | 3.8 | [150] | ||||
68b | −4.75/−2.97 | 5.6/ | 1.9 | [150] | ||
69a | −5.2/−3.2 | 8/ | [151] | |||
69b | −5.1/−3 | 4/ | [151] | |||
69c | −5.2/−3 | 4/ | [151] | |||
70 | 10/ | 5 | [153] |
3.3. Cyclophane
3.4. Fluorene-Containing Macrocycles
3.5. Cyclo-Meta-Phenylenes
3.6. Arylamine- and Triazine-Containing Macrocycles
4. Application of Macrocycles in OPV Devices
4.1. Electron Donor Macrocycles
4.1.1. Porphyrin
4.1.2. Phthalocynine
4.2. Electron Acceptor Macrocycles
4.2.1. Porphyrin
4.2.2. Phthalocynine
4.2.3. Other Macrocycles
Material | Function | HOMO/LUMO (eV) | Jsc (mA cm−2) | Voc (V) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|
94a | donor | −5.65/−3.88 | 12.82 ± 0.12 | 0.94 ± 0.003 | 67.0 ± 1.28 | 8.07 ± 0.03 (8.09) | [181] |
94b | donor | −5.71/−3.86 | 11.18 ± 0.02 | 0.98 ± 0.004 | 66.1 ± 0.53 | 7.26 ± 0.07 (7.31) | [181] |
94c | donor | −5.55/−3.90 | 7.03 ± 0.18 | 0.67 ± 0.01 | 51.2 ± 1.01 | 2.42 ± 0.07 (2.51) | [181] |
95 | donor | 14.91 | 0.866 | 66.5 | 8.59 | [183] | |
16a | donor | 10.5 | 0.75 | 0.65 | 5.2 | [184] | |
2i | donor | 11 | 0.47 | 2.6 | [185] | ||
96 | acceptor | 11.5 | 0.56 | 0.56 | 4.03 | [186] | |
97 | acceptor | 2.43 | 0.79 | 0.29 | 0.57 | [187] | |
41f | acceptor | −4.6 | 0.66 | 0.42 | 1.3 | [189] | |
44 | acceptor | −5.39/−3.87 | 9.2 ± 0.3 | 0.84 ± 0.01 | 0.44 ± 0.01 | 3.3 ± 0.2 (3.5) | [95] |
45 | acceptor | −5.69/−3.90 | 9.7 ± 0.2 | 0.83 ± 0.01 | 0.44 ± 0.01 | 3.5 ± 0.1 (3.6) | [95] |
98 | acceptor | −4.80/−3.19 | 1.65 | 0.67 | 0.44 | 0.49 | [86] |
5. Application of Macrocycles in DSSC Devices
5.1. Porphyrin
5.2. Phthalocynine
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Girvin, Z.C.; Andrews, M.K.; Liu, X.; Gellman, S.H. Foldamer-templated catalysis of macrocycle formation. Science 2019, 366, 1528–1531. [Google Scholar] [CrossRef]
- Haseena, S.; Ravva, M.K. Theoretical studies on donor–acceptor based macrocycles for organic solar cell applications. Sci. Rep. 2022, 12, 15043. [Google Scholar] [CrossRef]
- Xie, J.; Bogliotti, N. Synthesis and applications of carbohydrate-derived macrocyclic compounds. Chem. Rev. 2014, 114, 7678–7739. [Google Scholar] [CrossRef]
- Martí-Centelles, V.; Pandey, M.D.; Burguete, M.I.; Luis, S.V. Macrocyclization reactions: The Importance of conformational, configurational, and template-induced preorganization. Chem. Rev. 2015, 115, 8736–8834. [Google Scholar] [CrossRef]
- Wang, X.; Jia, F.; Yang, L.-P.; Zhou, H.; Jiang, W. Conformationally adaptive macrocycles with flipping aromatic sidewalls. Chem. Soc. Rev. 2020, 49, 4176–4188. [Google Scholar] [CrossRef]
- Wei, Y.; Yan, Y.; Li, X.; Xie, L.; Huang, W. Covalent nanosynthesis of fluorene-based macrocycles and organic nanogrids. Org. Biomol. Chem. 2022, 20, 73–97. [Google Scholar] [CrossRef]
- Thiessen, A.; Würsch, D.; Jester, S.-S.; Aggarwal, A.V.; Idelson, A.; Bange, S.; Vogelsang, J.; Höger, S.; Lupton, J.M. Exciton Localization in Extended π-Electron Systems: Comparison of Linear and Cyclic Structures. J. Phys. Chem. B 2015, 119, 9949–9958. [Google Scholar] [CrossRef]
- Sato, S.; Unemoto, A.; Ikeda, T.; Orimo, S.-I.; Isobe, H. Carbon-Rich Active Materials with Macrocyclic Nanochannels for High-Capacity Negative Electrodes in All-Solid-State Lithium Rechargeable Batteries. Small 2016, 12, 3381–3387. [Google Scholar] [CrossRef]
- Leonhardt, E.J.; Jasti, R. Emerging applications of carbon nanohoops. Nat. Rev. Chem. 2019, 3, 672–686. [Google Scholar] [CrossRef]
- Ball, M.; Zhang, B.; Zhong, Y.; Fowler, B.; Xiao, S.; Ng, F.; Steigerwald, M.; Nuckolls, C. Conjugated macrocycles in organic electronics. Acc. Chem. Res. 2019, 52, 1068–1078. [Google Scholar] [CrossRef]
- Roy, I.; David, A.H.G.; Das, P.J.; Pe, D.J.; Stoddart, J.F. Fluorescent cyclophanes and their applications. Chem. Soc. Rev. 2022, 51, 5557–5605. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Kesters, J.; Verstappen, P.; Kelchtermans, M.; Lutsen, L.; Vanderzande, D.; Maes, W. Porphyrin-based bulk heterojunction organic photovoltaics: The rise of the colors of life. Adv. Energy Mater. 2015, 5, 1500218. [Google Scholar] [CrossRef]
- Gao, K.; Kan, Y.; Chen, X.; Liu, F.; Kan, B.; Nian, L.; Wan, X.; Chen, Y.; Peng, X.; Russell, T.P.; et al. Low-bandgap porphyrins for highly efficient organic solar cells: Materials, morphology, and applications. Adv. Mater. 2020, 32, 1906129. [Google Scholar] [CrossRef]
- Martínez-Díaz, M.V.; de la Torre, G.; Torres, T. Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem. Commun. 2010, 46, 7090–7108. [Google Scholar] [CrossRef]
- Li, L.L.; Diau, E.W.G. Porphyrin-sensitized solar cells. Chem. Soc. Rev. 2013, 42, 291–304. [Google Scholar] [CrossRef]
- Zeng, K.; Tong, Z.; Ma, L.; Zhu, W.-H.; Wu, W.; Xie, Y. Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy Environ. Sci. 2020, 13, 1617–1657. [Google Scholar] [CrossRef]
- Boldrini, C.L.; Manfredi, N.; Montini, T.; Baldini, L.; Abbotto, A.; Fornasiero, P. Calix[4]arene-based molecular photosensitizers for sustainable hydrogen production and other solar applications. Curr. Opin. Green Sustain. Chem. 2021, 32, 100534. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Y.; Zhu, D. π-Conjugated molecules with fused rings for organic field-effect transistors: Design, synthesis and applications. Chem. Soc. Rev. 2010, 39, 1489–1502. [Google Scholar] [CrossRef]
- Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef]
- Di, C.-A.; Yu, G.; Liu, Y.; Zhu, D. High-Performance organic field-effect transistors: Molecular design, device fabrication, and physical properties. J. Phys. Chem. B 2007, 111, 14083–14096. [Google Scholar] [CrossRef]
- Bao, Z.; Lovinger, A.J.; Dodabalapur, A. Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 1996, 69, 3066–3068. [Google Scholar] [CrossRef]
- Bao, Z.; Lovinger, A.J.; Dodabalapur, A. Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors. Adv. Mater. 1997, 9, 42–44. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, Y.; Yu, G.; Zhu, D. Influence of the substrate temperature during deposition on film characteristics of copper phthalocyanine and field-effect transistor properties. Appl. Phys. A 2003, 77, 367–370. [Google Scholar] [CrossRef]
- Vijayan, L.; Thomas, A.; Kumar, K.S.; Jinesh, K. Low power organic field effect transistors with copper phthalocyanine as active layer. J. Sci. Adv. Mater. Devices 2018, 3, 348–352. [Google Scholar] [CrossRef]
- Bronshtein, I.; Leitus, G.; Rybtchinski, B. In situ growth of high quality crystals for organic electronics. ACS Appl. Electron. Mater. 2020, 2, 790–795. [Google Scholar] [CrossRef]
- Hong, F.; Guo, X.; Zhang, H.; Wei, B.; Zhang, J.; Wang, J. Preparation of highly oriented copper phthalocyanine film by molecular templating effects for organic field-effect transistor. Org. Electron. 2009, 10, 1097–1101. [Google Scholar] [CrossRef]
- Qian, C.; Sun, J.; Zhang, L.; Xie, H.; Huang, H.; Yang, J.; Gao, Y. Air-stable and high-performance organic field-effect transistors based on ordered, large-domain phthalocyanine copper thin film. Synth. Met. 2015, 210, 336–341. [Google Scholar] [CrossRef]
- Zeis, R.; Siegrist, T.; Kloc, C. Single-crystal field-effect transistors based on copper phthalocyanine. Appl. Phys. Lett. 2005, 86, 022103. [Google Scholar] [CrossRef]
- Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.-M.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv. Mater. 2006, 18, 65–68. [Google Scholar] [CrossRef]
- Tang, Q.; Li, H.; Song, Y.; Xu, W.; Hu, W.; Jiang, L.; Liu, Y.; Wang, X.; Zhu, D. In situ patterning of organic single-crystalline nanoribbons on a sio2 surface for the fabrication of various architectures and high-quality transistors. Adv. Mater. 2006, 18, 3010–3014. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, L.; Tong, Y.; Li, H.; Liu, Y.; Wang, Z.; Hu, W.; Liu, Y.; Zhu, D. Micrometer- and nanometer-sized organic single-crystalline transistors. Adv. Mater. 2008, 20, 2947–2951. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Xu, Y.; Shenggao, L.; Shuqin, Z.; Daoben, Z. The application of Langmuir–Blodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors. Synth. Met. 1999, 104, 19–26. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Wang, H.; Yan, D. Organic thin-film transistors in sandwich configuration. Appl. Phys. Lett. 2004, 84, 142–144. [Google Scholar] [CrossRef]
- Chaidogiannos, G.; Petraki, F.; Glezos, N.; Kennou, S.; Nešpůrek, S. Soluble substituted phthalocyanines for OFET applications. Mater. Sci. Eng. B 2008, 152, 105–108. [Google Scholar] [CrossRef]
- Nar, I.; Atsay, A.; Karaoğlu, H.P.; Altındal, A.; Hamuryudan, E. π-Extended hexadeca-substituted cobalt phthalocyanine as an active layer for organic field-effect transistors. Dalton Trans. 2018, 47, 15017–15023. [Google Scholar] [CrossRef]
- Özdemir, M.; Altinisik, S.; Köksoy, B.; Canımkurbey, B.; Koyuncu, S.; Durmuş, M.; Bulut, M.; Yalçın, B. New metallophthalocyanines including benzylphenoxy groups and investigation of their organic-field effect transistor (OFET) features. Dyes Pigments 2022, 200, 110125. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, F.; Yang, J.; Geng, Y.; Yan, D. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Adv. Mater. 2007, 19, 2168–2171. [Google Scholar] [CrossRef]
- Gou, H.; Wang, G.; Tong, Y.; Tang, Q.; Liu, Y. Electronic and optoelectronic properties of zinc phthalocyanine single-crystal nanobelt transistors. Org. Electron. 2016, 30, 158–164. [Google Scholar] [CrossRef]
- Nar, I.; Atsay, A.; Altındal, A.; Hamuryudan, E. o-Carborane, Ferrocene, and Phthalocyanine Triad for High-Mobility Organic Field-Effect Transistors. Inorg. Chem. 2018, 57, 2199–2208. [Google Scholar] [CrossRef]
- Li, L.; Tang, Q.; Li, H.; Yang, X.; Hu, W.; Song, Y.; Shuai, Z.; Xu, W.; Liu, Y.; Zhu, D. An ultra closely π-stacked organic semiconductor for high performance field-effect transistors. Adv. Mater. 2007, 19, 2613–2617. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, L.; Cheng, C.; Zhen, Y.; Zhao, G.; Geng, H.; Yi, Y.; Li, L.; Dong, H.; Shuai, Z.; et al. The impact of interlayer electronic coupling on charge transport in organic semiconductors: A case study on titanylphthalocyanine single crystals. Angew. Chem. 2016, 128, 5292–5295. [Google Scholar] [CrossRef]
- Li, L.; Tang, Q.; Li, H.; Hu, W. Molecular orientation and interface compatibility for high performance organic thin film transistor based on vanadyl phthalocyanine. J. Phys. Chem. B 2008, 112, 10405–10410. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, D.; Yang, J.; Yu, B.; Geng, Y.; Yan, D. High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors. Appl. Phys. Lett. 2007, 90, 253510. [Google Scholar] [CrossRef]
- Pan, F.; Tian, H.; Qian, X.; Huang, L.; Geng, Y.; Yan, D. High performance vanadyl phthalocyanine thin-film transistors based on fluorobenzene end-capped quaterthiophene as the inducing layer. Org. Electron. 2011, 12, 1358–1363. [Google Scholar] [CrossRef]
- Qiao, X.; Huang, L.; Chen, W.; Chang, H.; Zhang, J.; Yan, D. High performance lead phthalocyanine films and its effect on the field-effect transistors. Org. Electron. 2012, 13, 2406–2411. [Google Scholar] [CrossRef]
- Pan, F.; Qian, X.-R.; Huang, L.-Z.; Wang, H.-B.; Yan, D.-H. Significant improvement of organic thin-film transistor mobility utilizing an organic heterojunction buffer layer. Chin. Phys. Lett. 2011, 28, 078504. [Google Scholar] [CrossRef]
- Dong, S.; Tian, H.; Song, D.; Yang, Z.; Yan, D.; Geng, Y.; Wang, F. The first liquid crystalline phthalocyanine derivative capable of edge-on alignment for solution processed organic thin-film transistors. Chem. Commun. 2009, 21, 3086–3088. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.-H.; Wang, L.J.; Wang, H.-B.; Yan, D.-H. Electrical Response of Flexible Vanadyl-Phthalocyanine Thin-Film Transistors under Bending Conditions. Chin. Phys. Lett. 2010, 27, 028502. [Google Scholar] [CrossRef]
- Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G.; Liu, Y. Thin-Film transistors based on Langmuir−Blodgett films of heteroleptic bis(phthalocyaninato) rare earth complexes. Langmuir 2005, 21, 6527–6531. [Google Scholar] [CrossRef]
- Katoh, K.; Yoshida, Y.; Yamashita, M.; Miyasaka, H.; Breedlove, B.K.; Kajiwara, T.; Takaishi, S.; Ishikawa, N.; Isshiki, H.; Zhang, Y.F.; et al. Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J. Am. Chem. Soc. 2009, 131, 9967–9976. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Jia, Q.; Wu, F.; Chen, Y. Flexible, ambipolar organic field-effect transistors based on the solution-processed films of octanaphthoxy-substituted bis(phthalocyaninato) europium. Dyes Pigments 2015, 115, 67–72. [Google Scholar] [CrossRef]
- Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes. J. Am. Chem. Soc. 2005, 127, 15700–15701. [Google Scholar] [CrossRef]
- Lu, G.; Kong, X.; Ma, P.; Wang, K.; Chen, Y.; Jiang, J. Amphiphilic (Phthalocyaninato) (Porphyrinato) Europium Triple-Decker Nanoribbons with Air-Stable Ambipolar OFET Performance. ACS Appl. Mater. Interfaces 2016, 8, 6174–6182. [Google Scholar] [CrossRef]
- Lu, G.; Kong, X.; Sun, J.; Zhang, L.; Chen, Y.; Jiang, J. Solution-processed single crystal microsheets of a novel dimeric phthalocyanine-involved triple-decker for high-performance ambipolar organic field effect transistors. Chem. Commun. 2017, 53, 12754–12757. [Google Scholar] [CrossRef]
- Başak, A.S.; Özkaya, A.R.; Altındal, A.; Salih, B.; Şengüld, A.; Bekaroğlu, Ö. Synthesis, characterization, oxygen electrocatalysis and OFET properties of novel mono-and ball-type metallophthalocyanines. Dalton Trans. 2014, 43, 5858–5870. [Google Scholar] [CrossRef]
- Yazıcı, A.; Avcı, A.; Altındal, A.; Salih, B.; Bekaroğlu, Ö. Synthesis, characterization and OFET property of four diaminouracil bridged novel ball-type phthalocyanines. J. Porphyr. Phthalocyanines 2018, 22, 149–156. [Google Scholar] [CrossRef]
- Noh, Y.Y.; Kim, J.J.; Yoshida, Y.; Yase, K. Effect of molecular orientation of epitaxially grown platinum (II) octaethyl porphyrin films on the performance of field-effect transistors. Adv. Mater. 2003, 15, 699–702. [Google Scholar] [CrossRef]
- Minari, T.; Seto, M.; Nemoto, T.; Isoda, S.; Tsukagoshi, K.; Aoyagi, Y. Molecular-packing-enhanced charge transport in organic field-effect transistors based on semiconducting porphyrin crystals. Appl. Phys. Lett. 2007, 91, 123501. [Google Scholar] [CrossRef]
- Aramaki, S.; Sakai, Y.; Ono, N. Solution-processible organic semiconductor for transistor applications: Tetrabenzoporphyrin. Appl. Phys. Lett. 2004, 84, 2085–2087. [Google Scholar] [CrossRef]
- Shea, P.B.; Kanicki, J.; Ono, N. Field-effect mobility of polycrystalline tetrabenzoporphyrin thin-film transistors. J. Appl. Phys. 2005, 98, 014503. [Google Scholar] [CrossRef]
- Shea, P.B.; Johnson, A.R.; Ono, N.; Kanicki, J. Electrical properties of staggered electrode, solution-processed, polycrystalline tetrabenzoporphyrin field-effect transistors. IEEE Trans. Electron. Dev. 2005, 52, 1497–1503. [Google Scholar] [CrossRef]
- Shea, P.B.; Kanicki, J.; Pattison, L.R.; Petroff, P.; Kawano, M.; Yamada, H.; Ono, N. Solution-processed nickel tetrabenzoporphyrin thin-film transistors. J. Appl. Phys. 2006, 100, 034502. [Google Scholar] [CrossRef]
- Shea, P.B.; Pattison, L.R.; Kawano, M.; Chen, C.; Chen, J.; Petroff, P.; Martin, D.; Yamada, H.; Ono, N.; Kanicki, J. Solution-processed polycrystalline copper tetrabenzoporphyrin thin-film transistors. Synth. Met. 2007, 157, 190–197. [Google Scholar] [CrossRef]
- Checcoli, P.; Conte, G.; Salvatori, S.; Paolesse, R.; Bolognesi, A.; Berliocchi, M.; Brunetti, F.; D’amico, A.; Di Carlo, A.; Lugli, P. Tetra-phenyl porphyrin based thin film transistors. Synth. Met. 2003, 138, 261–266. [Google Scholar] [CrossRef]
- Ma, P.; Chen, Y.; Cai, X.; Wang, H.; Zhang, Y.; Gao, Y.; Jiang, J. Organic field effect transistors based on 5,10,15,20-tetrakis(4-pentyloxyphenyl)porphyrin single crystal. Synth. Met. 2010, 160, 510–515. [Google Scholar] [CrossRef]
- Hoang, M.H.; Kim, Y.; Kim, S.-J.; Choi, D.H.; Lee, S.J. High-Performance Single-Crystal-Based Organic Field-Effect Transistors from π-Extended Porphyrin Derivatives. Chem.—Eur. J. 2011, 17, 7772–7776. [Google Scholar] [CrossRef]
- Hoang, M.H.; Kim, Y.; Kim, M.; Kim, K.H.; Lee, T.W.; Nguyen, D.N.; Kim, S.-J.; Lee, K.; Lee, S.J.; Choi, D.H. Unusually High-Performing Organic Field-Effect Transistors Based on π-Extended Semiconducting Porphyrins. Adv. Mater. 2012, 24, 5363–5367. [Google Scholar] [CrossRef]
- Hoang, M.H.; Choi, D.H.; Lee, S.J. Organic field-effect transistors based on semiconducting porphyrin single crystals. Synth. Met. 2012, 162, 419–425. [Google Scholar] [CrossRef]
- Choi, S.; Chae, S.H.; Hoang, M.H.; Kim, K.H.; Huh, J.A.; Kim, Y.; Kim, S.-J.; Choi, D.H.; Lee, S.J. An Unsymmetrically π-Extended Porphyrin-Based Single-Crystal Field-Effect Transistor and Its Anisotropic Carrier-Transport Behavior. Chem.—Eur. J. 2013, 19, 2247–2251. [Google Scholar] [CrossRef]
- Choi, S.; Chae, S.H.; Shin, J.; Kim, Y.; Kim, S.-J.; Choi, D.H.; Lee, S.J. Dramatic enhancement of carrier mobility via effective secondary structural arrangement resulting from the substituents in a porphyrin transistor. Chem. Commun. 2013, 49, 3994–3996. [Google Scholar] [CrossRef]
- Park, W.J.; Chae, S.H.; Shin, J.; Choi, D.H.; Lee, S.J. Semiconducting π-extended porphyrin dimer and its characteristics in OFET and OPVC. Synth. Met. 2015, 205, 206–211. [Google Scholar] [CrossRef]
- Chae, S.H.; Kim, H.; Kim, J.Y.; Kim, S.J.; Kim, Y.; Lee, S.J. Preparation of new semiconducting tetraphenylethynyl porphyrin derivatives and their high-performing organic field-effect transistors. Synth. Met. 2016, 220, 20–24. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Sun, Y.; Liu, J.; Dong, Y.; Li, H.; Li, C.; Yi, Y.; Jiang, L. Case study of metal coordination to the charge transport and thermal stability of porphyrin-based field-effect transistors. ACS Mater. Lett. 2022, 4, 548–553. [Google Scholar] [CrossRef]
- Kurlekar, K.; Anjali, A.; Sonalin, S.; Imran, P.M.; Nagarajan, S. Solution-Processable meso-Triarylamine Functionalized Porphyrins with a High Mobility and ON/OFF Ratio in Bottom-Gated Organic Field-Effect Transistors. ACS Appl. Electron. Mater. 2020, 2, 3402–3408. [Google Scholar] [CrossRef]
- Xu, H.; Yu, G.; Xu, W.; Xu, Y.; Cui, G.; Zhang, D.; Liu, Y.; Zhu, D. High-Performance field-effect transistors based on Langmuir−Blodgett films of Cyclo[8]pyrrole. Langmuir 2005, 21, 5391–5395. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Yu, G.; Xu, W.; Song, Y.; Zhang, D.; Liu, Y.; Zhu, D. Organic field-effect transistors based on Langmuir-Blodgett films of an extended porphyrin analogue–Cyclo[6]pyrrole. Chem. Phys. Lett. 2005, 414, 369–373. [Google Scholar] [CrossRef]
- Zhao, T.; Wei, Z.; Song, Y.; Xu, W.; Hu, W.; Zhu, D. Tetrathia[22]annulene[2,1,2,1]: Physical properties, crystal structure and application in organic field-effect transistors. J. Mater. Chem. 2007, 17, 4377–4381. [Google Scholar] [CrossRef]
- Videlot, C.; Ackermann, J.; Blanchard, P.; Raimundo, J.-M.; Frère, P.; Allain, M.; de Bettignies, R.; Levillain, E.; Roncali, J. Field-Effect Transistors Based on Oligothienylenevinylenes: From Solution π-Dimers to High-Mobility Organic Semiconductors. Adv. Mater. 2003, 15, 306–310. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, A.; Zhang, J.; Xu, W.; Zhu, D. New sulfur bridged neutral annulenes. Structure, physical properties and applications in organic field-effect transistors. Chem. Commun. 2011, 47, 905–907. [Google Scholar] [CrossRef]
- Singh, K.; Virk, T.S.; Zhang, J.; Xu, W.; Zhu, D. Neutral tetrathia[22]annulene[2.1.2.1] based field-effect transistors: Improved on/off ratio defies ring puckering. Chem. Commun. 2012, 48, 12174–12176. [Google Scholar] [CrossRef]
- Liu, H.; Qin, Y.; Huang, D.; Xu, W.; Zhu, D. Novel functional sulfur-bridged neutral annulene: Structure, physical properties and progress on field-effect performance. Dyes Pigments 2014, 107, 21–28. [Google Scholar] [CrossRef]
- Singh, K.; Virk, T.S.; Zhang, J.; Xu, W.; Zhu, D. Oxygen bridged neutral annulenes: A novel class of materials for organic field-effect transistors. Chem. Commun. 2011, 48, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Shirahata, K.; Takashika, M.; Hirabayashi, K.; Hasegawa, M.; Otani, H.; Yamamoto, K.; Ie, Y.; Shimizu, T.; Aoyagi, S.; Iyoda, M. Reduction of Ethynylenes to Vinylenes in a Macrocyclic π-Extended Thiophene Skeleton Under McMurry Coupling Conditions. J. Org. Chem. 2020, 86, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.M.; Jagadamma, L.K.; Cameron, J.; Wiles, A.A.; Wilson, C.; Skabara, P.J.; Samuel, I.D.W.; Cooke, G. New thiophene-based conjugated macrocycles for optoelectronic applications. J. Mater. Chem. C 2021, 9, 16257–16271. [Google Scholar] [CrossRef]
- Li, C.; Wang, C.; Guo, Y.; Jin, Y.; Yao, N.; Wu, Y.; Zhang, F.; Li, W. A diketopyrrolopyrrole-based macrocyclic conjugated molecule for organic electronics. J. Mater. Chem. C 2019, 7, 3802–3810. [Google Scholar] [CrossRef]
- Song, Y.; Di, C.; Yang, X.; Li, S.; Xu, W.; Liu, Y.; Yang, L.; Shuai, Z.; Zhang, D.; Zhu, D. A cyclic triphenylamine dimer for organic field-effect transistors with high performance. J. Am. Chem. Soc. 2006, 128, 15940–15941. [Google Scholar] [CrossRef]
- Li, R.; Li, H.; Song, Y.; Tang, Q.; Liu, Y.; Xu, W.; Hu, W.; Zhu, D. Micrometer- and Nanometer-Sized, Single-Crystalline Ribbons of a Cyclic Triphenylamine Dimer and Their Application in Organic Transistors. Adv. Mater. 2009, 21, 1605–1608. [Google Scholar] [CrossRef]
- Song, Y.; Di, C.-A.; Wei, Z.; Zhao, T.; Xu, W.; Liu, Y.; Zhang, D.; Zhu, D. Synthesis, Characterization, and Field-Effect Transistor Properties of Carbazolenevinylene Oligomers: From Linear to Cyclic Architectures. Chem.—Eur. J. 2008, 14, 4731–4740. [Google Scholar] [CrossRef]
- Lucas, F.; Sicard, L.; Jeannin, O.; Rault-Berthelot, J.; Jacques, E.; Quinton, C.; Poriel, C. [4]Cyclo-N-ethyl-2,7-carbazole: Synthesis, Structural, Electronic and Charge Transport Properties. Chem.—Eur. J. 2019, 25, 7740–7748. [Google Scholar] [CrossRef]
- Lucas, F.; McIntosh, N.; Jacques, E.; Lebreton, C.; Heinrich, B.; Donnio, B.; Jeannin, O.; Rault-Berthelot, J.; Quinton, C.; Cornil, J.; et al. [4]Cyclo-N-alkyl-2,7-carbazoles: Influence of the alkyl chain length on the structural, electronic, and charge transport properties. J. Am. Chem. Soc. 2021, 143, 8804–8820. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.-S.; Qin, Y.; Sun, Y.; Wang, C.; Xu, W.; Zhu, D. Single-bundle nanofiber based OFETs fabricated from a cyclic conjugated organogelator with high field-effect mobility and high photoresponsivity. Chem. Commun. 2015, 51, 12182–12184. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Tang, Q.; Chan, H.S.; Xu, J.; Lo, K.Y.; Miao, Q. Transistors from a conjugated macrocycle molecule: Field and photo effects. Chem. Commun. 2008, 4324–4326. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xu, X.; Zheng, X.; Ming, T.; Miao, Q. Conjugated macrocycles of phenanthrene: A new segment of [6,6]-carbon nanotube and solution-processed organic semiconductors. Chem. Sci. 2013, 4, 4525–4531. [Google Scholar] [CrossRef]
- Ball, M.; Zhong, Y.; Fowler, B.; Zhang, B.; Li, P.; Etkin, G.; Paley, D.W.; Decatur, J.; Dalsania, A.K.; Li, H.; et al. Macrocyclization in the design of organic n-type electronic materials. J. Am. Chem. Soc. 2016, 138, 12861–12867. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Lovinger, A.J.; Brown, J. New air-stable n-channel organic thin film transistors. J. Am. Chem. Soc. 1998, 120, 207–208. [Google Scholar] [CrossRef]
- Tang, Q.; Li, H.; Liu, Y.; Hu, W. High-Performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. J. Am. Chem. Soc. 2006, 128, 14634–14639. [Google Scholar] [CrossRef]
- Jiang, H.; Ye, J.; Hu, P.; Wei, F.; Du, K.; Wang, N.; Ba, T.; Feng, S.; Kloc, C. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors and Structure-Property Relationships. Sci. Rep. 2014, 4, 7573. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Tan, K.J.; Zhang, K.K.; Chen, X.; Kloc, C. Ultrathin organic single crystals: Fabrication, field-effect transistors and thickness dependence of charge carrier mobility. J. Mater. Chem. 2011, 21, 4771–4773. [Google Scholar] [CrossRef]
- Tang, M.L.; Oh, J.H.; Reichardt, A.D.; Bao, Z. Chlorination: A general route toward electron transport in organic semiconductors. J. Am. Chem. Soc. 2009, 131, 3733–3740. [Google Scholar] [CrossRef]
- Ling, M.M.; Bao, Z.; Erk, P. Air-stable n-channel copper hexachlorophthalocyanine for field-effect transistors. Appl. Phys. Lett. 2006, 89, 163516. [Google Scholar] [CrossRef]
- Basova, T.V.; Kiselev, V.G.; Klyamer, D.D.; Hassan, A. Thin films of chlorosubstituted vanadyl phthalocyanine: Charge transport properties and optical spectroscopy study of structure. J. Mater. Sci. Mater. Electron. 2018, 29, 16791–16798. [Google Scholar] [CrossRef]
- Song, D.; Zhu, F.; Yu, B.; Huang, L.; Geng, Y.; Yan, D. Tin (IV) phthalocyanine oxide: An air-stable semiconductor with high electron mobility. Appl. Phys. Lett. 2008, 92, 143303. [Google Scholar] [CrossRef]
- Song, D.; Zhu, F.; Yu, B.; Huang, L.; Geng, Y.; Yan, D. Phthalocyanato Tin (IV) Dichloride: An Air-Stable, High-Performance, n-Type Organic Semiconductor with a High Field-Effect Electron Mobility. Adv. Mater. 2008, 20, 2142–2144. [Google Scholar] [CrossRef]
- Cranston, R.R.; Vebber, M.C.; Rice, N.A.; Tonnelé, C.; Castet, F.; Muccioli, L.; Brusso, J.L.; Lessard, B.H. N-Type Solution-Processed Tin versus Silicon Phthalocyanines: A Comparison of Performance in Organic Thin-Film Transistors and in Organic Photovoltaics. ACS Appl. Electron. Mater. 2021, 3, 1873–1885. [Google Scholar] [CrossRef]
- Melville, O.A.; Grant, T.M.; Lessard, B.H. Silicon phthalocyanines as N-type semiconductors in organic thin film transistors. J. Mater. Chem. C 2018, 6, 5482–5488. [Google Scholar] [CrossRef]
- Grant, T.M.; Rice, N.A.; Muccioli, L.; Castet, F.; Lessard, B.H. Solution-Processable n-type tin phthalocyanines in organic thin film transistors and as ternary additives in organic photovoltaics. ACS Appl. Electron. Mater. 2019, 1, 494–504. [Google Scholar] [CrossRef]
- Yutronkie, N.J.; Grant, T.M.; Melville, O.A.; Lessard, B.H.; Brusso, J.L. Old molecule, new chemistry: Exploring silicon phthalocyanines as emerging N-type materials in organic electronics. Materials 2019, 12, 1334. [Google Scholar] [CrossRef]
- King, B.; Melville, O.A.; Rice, N.A.; Kashani, S.; Tonnelé, C.; Raboui, H.; Swaraj, S.; Grant, T.M.; McAfee, T.; Bender, T.P.; et al. Silicon Phthalocyanines for n-Type Organic Thin-Film Transistors: Development of Structure–Property Relationships. ACS Appl. Electron. Mater. 2020, 3, 325–336. [Google Scholar] [CrossRef]
- Melville, O.A.; Grant, T.M.; Lochhead, K.; King, B.; Ambrose, R.; Rice, N.A.; Boileau, N.T.; Peltekoff, A.J.; Tousignant, M.N.; Hill, I.G.; et al. Contact engineering using manganese, chromium, and bathocuproine in group 14 phthalocyanine organic thin-film transistors. ACS Appl. Electron. Mater. 2020, 2, 1313–1322. [Google Scholar] [CrossRef]
- Cranston, R.R.; Vebber, M.C.; Berbigier, J.F.; Rice, N.A.; Tonnelé, C.; Comeau, Z.J.; Boileau, N.T.; Brusso, J.L.; Shuhendler, A.J.; Castet, F.; et al. Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors. ACS Appl. Mater. Interfaces 2020, 13, 1008–1020. [Google Scholar] [CrossRef] [PubMed]
- King, B.; Daszczynski, A.J.; Rice, N.A.; Peltekoff, A.J.; Yutronkie, N.J.; Lessard, B.H.; Brusso, J.L. Cyanophenoxy-Substituted Silicon Phthalocyanines for Low Threshold Voltage n-Type Organic Thin-Film Transistors. ACS Appl. Electron. Mater. 2021, 3, 2212–2223. [Google Scholar] [CrossRef]
- Melville, O.A.; Grant, T.M.; Mirka, B.; Boileau, N.T.; Park, J.; Lessard, B.H. Ambipolarity and Air Stability of Silicon Phthalocyanine Organic Thin-Film Transistors. Adv. Electron. Mater. 2019, 5, 1900087. [Google Scholar] [CrossRef]
- Yutronkie, N.J.; King, B.; Melville, O.A.; Lessard, B.H.; Brusso, J.L. Attaining air stability in high performing n-type phthalocyanine based organic semiconductors. J. Mater. Chem. C 2021, 9, 10119–10126. [Google Scholar] [CrossRef]
- Tatemichi, S.; Ichikawa, M.; Koyama, T.; Taniguchi, Y. High mobility n-type thin-film transistors based on N,N′-ditridecyl perylene diimide with thermal treatments. Appl. Phys. Lett. 2006, 89, 112108. [Google Scholar] [CrossRef]
- Molinari, A.S.; Alves, H.; Chen, Z.; Facchetti, A.; Morpurgo, A.F. High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J. Am. Chem. Soc. 2009, 131, 2462–2463. [Google Scholar] [CrossRef]
- Ling, M.-M.; Erk, P.; Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z. Air-stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Adv. Mater. 2007, 19, 1123–1127. [Google Scholar] [CrossRef]
- Zhang, B.; Sánchez, R.H.; Zhong, Y.; Ball, M.; Terban, M.W.; Paley, D.; Billinge, S.J.L.; Ng, F.; Steigerwald, M.L.; Nuckolls, C. Hollow organic capsules assemble into cellular semiconductors. Nat. Commun. 2018, 9, 1957. [Google Scholar] [CrossRef]
- Ball, M.L.; Zhang, B.; Xu, Q.; Paley, D.W.; Ritter, V.C.; Ng, F.; Steigerwald, M.L.; Nuckolls, C. Influence of molecular conformation on electron transport in giant, conjugated macrocycles. J. Am. Chem. Soc. 2018, 140, 10135–10139. [Google Scholar] [CrossRef]
- Ball, M.L.; Zhang, B.; Fu, T.; Schattman, A.M.; Paley, D.W.; Ng, F.; Venkataraman, L.; Nuckolls, C.; Steigerwald, M.L. The importance of intramolecular conductivity in three dimensional molecular solids. Chem. Sci. 2019, 10, 9339–9344. [Google Scholar] [CrossRef]
- Barendt, T.A.; Ball, M.L.; Xu, Q.; Zhang, B.; Fowler, B.; Schattman, A.; Ritter, V.C.; Steigerwald, M.L.; Nuckolls, C. Supramolecular assemblies for electronic materials. Chem.—Eur. J. 2020, 26, 3744–3748. [Google Scholar] [CrossRef]
- Chen, S.; Deng, L.; Xie, J.; Peng, L.; Xie, L.; Fan, Q.; Huang, W. Recent developments in top-emitting organic light-emitting diodes. Adv. Mater. 2010, 22, 5227–5239. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 2014, 26, 7931–7958. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, D.; Liu, W.; Wang, Y.; Li, Z.; Jin, D.; Wang, J.; Zhang, X.; Huang, L.; Wang, S.; et al. Crystallization-Enhanced Stability by Effectively Suppressing Photooxidation Defect for Optoelectronic Devices. Adv. Mater. Interfaces 2022, 9, 2200194. [Google Scholar] [CrossRef]
- Yan, X.; Peng, H.; Xiang, Y.; Wang, J.; Yu, L.; Tao, Y.; Li, H.; Huang, W.; Chen, R. Recent advances on host–guest material systems toward organic room temperature phosphorescence. Small 2022, 18, 2104073. [Google Scholar] [CrossRef] [PubMed]
- Hohnholz, D.; Steinbrecher, S.; Hanack, M. Applications of phthalocyanines in organic light emitting devices. J. Mol. Struct. 2000, 521, 231–237. [Google Scholar] [CrossRef]
- Masui, H.M.H.; Takeuchi, M.T.M. Effects of crystallinity of hole transport layers on organic electroluminescent device performance. Jpn. J. Appl. Phys. 1991, 30, L864. [Google Scholar] [CrossRef]
- Van Slyke, S.A.; Chen, C.H.; Tang, C.W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 1996, 69, 2160–2162. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Xu, J.-J.; Lin, Y.-W.; Chen, Q.; Shan, H.-Q.; Yan, Y.; Roy, V.A.L.; Xu, Z.-X. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes. AIP Adv. 2015, 5, 107205. [Google Scholar] [CrossRef]
- So, F.; Kondakov, D. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv. Mater. 2010, 22, 3762–3777. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Chen, Q.; Lin, Y.; Shan, H.; Roy, V.A.L.; Xu, Z. Enhanced lifetime of organic light-emitting diodes using soluble tetraalkyl-substituted copper phthalocyanines as anode buffer layers. J. Mater. Chem. C 2016, 4, 7377–7382. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Fan, Z.-Q.; Yu, S.-K.; Jiang, W.-H.; Wang, X.; Du, G.-T.; Chang, Y.-C.; Ma, C.-Y. 1.1 μ m near-infrared electrophosphorescence from organic light-emitting diodes based on copper phthalocyanine. Appl. Phys. Lett. 2006, 88, 213505. [Google Scholar] [CrossRef]
- Yan, F.; Li, W.L.; Chu, B.; Li, T.L.; Su, W.M.; Su, Z.S.; Zhu, J.Z.; Yang, D.F.; Zhang, G.; Bi, D.F.; et al. Sensitized electrophosphorescence of infrared emission diode based on copper phthalocyanine by an ytterbium complex. Appl. Phys. Lett. 2007, 91, 203512. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, C.; Yu, S.; Ye, K.; Sheng, R.; Xia, D.; Ma, C.; Wang, X.; Chang, Y.; Du, G. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metal-free phthalocyanine. Opt. Mater. 2009, 31, 889–894. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, J.; Feng, Y.; Shan, H.; Fang, G.; Xu, Z.-X. Green solvent processed tetramethyl-substituted aluminum phthalocyanine thin films as anode buffer layers in organic light-emitting diodes. J. Mater. Chem. C 2018, 6, 11471–11478. [Google Scholar] [CrossRef]
- Plint, T.; Lessard, B.H.; Bender, T.P. Assessing the potential of group 13 and 14 metal/metalloid phthalocyanines as hole transport layers in organic light emitting diodes. J. Appl. Phys. 2016, 119, 145502. [Google Scholar] [CrossRef]
- Zysman-Colman, E.; Ghosh, S.S.; Xie, G.; Varghese, S.; Chowdhury, M.; Sharma, N.; Cordes, D.B.; Slawin, A.M.Z.; Samuel, I.D.W. Solution-processable silicon phthalocyanines in electroluminescent and photovoltaic devices. ACS Appl. Mater. Interfaces 2016, 8, 9247–9253. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.J.; Plint, T.; Jones, S.T.E.; Lessard, B.H.; Credgington, D.; Bender, T.P.; Greenham, N.C. Silicon phthalocyanines as dopant red emitters for efficient solution processed OLEDs. J. Mater. Chem. C 2017, 5, 12688–12698. [Google Scholar] [CrossRef]
- Virgili, T.; Lidzey, D.G.; Bradley, D.D.C. Efficient energy transfer from blue to red in tetraphenylporphyrin-doped poly(9,9-dioctylfluorene) light-emitting diodes. Adv. Mater. 2000, 12, 58–62. [Google Scholar] [CrossRef]
- Barker, C.A.; Zeng, X.; Bettington, S.; Batsanov, A.S.; Bryce, M.R.; Beeby, A. Porphyrin, Phthalocyanine and Porphyrazine Derivatives with Multifluorenyl Substituents as Efficient Deep-Red Emitters. Chem.—Eur. J. 2007, 13, 6710–6717. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Wang, J.; Reng, T.-G.; Li, C.-Y.; Guo, D.-C.; Guo, C.-C. Effect of substituent groups of porphyrins on the electroluminescent properties of porphyrin-doped OLED devices. J. Phys. Org. Chem. 2010, 23, 190–194. [Google Scholar] [CrossRef]
- Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151–154. [Google Scholar] [CrossRef]
- Ikai, M.; Ishikawa, F.; Aratani, N.; Osuka, A.; Kawabata, S.; Kajioka, T.; Takeuchi, H.; Fujikawa, H.; Taga, Y. Enhancement of External Quantum Efficiency of Red Phosphorescent Organic Light-Emitting Devices with Facially Encumbered and Bulky PtII Porphyrin Complexes. Adv. Funct. Mater. 2006, 16, 515–519. [Google Scholar] [CrossRef]
- Borek, C.; Hanson, K.; Djurovich, P.I.; Thompson, M.E.; Aznavour, K.; Bau, R.; Sun, Y.; Forrest, S.R.; Brooks, J.; Michalski, L.; et al. Highly Efficient, Near-Infrared Electrophosphorescence from a Pt–Metalloporphyrin Complex. Angew. Chem. Int. Ed. 2007, 46, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Borek, C.; Hanson, K.; Djurovich, P.I.; Thompson, M.E.; Brooks, J.; Brown, J.J.; Forrest, S.R. Photophysics of Pt-porphyrin electrophosphorescent devices emitting in the near infrared. Appl. Phys. Lett. 2007, 90, 213503. [Google Scholar] [CrossRef]
- Sommer, J.R.; Farley, R.T.; Graham, K.R.; Yang, Y.; Reynolds, J.R.; Xue, J.; Schanze, K.S. Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from (tetraphenyltetranaphtho[2,3]porphyrin)platinum(II). ACS Appl. Mater. Interfaces 2009, 1, 274–278. [Google Scholar] [CrossRef]
- Graham, K.R.; Yang, Y.; Sommer, J.R.; Shelton, A.H.; Schanze, K.S.; Xue, J.; Reynolds, J.R. Extended conjugation platinum(II) porphyrins for use in near-infrared emitting organic light emitting diodes. Chem. Mater. 2011, 23, 5305–5312. [Google Scholar] [CrossRef]
- Fenwick, O.; Sprafke, J.K.; Binas, J.; Kondratuk, D.V.; Di Stasio, F.; Anderson, H.L.; Cacialli, F. Linear and cyclic porphyrin hexamers as near-infrared emitters in organic light-emitting diodes. Nano Lett. 2011, 11, 2451–2456. [Google Scholar] [CrossRef]
- Huang, L.; Park, C.D.; Fleetham, T.; Li, J. Platinum (II) azatetrabenzoporphyrins for near-infrared organic light emitting diodes. Appl. Phys. Lett. 2016, 109, 233302. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Zhu, Z.-Q.; Huang, L.; Li, J. Stable and Efficient Near-Infrared Organic Light-Emitting Diodes Employing a Platinum (II) Porphyrin Complex. ACS Appl. Mater. Interfaces 2021, 13, 60261–60268. [Google Scholar] [CrossRef]
- De Amorim Lima, N.M.; Avila, H.J.C.; Marchiori, C.F.D.N.; Sampaio, S.G.; Mota, J.P.F.; Ribeiro, V.G.P.; da Silva Clemente, C.; Mele, G.; Cremona, M.; Mazzetto, S.E. Light-emitting porphyrin derivative obtained from a subproduct of the cashew nut shell liquid: A promising material for OLED applications. Materials 2019, 12, 1063. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, T.; Nguyen, C.; Lu, Z.-H.; Wang, N.; Wu, W.; Li, Q.; Wang, S. Highly efficient deep-blue electrophosphorescent Pt(II) compounds with non-distorted flat geometry: Tetradentate versus macrocyclic chelate ligands. Adv. Funct. Mater. 2016, 27, 1604318. [Google Scholar] [CrossRef]
- Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence. Adv. Mater. 2009, 21, 4802–4806. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-Q.; Yang, G.; Cheng, J.B.; Lu, Z.-Y.; Xie, M.-G. Synthesis of novel light emitting calix[4]arene derivatives and their luminescent properties. Mater. Chem. Phys. 2007, 102, 214–218. [Google Scholar] [CrossRef]
- Peng, Q.; Zou, J.; Zeng, G.; Wen, Z.; Zheng, W. Stable blue-emitting molecular material derived from calix[4]arene and pyrazoline: Synthesis, optical and electrochemical properties. Synth. Met. 2009, 159, 1944–1949. [Google Scholar] [CrossRef]
- Chan, K.L.; Lim, J.P.F.; Yang, X.; Dodabalapur, A.; Jabbour, G.E.; Sellinger, A. High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold. Chem. Commun. 2012, 48, 5106–5108. [Google Scholar] [CrossRef]
- Sharma, V.S.; Sharma, A.S.; Agarwal, N.K.; Shah, P.A.; Shrivastav, P.S. Correction: Self-assembled blue-light emitting materials for their liquid crystalline and OLED applications: From a simple molecular design to supramolecular materials. Mol. Syst. Des. Eng. 2021, 6, 493. [Google Scholar] [CrossRef]
- Yu, D.; Peng, T.; Zhang, H.; Bi, H.; Zhang, J.; Wang, Y. Basket-shaped quinacridone cyclophanes: Synthesis, solid-state structures, and properties. New J. Chem. 2010, 34, 2213–2219. [Google Scholar] [CrossRef]
- Li, S.; Liu, K.; Feng, X.-C.; Li, Z.-X.; Zhang, Z.-Y.; Wang, B.; Li, M.; Bai, Y.-L.; Cui, L.; Li, C. Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle. Nat. Commun. 2022, 13, 2850. [Google Scholar] [CrossRef]
- Nakanishi, W.; Hitosugi, S.; Piskareva, A.; Shimada, Y.; Taka, H.; Kita, H.; Isobe, H. Disilanyl double-pillared bisanthracene: A bipolar carrier transport material for organic light-emitting diode devices. Angew. Chem. Int. Ed. 2010, 49, 7239–7242. [Google Scholar] [CrossRef]
- Nakanishi, W.; Shimada, Y.; Taka, H.; Kita, H.; Isobe, H. Synthesis of disilanyl double-pillared bisdibenzofuran with a high triplet energy. Org. Lett. 2012, 14, 1636–1639. [Google Scholar] [CrossRef]
- Kong, Q.; Zhu, D.; Quan, Y.; Chen, Q.; Ding, J.; Lu, J.; Tao, Y. Multi-H shaped macrocyclic oligomers consisting of triphenylamine and oligofluorene: Synthesis and optoelectronic properties. Chem. Mater. 2007, 19, 3309–3318. [Google Scholar] [CrossRef]
- Fan, Z.; Li, N.; Quan, Y.; Chen, Q.; Ye, S.; Fan, Q.; Huang, W.; Xu, H. A solution-processable triphenylamine-fluorene host for exciplex based white phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2014, 2, 9754–9759. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, H.-R.; Fan, Z.-K.; Yin, G.; Chen, Q.-M.; Quan, Y.-W.; Li, S.-H.; Ye, S.-H. Macrospirocyclic oligomer based on triphenylamine and diphenylphosphine oxide as a bipolar host for efficient blue electrophosphorescent organic light-emitting diodes (OLEDs). Org. Lett. 2015, 17, 1413–1416. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Fan, Z.; Zhao, H.; Quan, Y.; Chen, Q.; Ye, S.; Li, S.; Fan, Q.; Huang, W. A bipolar macrospirocyclic oligomer based on triphenylamine and 4,5-diazafluorene as a solution-processable host for blue phosphorescent organic light-emitting diodes. Dyes Pigments 2016, 134, 348–357. [Google Scholar] [CrossRef]
- Li, N.; Fan, Z.; Fang, Y.; Li, L.; Quan, Y.; Chen, Q.; Ye, S.; Fan, Q.; Huang, W. A Macrospirocyclic Carbazole–Fluorene Oligomer as a Solution-Processable Matrix Host Material for Blue Phosphorescent Organic Light-Emitting Diodes with Low Turn-On Voltage and Efficiency Roll-Off. J. Phys. Chem. C 2017, 121, 8692–8702. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Lin, J.-Y.; Bo, Y.-F.; Xie, L.-H.; Yi, M.-D.; Zhang, X.-W.; Zhang, H.-M.; Loh, T.-P.; Huang, W. Synthesis and Crystal Structure of Highly Strained [4]Cyclofluorene: Green-Emitting Fluorophore. Org. Lett. 2016, 18, 172–175. [Google Scholar] [CrossRef]
- Staab, H.A.; Binnig, F. Synthese und eigenschaften von hexa-m-phenylen. Tetrahedron Lett. 1964, 5, 319–321. [Google Scholar] [CrossRef]
- Staab, H.A.; Binnig, F. Zur Konjugation in makrocyclischen Bindungssystemen, VII. Synthese und Eigenschaften von Hexa-m-phenylen und Octa-m-phenylen. Chem. Ber. 1967, 100, 293–305. [Google Scholar] [CrossRef]
- Xue, J.Y.; Ikemoto, K.; Takahashi, N.; Izumi, T.; Taka, H.; Kita, H.; Sato, S.; Isobe, H. Cyclo-meta-phenylene revisited: Nickel-mediated synthesis, molecular structures, and device applications. J. Org. Chem. 2014, 79, 9735–9739. [Google Scholar] [CrossRef]
- Yoshii, A.; Ikemoto, K.; Izumi, T.; Kita, H.; Taka, H.; Koretsune, T.; Arita, R.; Sato, S.; Isobe, H. Communication—Structural Modulation of Macrocyclic Materials for Charge Carrier Transport Layers in Organic Light-Emitting Devices. ECS J. Solid State Sci. Technol. 2017, 6, M3065–M3067. [Google Scholar] [CrossRef]
- Xue, J.Y.; Izumi, T.; Yoshii, A.; Ikemoto, K.; Koretsune, T.; Akashi, R.; Arita, R.; Taka, H.; Kita, H.; Sato, S.; et al. Aromatic hydrocarbon macrocycles for highly efficient organic light-emitting devices with single-layer architectures. Chem. Sci. 2016, 7, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, K.; Yoshii, A.; Izumi, T.; Taka, H.; Kita, H.; Xue, J.Y.; Kobayashi, R.; Sato, S.; Isobe, H. Modular synthesis of aromatic hydrocarbon macrocycles for simplified, single-layer organic light-emitting devices. J. Org. Chem. 2016, 81, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, A.; Ikemoto, K.; Izumi, T.; Taka, H.; Kita, H.; Sato, S.; Isobe, H. Periphery Design of Macrocyclic Materials for Organic Light-Emitting Devices with a Blue Phosphorescent Emitter. Org. Lett. 2019, 21, 2759–2762. [Google Scholar] [CrossRef] [PubMed]
- Izumi, S.; Higginbotham, H.F.; Nyga, A.; Stachelek, P.; Tohnai, N.; de Silva, P.; Data, P.; Takeda, Y.; Minakata, S. Thermally activated delayed fluorescent donor–acceptor–donor–acceptor π-conjugated macrocycle for organic light-emitting diodes. J. Am. Chem. Soc. 2020, 142, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
- Nyga, A.; Izumi, S.; Higginbotham, H.F.; Stachelek, P.; Pluczyk, S.; de Silva, P.; Minakata, S.; Takeda, Y.; Data, P. Electrochemical and Spectroelectrochemical Comparative Study of Macrocyclic Thermally Activated Delayed Fluorescent Compounds: Molecular Charge Stability vs OLED EQE Roll-Off. Asian J. Org. Chem. 2020, 9, 2153–2161. [Google Scholar] [CrossRef]
- Zhu, J.; Song, W.; Zhang, T.; Dong, Q.; Huang, J.; Zhou, H.; Su, J. Tetrabenzeneaza macrocycle: A novel platform for universal high-performance hole transport materials. Dyes Pigments 2021, 186, 108981. [Google Scholar] [CrossRef]
- Shikita, S.; Watanabe, G.; Kanouchi, D.; Saito, J.; Yasuda, T. Alternating Donor–Acceptor π-Conjugated Macrocycle Exhibiting Efficient Thermally Activated Delayed Fluorescence and Spontaneous Horizontal Molecular Orientation. Adv. Photonics Res. 2021, 2, 2100021. [Google Scholar] [CrossRef]
- Qin, D.-Y.; Zhang, M.; Hu, Y.-N.; Miao, Y.-X.; Ye, J.; Zheng, C.-J.; Zhang, J.; Xu, W.; Li, J.-C.; Wang, K.; et al. Intramolecular exciplex-typed molecule based on a stereoscopic V-shaped aromatic macrocycle and investigation of host-dependence of exciton utilization. Chem. Eng. J. 2022, 450, 138174. [Google Scholar] [CrossRef]
- Zhao, W.-L.; Wang, Y.-F.; Wan, S.-P.; Lu, H.-Y.; Li, M.; Chen, C.-F. Chiral thermally activated delayed fluorescence-active macrocycles displaying efficient circularly polarized electroluminescence. CCS Chem. 2022, 4, 3540–3548. [Google Scholar] [CrossRef]
- Gao, Y.; Piradi, V.; Zhu, X.; So, S.K. Palladium(II) and Platinum(II) Porphyrin Donors for Organic Photovoltaics. ACS Appl. Energy Mater. 2022, 5, 4916–4925. [Google Scholar] [CrossRef]
- Tang, W.; Xie, L.; Liu, Z.; Zeng, J.; Zhou, X.; Bi, P.; Tang, W.; Yan, L.; Wong, W.-K.; Zhu, X.; et al. Panchromatic terthiophenyl-benzodithiophene conjugated porphyrin donor for efficient organic solar cells. J. Mater. Chem. C 2022, 10, 1077–1083. [Google Scholar] [CrossRef]
- Vebber, M.C.; Rice, N.A.; Brusso, J.L.; Lessard, B.H. Thermodynamic Property–Performance Relationships in Silicon Phthalocyanine-Based Organic Photovoltaics. ACS Appl. Energy Mater. 2022, 5, 3426–3435. [Google Scholar] [CrossRef]
- Matsuo, Y.; Sato, Y.; Niinomi, T.; Soga, I.; Tanaka, H.; Nakamura, E. Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. J. Am. Chem. Soc. 2009, 131, 16048–16050. [Google Scholar] [CrossRef]
- Vasseur, K.; Rand, B.P.; Cheyns, D.; Froyen, L.; Heremans, P. Structural evolution of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells. Chem. Mater. 2010, 23, 886–895. [Google Scholar] [CrossRef]
- Wang, C.-L.; Zhang, W.-B.; Van Horn, R.M.; Tu, Y.; Gong, X.; Cheng, S.Z.D.; Sun, Y.; Tong, M.; Seo, J.; Hsu, B.B.Y.; et al. A porphyrin-fullerene dyad with a supramolecular “double-cable” structure as a novel electron acceptor for bulk heterojunction polymer solar cells. Adv. Mater. 2011, 23, 2951–2956. [Google Scholar] [CrossRef] [PubMed]
- Rawson, J.; Stuart, A.C.; You, W.; Therien, M.J. Tailoring Porphyrin-Based Electron Accepting Materials for Organic Photovoltaics. J. Am. Chem. Soc. 2014, 136, 17561–17569. [Google Scholar] [CrossRef]
- Vebber, M.C.; Rice, N.A.; Brusso, J.L.; Lessard, B.H. Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics. Sci. Rep. 2021, 11, 15347. [Google Scholar] [CrossRef]
- Sundaresan, C.; Vebber, M.C.; Brusso, J.L.; Tao, Y.; Alem, S.; Lessard, B.H. Low-Cost Silicon Phthalocyanine as a Non-Fullerene Acceptor for Flexible Large Area Organic Photovoltaics. ACS Omega 2023, 8, 1588–1596. [Google Scholar] [CrossRef]
- Bouwens, T.; Bakker, T.M.A.; Zhu, K.; Hasenack, J.; Dieperink, M.; Brouwer, A.M.; Huijser, A.; Mathew, S.; Reek, J.N.H. Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Nat. Chem. 2023, 15, 213–221. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Brogdon, P.; Cheema, H.; Delcamp, J.H. Near-infrared-absorbing metal-free organic, porphyrin, and phthalocyanine sensitizers for panchromatic dye-sensitized solar cells. ChemSusChem 2018, 11, 86–103. [Google Scholar] [CrossRef]
- Hasobe, T.; Imahori, H.; Kamat, P.V.; Ahn, T.K.; Kim, S.K.; Kim, D.; Fujimoto, A.; Hirakawa, T.; Fukuzumi, S. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 1216–1228. [Google Scholar] [CrossRef]
- Panda, M.K.; Ladomenou, K.; Coutsolelos, A.G. Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. Co-ord. Chem. Rev. 2012, 256, 2601–2627. [Google Scholar] [CrossRef]
- Imahori, H.; Umeyama, T.; Kurotobi, K.; Takano, Y. Self-assembling porphyrins and phthalocyanines for photoinduced charge separation and charge transport. Chem. Commun. 2012, 48, 4032–4045. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-H.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; et al. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 2009, 3, 3103–3109. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.; Wang, P. High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 2010, 4, 6032–6038. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.-M.; Zhou, H.; Eom, Y.K.; Kim, C.H.; Kim, H.K. 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno [3, 2-b] indole-based organic dyes with a promising porphyrin sensitizer. Adv. Energy Mater. 2020, 10, 2000124. [Google Scholar] [CrossRef]
- Urbani, M.; Ragoussi, M.-E.; Nazeeruddin, M.K.; Torres, T. Phthalocyanines for dye-sensitized solar cells. Coord. Chem. Rev. 2019, 381, 1–64. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.-J.; Zhang, L.; Mao, L.-J. A new unsymmetrical zinc phthalocyanine as photosensitizers for dye-sensitized solar cells. Bull. Korean Chem. Soc. 2012, 33, 1225–1230. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; He, H.; Mao, L. Novel Donor [pi]-Acceptor Conjugates-Functionalized Zinc Phthalocyanines Application in Dye-Sensitized Solar Cells. Asian J. Chem. 2014, 26, 2229. [Google Scholar] [CrossRef]
- Urbani, M.; de la Torre, G.; Nazeeruddin, M.K.; Torres, T. Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chem. Soc. Rev. 2019, 48, 2738–2766. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Liu, D.; Jin, X.; Wu, W.; Zhang, J.; Yi, M.; Xie, L.; Guo, F.; Yang, L.; Ou, C.; et al. Floating-gate nanofibrous electret arrays for high performance nonvolatile organic transistor memory devices. Org. Electron. 2017, 49, 218–225. [Google Scholar] [CrossRef]
- Kumar, A.; Meunier-Prest, R.; Bouvet, M. Organic heterojunction devices based on phthalocyanines: A new approach to gas chemosensing. Sensors 2020, 20, 4700. [Google Scholar] [CrossRef]
- Ouedraogo, S.; Meunier-Prest, R.; Kumar, A.; Bayo-Bangoura, M.; Bouvet, M. Modulating the electrical properties of organic heterojunction devices based on phthalocyanines for ambipolar sensors. ACS Sens. 2020, 5, 1849–1857. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Wu, Y.; Bian, L.; Nagai, M.; Jv, R.; Xie, L.; Ling, H.; Li, Q.; Bian, H.; et al. Signal filtering enabled by spike voltage-dependent plasticity in metalloporphyrin-based memristors. Adv. Mater. 2021, 33, 2104370. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, F.; Ling, H.; Liu, H.; Yi, M.; Zhang, P.; Wang, W.; Xie, L.; Huang, W. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory. Small 2017, 14, 1701437. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Bian, L.; Zhang, Y.; Liu, Z.; Li, Y.; Zhang, R.; Ju, R.; Yin, C.; Yang, L.; Yi, M.; et al. Synthesis of donor–acceptor gridarenes with tunable electronic structures for synaptic learning memristor. ACS Omega 2019, 4, 5863–5869. [Google Scholar] [CrossRef]
- Lin, D.; Wei, Y.; Peng, A.; Zhang, H.; Zhong, C.; Lu, D.; Zhang, H.; Zheng, X.; Yang, L.; Feng, Q.; et al. Stereoselective gridization and polygridization with centrosymmetric molecular packing. Nat. Commun. 2020, 11, 1756. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, W.; Yin, H.; Hu, H.; Li, Y.; Zhang, H.; Wang, L.; Xie, X.; Hu, H.; Yan, Y.; et al. Cross-Scale Synthesis of Organic High-k Semiconductors Based on Spiro-Gridized Nanopolymers. Research 2022, 2022, 9820585. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Liu, J.; Zhang, H.; Qian, Y.; Yang, H.; Liu, L.; Ren, A.; Zhao, Y.; Yu, X.; Wei, Y. Gridization-Driven Mesoscale Self-Assembly of Conjugated Nanopolymers into Luminescence-Anisotropic Photonic Crystals. Adv. Mater. 2022, 34, 2109399. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Li, Y.; Zhang, H.; Zhang, S.; Gao, Y.; Zhai, T.; Hu, S.; Sheng, C.; Guo, H.; Xu, C.; et al. In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films. Research 2023, 6, 27. [Google Scholar] [CrossRef] [PubMed]
Material | LUMO (eV) | HOMO (eV) | µ (cm2 V−1 s−1) | Ion/Ioff | VT/V | Ref. |
---|---|---|---|---|---|---|
15a | 1.3 × 10−4 | 104–105 | [58] | |||
15b | 0.2 | [59] | ||||
15c | 0.068 | [59] | ||||
15d | 0.036 | [59] | ||||
15e | 0.014 | [59] | ||||
16a | 0.017 | 105 | −3.4 | [60] | ||
16b | 0.2 | 103 | −13 | [63] | ||
16c | 0.1 | 104 | 5 | [64] | ||
17a | 0.012 | −7.5 | [65] | |||
17b | −3.71 | −5.77 | 1.8 × 10−3 | −14.5 | [66] | |
17c | 0.85 | 104 | [68] | |||
17d | 6.2 × 10−2 | [67] | ||||
18a | 2.90 | 6 × 103 | 2.0 | [68] | ||
18b | −3.48 | −5.28 | 0.32 | 104 | [67] | |
19a | −3.42 | −5.32 | 0.12 | 106 | [69] | |
19b | −3.54 | −5.36 | 0.36 | 2 × 103 | [69] | |
20a | −3.43 | −5.23 | 0.27 | 2.2 × 103 | −2 | [70] |
20b | −3.37 | −5.12 | 0.066 | −8 | [70] | |
20c | −3.38 | −5.34 | 2.57 | 1 × 105 | −5.0 | [71] |
20d | −3.58 | −5.37 | 0.48 | 3 × 103 | −6.0 | [71] |
21 | 0.026 | 105 | −0.60 | [72] | ||
22a | 0.3 | 104 | −12.6 | [73] | ||
22b | 0.2 | 105 | 3.6 | [73] | ||
23a | −2.63 | −5.46 | 0.15 | [74] | ||
23b | −2.51 | −5.70 | 1.50 | [74] | ||
23c | −2.55 | −5.66 | 0.74 | [74] | ||
24a | −2.32 | −4.88 | 0.66 | 108 | −8.6 | [75] |
24b | −2.29 | −4.75 | 0.25 | 107 | −9.4 | [75] |
24c | −2.37 | −4.97 | 3.74 | 108 | −12.2 | [75] |
24d | −2.27 | −4.69 | 0.72 | 106 | −9.0 | [75] |
24e | −2.55 | −5.11 | 4.40 | 107 | −0.5 | [75] |
25 | 0.014 | 103 | [76] | |||
26 | 0.68 | 8 × 104 | [77] |
Material | LUMO (eV) | HOMO (eV) | µ (cm2 V−1 s−1) | Ion/Ioff | VT/V | Ref. |
---|---|---|---|---|---|---|
27a | −3.29 | −4.98 | 2.0 × 10−2 | 1.1 × 103 | [78] | |
27b | 0.29 | 1.34 × 103 | −12.9 | [80] | ||
27c | 0.63 | 3 × 102 | −7.47 | [80] | ||
27d | −5.04 | 0.23 | 5.27 × 105 | −17.7 | [81] | |
27e | −4.98 | 9.6 × 10−3 | 2.42 × 105 | −56.1 | [81] | |
27f | −5.07 | 0.73 | 1.4 × 107 | −4 | [82] | |
28a | 0.40 | 3.51 × 103 | 20.0 | [83] | ||
28b | 0.11 | 102 | 24.4 | [83] | ||
29 | −2.57 | −4.83 | 1.92 × 10−4 | 102 | −1 | [85] |
Material | LUMO (eV) | HOMO (eV) | µ (cm2 V−1 s−1) | Ion/Ioff | VT/V | Ref. |
---|---|---|---|---|---|---|
44 | −3.87 | −5.39 | (1.5 ± 0.2) × 10−3 | [117] | ||
45 | −3.90 | −5.69 | (1.5 ± 0.2) × 10−3 | [117] | ||
46a | 6.8 × 10−4 | [118] | ||||
46b | 1.5 × 10−2 | [118] | ||||
47 | 4.1 × 10−3 | [119] | ||||
48 | 9.9 × 10−4 | [119] |
Material | HOMO/LUMO (eV) | Von/DV (V) | CE (cd A−1) | PE (lm W−1) | EQE (%) | Ref. |
---|---|---|---|---|---|---|
73 | −5.56/−2.63 | 6.6/ | 1.52 | [155] | ||
74 | −5.74/−2.68 | 6.4/ | 10.5 | 4 | 6.4 | [156] |
75 | −5.71/−2.58 | 1.5/ | 2.5 | 0.71 | 1.5 | [155] |
76 | −6.08/−2.72 | 3.97/ | 1.21 | 0.43 | 0.71 | [157] |
77 | 11.2 | 0.5 | [158] | |||
78 | 3.82/ | 9.93 | 8.25 | 2.82 | [159] | |
79 | −5.1/−1.75 | 6.7/ | 11 | [160] | ||
80 | 9.3/ | 0.2 | [161] |
Material | HOMO/LUMO (eV) | Von/DV (V) | CE (cd A−1) | PE (lm W−1) | EQE (%) | Ref. |
---|---|---|---|---|---|---|
81a | −5.03/−2.26 | 13/ | 0.63 | [162] | ||
81b | −5.06/−2.28 | 14.1/ | 0.93 | [162] | ||
82 | −5.07/−1.6 | 5.4/ | 22.6 | 5.3 | [163] | |
83 | −5.09/−0.95 | 6.0/ | 19.4 | 9.0 | 8.2 | [164] |
84 | −5.27/−1.83 | 3.0/ | 17.7 | 11.9 | 7.7 | [165] |
85 | −5.56/−2.19 | 3.3/ | 18.8 | 14.8 | 8.7 | [166] |
86 | −5.35/−2.35 | 5.38/ | 0.83 | [167] |
Material | HOMO/LUMO (eV) | Von/DV (V) | CE (cd A−1) | PE (lm W−1) | EQE (%) | Ref. |
---|---|---|---|---|---|---|
87a | /8.7 | 13.9 | [170] | |||
87b | −6.2/−2.87 | /5.7 | 94.1 | 43.5 | 22.8 | [172] |
87c | −5.95/−1.17 | /5.1 | 88 | 54.4 | 24.8 | [173] |
87d | −6.0/−1.23 | /5.8 | 67.3 | 36.0 | 18.7 | [173] |
87e | −6.9/−2.07 | /8.3 | 9.9 | [174] | ||
88a | /8.6 | 13.2 | [170] | |||
88b | −6.04/−2.55 | /4.5 | 30.1 | 17.3 | 7.3 | [172] |
88c | −6.0/−2.32 | /5.6 | 7.9 | 29.2 | 7.9 | [172] |
88d | −5.91/−1.14 | /5.5 | 50.1 | 28.6 | 14.2 | [173] |
88e | −5.96/−1.21 | /4.8 | 21.7 | 11.4 | 5.3 | [173] |
88f | −6.88/−2.07 | /8.0 | 6.3 | [174] | ||
89 | −5.78/−2.29 | /7.8 | 22.6 | 15.5 | [171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, C.; Yan, Y.; Peng, Q.; Zhang, Z.; Wang, T.; Chen, X.; Wang, J.; Wei, Y.; Yang, T.; Xie, L. Structure–Property Relationship of Macrocycles in Organic Photoelectric Devices: A Comprehensive Review. Nanomaterials 2023, 13, 1750. https://doi.org/10.3390/nano13111750
Zhong C, Yan Y, Peng Q, Zhang Z, Wang T, Chen X, Wang J, Wei Y, Yang T, Xie L. Structure–Property Relationship of Macrocycles in Organic Photoelectric Devices: A Comprehensive Review. Nanomaterials. 2023; 13(11):1750. https://doi.org/10.3390/nano13111750
Chicago/Turabian StyleZhong, Chunxiao, Yong Yan, Qian Peng, Zheng Zhang, Tao Wang, Xin Chen, Jiacheng Wang, Ying Wei, Tonglin Yang, and Linghai Xie. 2023. "Structure–Property Relationship of Macrocycles in Organic Photoelectric Devices: A Comprehensive Review" Nanomaterials 13, no. 11: 1750. https://doi.org/10.3390/nano13111750
APA StyleZhong, C., Yan, Y., Peng, Q., Zhang, Z., Wang, T., Chen, X., Wang, J., Wei, Y., Yang, T., & Xie, L. (2023). Structure–Property Relationship of Macrocycles in Organic Photoelectric Devices: A Comprehensive Review. Nanomaterials, 13(11), 1750. https://doi.org/10.3390/nano13111750