Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Synthesis
2.3. Thin Film Fabrication
2.4. Characterization Methods
3. Results and Discussions
3.1. Phase Analysis and Surface Morphology
3.2. Optical Properties Using Spectroscopic Ellipsometry
3.3. Unpolarized Absorbance and Transmittance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, L.; Bari, A.; Shinde, M.; Deo, V.; Kaushik, M. Zinc Oxide: Fundamentals Materials and Device Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p. 12. [Google Scholar]
- Özgür, Ü.; Avrutin, V.; Morkoç, H. Chapter 16—Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In Molecular Beam Epitaxy, 2nd ed.; Henini, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 343–375. [Google Scholar] [CrossRef]
- Olvera, M.; Maldonado, A.; Asomoza, R. Chemical stability of doped ZnO thin films. J. Mater. Sci. Mater. Electron. 2000, 11, 1–5. [Google Scholar] [CrossRef]
- Lee, W.; Yeop, J.; Heo, J.; Yoon, Y.J.; Park, S.Y.; Jeong, J.; Shin, Y.S.; Kim, J.W.; An, N.G.; Kim, D.S.; et al. High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Sci. Rep. 2020, 10, 18055. [Google Scholar] [CrossRef]
- Heinonen, S.; Nikkanen, J.-P.; Huttunen-Saarivirta, E.; Levänen, E. Investigation of long-term chemical stability of structured ZnO films in aqueous solutions of varying conditions. Thin Solid Film. 2017, 638, 410–419. [Google Scholar] [CrossRef]
- Deschanvres, J.L.; Rey, P.; Delabouglise, G.; Labeau, M.; Joubert, J.C.; Peuzin, J.C. Characterization of piezoelectric properties of zinc oxide thin films deposited on silicon for sensors applications. Sens. Actuators A Phys. 1992, 33, 43–45. [Google Scholar] [CrossRef]
- Membetsi, R.O.-N.Z.M.; Gnanga, H.; Omanda, H.; Foucaran, A. Microwave Analysis and Electrical Properties of ZnO thin Films Prepared by RF Magnetron Sputtering. Int. J. Sci. Res. IJSR 2015, 4, 1828–1833. [Google Scholar]
- Segets, D.; Gradl, J.; Taylor, R.K.; Vassilev, V.; Peukert, W. Analysis of Optical Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility, and Surface Energy. ACS Nano 2009, 3, 1703–1710. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Diantariani, N.P.; Kartini, I.; Kuncaka, A. Enhancement of the photostability and visible photoactivity of ZnO photocatalyst used for reduction of Cr(VI) ions. Results Eng. 2022, 13, 100351. [Google Scholar] [CrossRef]
- Ayoub, I.; Kumar, V.; Abolhassani, R.; Sehgal, R.; Sharma, V.; Sehgal, R.; Swart, H.C.; Mishra, Y.K. Advances in ZnO: Manipulation of defects for enhancing their technological potentials. Nanotechnol. Rev. 2022, 11, 575–619. [Google Scholar] [CrossRef]
- Kumar, V.; Ntwaeaborwa, O.; Soga, T.; Dutta, V.; Swart, H. Rare Earth Doped Zinc Oxide Nanophosphor Powder: A Future Material for Solid State Lighting and Solar Cells. ACS Photonics 2017, 4, 2613–2637. [Google Scholar] [CrossRef]
- Capper, P.; Kasap, S.O.; Willoughby, A. Zinc Oxide Materials for Electronic and Optoelectronic Device Applications; Litton, C.W., Reynolds, D.C., Collins, T.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 35. [Google Scholar]
- Singh, R.; Ichikawa, T.; Jain, A. 20—Zinc oxide as promising anode material for Li-ion battery. In Nanostructured Zinc Oxide; Awasthi, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 575–603. [Google Scholar] [CrossRef]
- Kim, H.; Jae, W.; Song, J.; Kim, J. Skein-shaped ZnO/N-doped carbon microstructures as a high performance anode material for lithium-ion batteries. J. Alloys Compd. 2019, 772, 507–515. [Google Scholar] [CrossRef]
- McCluskey, M.D.; Jokela, S.J. Defects in ZnO. J. Appl. Phys. 2009, 106, 071101. [Google Scholar] [CrossRef] [Green Version]
- Pearton, S.J.; Norton, D.P.; Ip, K.; Heo, Y.W.; Steiner, T. Recent advances in processing of ZnO. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2004, 22, 932–948. [Google Scholar] [CrossRef]
- Klingshirn, C.; Hauschild, R.; Fallert, J.; Kalt, H. Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing. Phys. Rev. B 2007, 75, 115203. [Google Scholar] [CrossRef]
- Tang, Z.K.; Wong, G.K.L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72, 3270–3272. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zhou, B.; Li, J.; Zhan, J.; Zhang, L. Ultraviolet lasing behavior in ZnO optical microcavities. J. Mater. 2017, 3, 255–266. [Google Scholar] [CrossRef]
- Egerton, E.J.; Sood, A.K.; Singh, R.; Puri, Y.R.; Davis, R.F.; Pierce, J.; Look, D.C.; Steiner, T. P-type doping utilizing nitrogen and Mn doping of ZnO using MOCVD for ultraviolet lasers and spintronic applications. J. Electron. Mater. 2005, 34, 949–952. [Google Scholar] [CrossRef]
- Deng, G.; Zhang, Y.; Yu, Y.; Han, X.; Wang, Y.; Shi, Z.; Dong, X.; Zhang, B.; Du, G.; Liu, Y. High-Performance Ultraviolet Light-Emitting Diodes Using n-ZnO/p-hBN/p-GaN Contact Heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 6788–6792. [Google Scholar] [CrossRef]
- Mohammad Reza, M. Metal Oxide ZnO-Based Varistor Ceramics. In Advances in Ceramics; Costas, S., Ed.; IntechOpen: Rijeka, Croatia, 2011; p. 564. [Google Scholar] [CrossRef] [Green Version]
- Levinson, L.; Philipp, H. Zinc oxide varistors—A review. Am. Ceram. Soc. Bull. 1986, 65, 639–646. [Google Scholar]
- Raghu, N.; Kutty, T.R.N. Varistors based on mixed-phase ceramics containing ZnO and negative temperature coefficient spinels. Appl. Phys. Lett. 1991, 58, 1050–1052. [Google Scholar] [CrossRef]
- Park, K.; Lee, J.K. Mn–Ni–Co–Cu–Zn–O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 2007, 57, 329–332. [Google Scholar] [CrossRef]
- Cho, J.; Hwang, S.; Ko, D.-H.; Chung, S. Transparent ZnO Thin-Film Deposition by Spray Pyrolysis for High-Performance Metal-Oxide Field-Effect Transistors. Materials 2019, 12, 3423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Wang, J.; Wu, H.; Yang, J.; Wang, Y.; Zhang, J.; Bao, Q.; Wang, M.; Ma, Z.; Tress, W.; et al. A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices. Nat. Commun. 2022, 13, 4387. [Google Scholar] [CrossRef] [PubMed]
- Burkov, S.I.; Zolotova, O.P.; Sorokin, B.P.; Turchin, P.P.; Talismanov, V.S. Features of acoustic wave propagation in the Me/ZnO/Me/diamond waveguide structure. J. Acoust. Soc. Am. 2018, 143, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Shiosaki, T.; Kawabata, A. Low-frequency piezoelectric-transducer applications of ZnO film. Appl. Phys. Lett. 1974, 25, 10–11. [Google Scholar] [CrossRef]
- Galstyan, V.; Comini, E.; Baratto, C.; Faglia, G.; Sberveglieri, G. Nanostructured ZnO chemical gas sensors. Ceram. Int. 2015, 41, 14239–14244. [Google Scholar] [CrossRef]
- Hussain, B.; Ebong, A.; Ferguson, I. Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 2015, 139, 95–100. [Google Scholar] [CrossRef]
- Vittal, R.; Ho, K.-C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935. [Google Scholar] [CrossRef]
- Consonni, V.; Briscoe, J.; Kärber, E.; Li, X.; Cossuet, T. ZnO nanowires for solar cells: A comprehensive review. Nanotechnology 2019, 30, 362001. [Google Scholar] [CrossRef]
- Le, A.T.; Ahmadipour, M.; Pung, S.-Y. A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. J. Alloys Compd. 2020, 844, 156172. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F. Advances in ZnO-based materials for light emitting diodes. Curr. Opin. Chem. Eng. 2014, 3, 51–55. [Google Scholar] [CrossRef]
- Žutić, I.; Fabian, J.; Das Sarma, S. Spin injection through the depletion layer: A theory of spin-polarized p-n junctions and solar cells. Phys. Rev. B 2001, 64, 121201. [Google Scholar] [CrossRef] [Green Version]
- Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N. DC-magnetron sputtering of ZnO: Al films on (00.1) Al2O3 substrates from slip-casting sintered ceramic targets. Appl. Surf. Sci. 2014, 313, 418–423. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431. [Google Scholar] [CrossRef] [PubMed]
- Schlur, L.; Calado, J.R.; Spitzer, D. Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. R. Soc. Open Sci. 2018, 5, 180510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somvanshi, D.; Jit, S. Analysis of Temperature-Dependent Electrical Characteristics of n-ZnO Nanowires (NWs)/p-Si Heterojunction Diodes. IEEE Trans. Nanotechnol. 2014, 13, 62–69. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, N.; Quan, X.; Chen, Y. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep. Purif. Technol. 2008, 62, 727–732. [Google Scholar] [CrossRef]
- Zhang, N.; Yi, R.; Shi, R.; Gao, G.; Chen, G.; Liu, X. Novel rose-like ZnO nanoflowers synthesized by chemical vapor deposition. Mater. Lett. 2009, 63, 496–499. [Google Scholar] [CrossRef]
- Meulenkamp, E.A. Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 1998, 102, 5566–5572. [Google Scholar] [CrossRef]
- Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int. Sch. Res. Not. 2012, 2012, 372505. [Google Scholar] [CrossRef] [Green Version]
- Hong, R.; Pan, T.; Qian, J.; Li, H. Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 2006, 119, 71–81. [Google Scholar] [CrossRef]
- Kattan, P. Ratio of Surface Area to Volume in Nanotechnology and Nanoscience; Petra Books: Kota Bandung, Indonesia, 2011. [Google Scholar]
- Lu, H.; Liao, L.; Li, J.; Wang, D.; He, H.; Fu, Q.; Xu, L.; Tian, Y. High Surface-to-Volume Ratio ZnO Microberets: Low Temperature Synthesis, Characterization, and Photoluminescence. J. Phys. Chem. B 2006, 110, 23211–23214. [Google Scholar] [CrossRef]
- Kumar, H.; Rani, R. Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int. Lett. Chem. Phys. Astron. 2013, 14, 26–36. [Google Scholar] [CrossRef]
- Yıldırım, Ö.A.; Durucan, C. Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J. Alloys Compd. 2010, 506, 944–949. [Google Scholar] [CrossRef]
- Hasnidawani, J.; Azlina, H.; Norita, H.; Bonnia, N.; Ratim, S.; Ali, E. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 2016, 19, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Vafaee, M.; Ghamsari, M.S. Preparation and characterization of ZnO nanoparticles by a novel sol-gel route. Mater. Lett. 2007, 61, 3265–3268. [Google Scholar] [CrossRef]
- Nagpal, K.; Rapenne, L.; Wragg, D.S.; Rauwel, E.; Rauwel, P. The role of CNT in surface defect passivation and UV emission intensification of ZnO nanoparticles. Nanomater. Nanotechnol. 2022, 12, 18479804221079419. [Google Scholar] [CrossRef]
- Tsuzuki, T.; McCormick, P.G. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 2004, 39, 5143–5146. [Google Scholar] [CrossRef]
- Tsuzuki, T.; McCormick, P.G. ZnO nanoparticles synthesised by mechanochemical processing. Scr. Mater. 2001, 44, 1731–1734. [Google Scholar] [CrossRef]
- Tani, T.; Mädler, L.; Pratsinis, S.E. Homogeneous ZnO nanoparticles by flame spray pyrolysis. J. Nanoparticle Res. 2002, 4, 337–343. [Google Scholar] [CrossRef]
- Ghaffarian, H.R.; Saiedi, M.; Sayyadnejad, M.A.; Rashidi, A.M. Synthesis of ZnO nanoparticles by spray pyrolysis method. Iran. J. Chem. Chem. Eng. IJCCE 2011, 30, 1–6. [Google Scholar]
- Yang, Y.; Chen, H.; Zhao, B.; Bao, X. Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. J. Cryst. Growth 2004, 263, 447–453. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Davar, F.; Mazaheri, M. Preparation of ZnO nanoparticles from [bis (acetylacetonato) zinc (II)]-oleylamine complex by thermal decomposition. Mater. Lett. 2008, 62, 1890–1892. [Google Scholar] [CrossRef]
- Bekermann, D.; Gasparotto, A.; Barreca, D.; Maccato, C.; Comini, E.; Sada, C.; Sberveglieri, G.; Devi, A.; Fischer, R. Co3O4/ZnO nanocomposites: From plasma synthesis to gas sensing applications. ACS Appl. Mater. Interfaces 2012, 4, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Hiragino, Y.; Tanaka, T.; Takeuchi, H.; Takeuchi, A.; Lin, J.; Yoshida, T.; Fujita, Y. Synthesis of nitrogen-doped ZnO nanoparticles by RF thermal plasma. Solid State Electron. 2016, 118, 41–45. [Google Scholar] [CrossRef]
- Byrappa, K.; Ohara, S.; Adschiri, T. Nanoparticles synthesis using supercritical fluid technology—Towards biomedical applications. Adv. Drug Deliv. Rev. 2008, 60, 299–327. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, R.; Gupta, R.B. Formation of zinc oxide nanoparticles in supercritical water. J. Supercrit. Fluids 2003, 27, 187–193. [Google Scholar] [CrossRef]
- Kinge, S.; Crego-Calama, M.; Reinhoudt, D.N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42. [Google Scholar] [CrossRef]
- Baruwati, B.; Kumar, D.K.; Manorama, S.V. Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. Sens. Actuators B Chem. 2006, 119, 676–682. [Google Scholar] [CrossRef]
- Madathil, A.N.P.; Vanaja, K.; Jayaraj, M. Synthesis of ZnO nanoparticles by hydrothermal method. In Proceedings of the Nanophotonic Materials IV, San Diego, CA, USA, 26–27 August 2007; pp. 47–55. [Google Scholar]
- Singh, L.; Sharma, R.; Singh, N.; Kumar, A.; Mahato, D.K.; Lee, Y.; Bechelany, M.; Mandal, K.D. Semi-wet growth and characterization of multi-functional nano-engineered mixed metal oxides for industrial application. Prog. Cryst. Growth Charact. Mater. 2021, 67, 100542. [Google Scholar] [CrossRef]
- Huang, M.H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Prete, P.; Lovergine, N.; Tapfer, L. Nanostructure size evolution during Au-catalysed growth by carbo-thermal evaporation of well-aligned ZnO nanowires on (100) Si. Appl. Phys. A 2007, 88, 21–26. [Google Scholar] [CrossRef]
- Hasanpoor, M.; Aliofkhazraei, M.; Delavari, H. Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Mater. Sci. 2015, 11, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Bilecka, I.; Elser, P.; Niederberger, M. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano 2009, 3, 467–477. [Google Scholar] [CrossRef]
- Kahouli, M.; Barhoumi, A.; Bouzid, A.; Al-Hajry, A.; Guermazi, S. Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices Microstruct. 2015, 85, 7–23. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ghose, R. Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram. Int. 2015, 41, 967–975. [Google Scholar] [CrossRef]
- Lupan, O.; Emelchenko, G.A.; Ursaki, V.V.; Chai, G.; Redkin, A.N.; Gruzintsev, A.N.; Tiginyanu, I.M.; Chow, L.; Ono, L.K.; Roldan Cuenya, B.; et al. Synthesis and characterization of ZnO nanowires for nanosensor applications. Mater. Res. Bull. 2010, 45, 1026–1032. [Google Scholar] [CrossRef]
- Luther, J.M.; Gao, J.; Lloyd, M.T.; Semonin, O.E.; Beard, M.C.; Nozik, A.J. Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell. Adv. Mater. 2010, 22, 3704–3707. [Google Scholar] [CrossRef]
- Choi, J.J.; Lim, Y.-F.; Santiago-Berrios, M.E.B.; Oh, M.; Hyun, B.-R.; Sun, L.; Bartnik, A.C.; Goedhart, A.; Malliaras, G.G.; Abruña, H.D.; et al. PbSe Nanocrystal Excitonic Solar Cells. Nano Lett. 2009, 9, 3749–3755. [Google Scholar] [CrossRef]
- Beek, W.J.; Wienk, M.M.; Kemerink, M.; Yang, X.; Janssen, R.A. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 2005, 109, 9505–9516. [Google Scholar] [CrossRef]
- Cullity, B.; Stock, S. Elements of X-ray Diffraction, 3rd ed.; Prentice Hall: New York, NY, USA, 2001; pp. 174–177. [Google Scholar]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Fang, L.; Ruan, H.; Wu, F.; Huang, Q.; Xu, C.; Kong, C. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. Int. J. Phys. Sci 2012, 7, 2971. [Google Scholar] [CrossRef]
- Ebin, B.; Arıg, E.; Özkal, B.; Gürmen, S. Production and characterization of ZnO nanoparticles and porous particles by ultrasonic spray pyrolysis using a zinc nitrate precursor. Int. J. Miner. Metall. Mater. 2012, 19, 651–656. [Google Scholar] [CrossRef]
- Koutu, V.; Shastri, L.; Malik, M. Effect of NaOH concentration on optical properties of zinc oxide nanoparticles. Mater. Sci. Pol. 2016, 34, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.J.; Bellah, M.M.; Hassan, M.R.; Rahman, S. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express 2020, 1, 010007. [Google Scholar]
- Mullin, J.W. Crystallization; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Habibi, R.; Daryan, J.T.; Rashidi, A.M. Shape and size-controlled fabrication of ZnO nanostructures using novel templates. J. Exp. Nanosci. 2009, 4, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Montero-Muñoz, M.; Ramos-Ibarra, J.; Rodríguez-Páez, J.; Ramirez, A.; Huamaní-Coaquira, J. Shape-control of Zinc Oxide nanoparticles: Enhancing photocatalytic activity under UV irradiation. In Proceedings of the VIII International Congress of Engineering Physics, Mérida, Mexico, 7–11 November 2016. [Google Scholar]
- Jellison, G., Jr.; Modine, F. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373. [Google Scholar] [CrossRef]
- Sapkota, D.R. Characterization and Optimization of CuInSe2 Solar Cells Applicable for Tandem Devices. Ph.D. Thesis, University of Toledo, Toledo, OH, USA, 2022. [Google Scholar]
- Aspnes, D.; Theeten, J.; Hottier, F. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys. Rev. B 1979, 20, 3292. [Google Scholar] [CrossRef]
- Subedi, I.; Bhandari, K.P.; Ellingson, R.J.; Podraza, N.J. Near infrared to ultraviolet optical properties of bulk single crystal and nanocrystal thin film iron pyrite. Nanotechnology 2016, 27, 295702. [Google Scholar] [CrossRef] [Green Version]
- Oldham, W. Numerical techniques for the analysis of lossy films. Surf. Sci. 1969, 16, 97–103. [Google Scholar] [CrossRef]
- Lakhwani, G.; Roijmans, R.F.; Kronemeijer, A.J.; Gilot, J.; Janssen, R.A.; Meskers, S.C. Probing charge carrier density in a layer of photodoped ZnO nanoparticles by spectroscopic ellipsometry. J. Phys. Chem. C 2010, 114, 14804–14810. [Google Scholar] [CrossRef]
- Yoshikawa, H.Y.H.; Adachi, S.A.S. Optical constants of ZnO. Jpn. J. Appl. Phys. 1997, 36, 6237. [Google Scholar] [CrossRef]
- Malandrino, G.; Blandino, M.; Fragala, M.E.; Losurdo, M.; Bruno, G. Relationship between nanostructure and optical properties of ZnO thin films. J. Phys. Chem. C 2008, 112, 9595–9599. [Google Scholar] [CrossRef]
- Zak, A.K.; Abrishami, M.E.; Majid, W.H.A.; Yousefi, R.; Hosseini, S.M. Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceram. Int. 2011, 37, 393–398. [Google Scholar] [CrossRef]
- Zak, A.K.; Razali, R.; Majid, W.H.; Darroudi, M. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 2011, 6, 1399–1403. [Google Scholar]
- Bian, S.-W.; Mudunkotuwa, I.A.; Rupasinghe, T.; Grassian, V.H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 2011, 27, 6059–6068. [Google Scholar] [CrossRef]
- Ha, T.T.; Canh, T.D.; Tuyen, N.V. A Quick Process for Synthesis of ZnO Nanoparticles with the Aid of Microwave Irradiation. ISRN Nanotechnol. 2013, 2013, 497873. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, P.; Singh, D.; Tiwary, C.; Mitra, A. Chemical synthesis and visible photoluminescence emission from monodispersed ZnO nanoparticles. Chem. Phys. Lett. 2008, 5, 387–394. [Google Scholar]
- Bindu, P.; Thomas, S. Optical Properties of ZnO Nanoparticles Synthesised from a Polysaccharide and ZnCl2. Acta Phys. Pol. A 2017, 131, 1474–1478. [Google Scholar] [CrossRef]
- Chen, J.; Sun, K.-W. Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 930–934. [Google Scholar] [CrossRef]
- Nam, S.Y.; Choi, Y.; Song, Y.H.; Jung, M.H.; Kang, C.-M.; Kong, D.-J.; Park, S.J.; Lee, J.Y.; Namkoong, G.; Lee, D.-S. N-ZnO/i-InGaN/p-GaN heterostructure for solar cell application. Phys. Status Solidi A 2013, 210, 2214–2218. [Google Scholar] [CrossRef]
- Kaplan, I. Nuclear Physics; Addison-Wesley Publishing: Boston, MA, USA, 1977. [Google Scholar]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D. Evaluation of the Tauc Method for Optical Absorption Edge Determination: ZnO Thin Films as a Model System. Phys. Status Solidi B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Fan, H. Temperature dependence of the energy gap in semiconductors. Phys. Rev. 1951, 82, 900. [Google Scholar] [CrossRef]
- Manoogian, A.; Woolley, J. Temperature dependence of the energy gap in semiconductors. Can. J. Phys. 1984, 62, 285–287. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Xi, J.; Yang, J. Temperature-dependent band gaps in several semiconductors: From the role of electron–phonon renormalization. J. Phys. Condens. Matter 2020, 32, 475503. [Google Scholar] [CrossRef]
- Wang, M.-D.; Zhu, D.-Y.; Liu, Y.; Zhang, L.; Zheng, C.-X.; He, Z.-H.; Chen, D.-H.; Wen, L.-S. Determination of Thickness and Optical Constants of ZnO Thin Films Prepared by Filtered Cathode Vacuum Arc Deposition. Chin. Phys. Lett. 2008, 25, 743. [Google Scholar] [CrossRef]
- Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- Kurik, M.V. Urbach rule. Phys. Status Solidi A 1971, 8, 9–45. [Google Scholar] [CrossRef]
- Caponetti, E. Synthesis, size control, and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions. Mater. Sci. Eng. C 2003, 23, 531–539. [Google Scholar] [CrossRef]
- Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95, 525–532. [Google Scholar] [CrossRef]
2.8028 | 2.8146 | 1.003 | 8 | |
2.5894 | 2.6035 | 0.714 | 12 | |
2.4686 | 2.4760 | 0.793 | 11 | |
1.9058 | 1.9112 | 0.935 | 9 | |
1.6221 | 1.6250 | 1.041 | 9 | |
1.4745 | 1.4774 | 0.981 | 10 | |
1.3734 | 1.3785 | 1.632 | 6 | |
1.2369 | 1.3598 | 1.290 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, K.P.; Sapkota, D.R.; Jamarkattel, M.K.; Stillion, Q.; Collins, R.W. Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations. Nanomaterials 2023, 13, 1795. https://doi.org/10.3390/nano13111795
Bhandari KP, Sapkota DR, Jamarkattel MK, Stillion Q, Collins RW. Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations. Nanomaterials. 2023; 13(11):1795. https://doi.org/10.3390/nano13111795
Chicago/Turabian StyleBhandari, Khagendra P., Dhurba R. Sapkota, Manoj K. Jamarkattel, Quenton Stillion, and Robert W. Collins. 2023. "Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations" Nanomaterials 13, no. 11: 1795. https://doi.org/10.3390/nano13111795
APA StyleBhandari, K. P., Sapkota, D. R., Jamarkattel, M. K., Stillion, Q., & Collins, R. W. (2023). Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations. Nanomaterials, 13(11), 1795. https://doi.org/10.3390/nano13111795