Substrate Dependence of CdSe/ZnS Quantum-Dot Light-Emitting Diodes: A Comparative Study between Rigid Glass and Flexible Plastic Substrates
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dabbousi, B.O.; Bawendi, M.G.; Onitsuka, O.; Rubner, M.F. Electroluminescence from CdSe Quantum-Dot/Polymer Composites. Appl. Phys. Lett. 1995, 66, 1316. [Google Scholar] [CrossRef]
- Chaudhary, S.; Ozkan, M.; Chan, W.C.W. Trilayer Hybrid Polymer-Quantum Dot Light-Emitting Diodes. Appl. Phys. Lett. 2004, 84, 2925–2927. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Jiang, C.; Bohnenberger, J.; Basché, T.; Mews, A. Electroluminescence from Isolated CdSe/ZnS Quantum Dots in Multilayered Light-Emitting Diodes. J. Appl. Phys. 2004, 96, 3206–3210. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D. Quantum Mechanical Analysis Based on Perturbation Theory of CdSe/ZnS Quantum-Dot Light-Emission Properties. Nanomaterials 2022, 12, 3590. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, H. Characteristics of Quantum-Dot Light-Emitting Diodes Fabricated Using a Sputtered Zinc Tin Oxide Electron-Transporting Layer. Jpn. J. Appl. Phys. 2018, 57, 03DC01. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, O.; Kim, M.; Lee, H. Charge Carrier Analysis via Impedance Spectroscopy and the Achievement of High Performance in CdSe/ZnS:Di-[4-(N,N-Di-p-Tolyl-Amino)-Phenyl]Cyclohexane Hybrid Quantum Dot Light-Emitting Diodes. Org. Electron. 2022, 108, 106593. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, L.; Zhang, Q.; Zhang, Y.; Li, F.; Chang, C.; Sun, H.; Yang, M.; Yanto, S.; Zhang, Z. CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Spiro-OMeTAD as Buffer Layer. IEEE Trans. Electron Devices 2019, 66, 4901–4906. [Google Scholar] [CrossRef]
- Kwon, O.; Kim, D.; Kim, M.; Lee, H. High-Performance Tandem CdSe/ZnS Quantum-Dot Light-Emitting Diodes with a Double-Layer Interconnecting Layer Composed of Thermally Evaporated and Sputtered Metal Oxides. J. Inf. Disp. 2022, 23, 213–219. [Google Scholar] [CrossRef]
- Kim, D.-J.; Lee, H.-N. The Dependence of QD-LED Properties on the RF-Sputtering and Plasma Treatment Conditions of the Electron-Transporting Layer. Mol. Crys. Liq. Crys. 2017, 651, 155–162. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.; Kwon, O.; Lee, H. Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices. Micromachines 2022, 13, 269. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, T.; Duan, L. Emerging Self-Emissive Technologies for Flexible Displays. Adv. Mater. 2020, 32, 1902391. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zhang, H.; Chen, S. Flexible and Tandem Quantum-Dot Light-Emitting Diodes with Individually Addressable Red/Green/Blue Emission. NPJ Flex. Electron. 2021, 5, 8. [Google Scholar] [CrossRef]
- Choi, M.K.; Yang, J.; Hyeon, T.; Kim, D.-H. Flexible Quantum Dot Light-Emitting Diodes for next-Generation Displays. NPJ Flex. Electron. 2018, 2, 10. [Google Scholar] [CrossRef]
- Tsukagoshi, K.; Tanabe, J.; Yagi, I.; Shigeto, K.; Yanagisawa, K.; Aoyagi, Y. Organic Light-Emitting Diode Driven by Organic Thin Film Transistor on Plastic Substrates. J. Appl. Phys. 2006, 99, 064506. [Google Scholar] [CrossRef]
- Sugimoto, A.; Ochi, H.; Fujimura, S.; Yoshida, A.; Miyadera, T.; Tsuchida, M. Flexible OLED Displays Using Plastic Substrates. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 107–114. [Google Scholar] [CrossRef]
- Chuang, T.K.; Troccoli, M.; Kuo, P.C.; Jamshidi-Roudbari, A.; Hatalis, M.; Voutsas, A.T.; Afentakis, T. Process Technology for High-Resolution AM-PLED Displays on Flexible Metal-Foil Substrates. Electrochem. Solid-State Lett. 2007, 10, J92. [Google Scholar] [CrossRef]
- Yoo, J.S.; Jung, S.H.; Kim, Y.C.; Byun, S.C.; Kim, J.M.; Choi, N.B.; Yoon, S.Y.; Kim, C.D.; Hwang, Y.K.; Chung, I.J. Highly Flexible AM-OLED Display with Integrated Gate Driver Using Amorphous Silicon TFT on Ultrathin Metal Foil. IEEE/OSA J. Disp. Technol. 2010, 6, 565–570. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.-L. Design of Dielectric/Metal/Dielectric Transparent Electrodes for Flexible Electronics. J. Photonics Energy 2012, 2, 021215. [Google Scholar] [CrossRef]
- Cattin, L.; Jouad, E.; Stephant, N.; Louarn, G.; Morsli, M.; Hssein, M.; Mouchaal, Y.; Thouiri, S.; Addou, M.; Khelil, A.; et al. Dielectric/Metal/Dielectric Alternative Transparent Electrode: Observations on Stability/Degradation. J. Phys. D Appl. Phys. 2017, 50, 375502. [Google Scholar] [CrossRef]
- Kinner, L.; Bauch, M.; Wibowo, R.A.; Ligorio, G.; List-Kratochvil, E.J.W.; Dimopoulos, T. Polymer Interlayers on Flexible PET Substrates Enabling Ultra-High Performance, ITO-Free Dielectric/Metal/Dielectric Transparent Electrode. Mater. Des. 2019, 168, 107663. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Kim, J.; Lee, H. Understanding the Electroluminescence Mechanism of CdSe/ZnS Quantum-Dot Light-Emitting Diodes with a Focus on Charge Carrier Behavior in Quantum-Dot Emissive Layers. IEEE Electron. Device Lett. 2023, 44, 959–962. [Google Scholar] [CrossRef]
- Liu, R.; Gan, Z.; Shinar, R.; Shinar, J. Transient Electroluminescence Spikes in Small Molecular Organic Light-Emitting Diodes. Phys. Rev. B Condens Matter Mater. Phys. 2011, 83, 245302. [Google Scholar] [CrossRef]
- Kim, J.; Hahm, D.; Bae, W.K.; Lee, H.; Kwak, J. Transient Dynamics of Charges and Excitons in Quantum Dot Light-Emitting Diodes. Small 2022, 18, 2202290. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Greco, T.; Ippen, C.; Wedel, A.; Kim, J. Indium Phosphide (InP) Colloidal Quantum Dot Based Light-Emitting Diodes Designed on Flexible PEN Substrate. In Proceedings of the 2013 IEEE 5th International Nanoelectronics Conference (INEC), Singapore, 2–4 January 2013; pp. 425–427. [Google Scholar] [CrossRef]
- Forsythe, E.W.; Shi, J.; Liu, S.; Morton, D.C.; Loy, D.; Lee, Y.K.; Bell, C.; Richards, M.; Bawolek, E.; Ageno, S.; et al. Future Flexible OLED Displays for Army Applications. In Proceedings of the 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, Baltimore, MD, USA, 2–4 June 2009; pp. 8–9. [Google Scholar] [CrossRef]
- Fonrodona, M.; Escarré, J.; Villar, F.; Soler, D.; Asensi, J.M.; Bertomeu, J.; Andreu, J. PEN as Substrate for New Solar Cell Technologies. Sol. Energy Mater. Sol. Cells 2005, 89, 37–47. [Google Scholar] [CrossRef]
- Dunbar, E.; Leone, M.; Lukes, S.; Dickensheets, D.L. Polymer Deformable Membrane Mirrors for Focus Control Using SU-8 2002. In Proceedings of the 2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics, Freiburg, Germany, 11–14 August 2008; pp. 138–139. [Google Scholar]
- Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016, 19, 211–216. [Google Scholar] [CrossRef]
- Kim, D.-J.; Lee, H.-N. Improving the Charge Balance and Performance of CdSe/ZnS Quantum-Dot Light-Emitting Diodes with a Sputtered Zinc-Tin-Oxide Electron-Transport Layer and a Thermally Evaporated Tungsten-Oxide Charge-Restricting Layer. Jpn. J. Appl. Phys. 2019, 58, 106502. [Google Scholar] [CrossRef]
- Kim, J.C.; Cakmak, M.; Zhou, X. Effect of Composition on Orientation, Optical and Mechanical Properties of Bi-Axially Drawn PEN and PEN/PEI Blend Films. Polymer 1998, 39, 4225–4234. [Google Scholar] [CrossRef]
- Girtan, M.; Negulescu, B. A Review on Oxide/Metal/Oxide Thin Films on Flexible Substrates as Electrodes for Organic and Perovskite Solar Cells. Opt. Mater. X 2022, 13, 100122. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, X.; Zhang, N.; Chen, H.; Zheng, X.; Wang, H.; Guo, X. High-Performance NiO/Ag/NiO Transparent Electrodes for Flexible Organic Photovoltaic Cells. ACS Appl. Mater. Interfaces 2014, 6, 16403–16408. [Google Scholar] [CrossRef]
- Wenda, E. High Temperature Reactions in The MoO3-Ag2O System. J. Them. Anal. 1998, 53, 861–870. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, J.; Lee, H. Substrate Dependence of CdSe/ZnS Quantum-Dot Light-Emitting Diodes: A Comparative Study between Rigid Glass and Flexible Plastic Substrates. Nanomaterials 2023, 13, 1780. https://doi.org/10.3390/nano13111780
Lee S, Kim J, Lee H. Substrate Dependence of CdSe/ZnS Quantum-Dot Light-Emitting Diodes: A Comparative Study between Rigid Glass and Flexible Plastic Substrates. Nanomaterials. 2023; 13(11):1780. https://doi.org/10.3390/nano13111780
Chicago/Turabian StyleLee, Seyoung, Jimyoung Kim, and Honyeon Lee. 2023. "Substrate Dependence of CdSe/ZnS Quantum-Dot Light-Emitting Diodes: A Comparative Study between Rigid Glass and Flexible Plastic Substrates" Nanomaterials 13, no. 11: 1780. https://doi.org/10.3390/nano13111780
APA StyleLee, S., Kim, J., & Lee, H. (2023). Substrate Dependence of CdSe/ZnS Quantum-Dot Light-Emitting Diodes: A Comparative Study between Rigid Glass and Flexible Plastic Substrates. Nanomaterials, 13(11), 1780. https://doi.org/10.3390/nano13111780