High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Synthesis
2.3. Characterizations
2.4. Photocatalytic Performance Test
2.5. Photoelectrochemical Measurements
3. Results and Discussion
3.1. Morphology and Microstructure
3.2. Photocatalytic Activity and Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaiser, R.I.; Zhao, L.; Lu, W.; Ahmed, M.; Krasnoukhov, V.S.; Azyazov, V.N.; Mebel, A.M. Unconventional Excited-State Dynamics in the Concerted Benzyl (C7H7) Radical Self-Reaction to Anthracene (C14H10). Nat. Commun. 2022, 13, 786. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Zhang, H.; Fu, S.; Jaroniec, M.; Shan, J.; Xia, B.; Qu, Y.; Qu, J.; Chen, S.; Song, L.; et al. NiPS3 Ultrathin Nanosheets as Versatile Platform Advancing Highly Active Photocatalytic H2 Production. Nat. Commun. 2022, 13, 4600. [Google Scholar] [CrossRef] [PubMed]
- Theerthagiri, J.; Lee, S.J.; Karuppasamy, K.; Arulmani, S.; Veeralakshmi, S.; Ashokkumar, M.; Choi, M.Y. Application of Advanced Materials in Sonophotocatalytic Processes for the Remediation of Environmental Pollutants. J. Hazard. Mater. 2021, 412, 125245. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.D.; Li, R.; Jiang, H.L. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production. Small Methods 2023, 7, 2201258. [Google Scholar] [CrossRef]
- Ye, J.; Wang, C.; Gao, C.; Fu, T.; Yang, C.; Ren, G.; Lu, J.; Zhou, S.; Xiong, Y. Solar-Driven Methanogenesis with Ultrahigh Selectivity by Turning down H2 Production at Biotic-Abiotic Interface. Nat. Commun. 2022, 13, 6612. [Google Scholar] [CrossRef]
- Yi, H.; Huang, D.; Qin, L.; Zeng, G.; Lai, C.; Cheng, M.; Ye, S.; Song, B.; Ren, X.; Guo, X. Selective Prepared Carbon Nanomaterials for Advanced Photocatalytic Application in Environmental Pollutant Treatment and Hydrogen Production. Appl. Catal. B Environ. 2018, 239, 408–424. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y.; Liu, J.; Li, S.L.; Lan, Y.Q. Linking Oxidative and Reductive Clusters to Prepare Crystalline Porous Catalysts for Photocatalytic CO2 Reduction with H2O. Nat. Commun. 2022, 13, 4681. [Google Scholar] [CrossRef]
- Fang, S.; Lyu, X.; Tong, T.; Lim, A.I.; Li, T.; Bao, J.; Hu, Y.H. Turning Dead Leaves into an Active Multifunctional Material as Evaporator, Photocatalyst, and Bioplastic. Nat. Commun. 2023, 14, 1203. [Google Scholar] [CrossRef]
- Li, H.; Cheng, C.; Yang, Z.; Wei, J. Encapsulated CdSe/CdS Nanorods in Double-Shelled Porous Nanocomposites for Efficient Photocatalytic CO2 Reduction. Nat. Commun. 2022, 13, 6466. [Google Scholar] [CrossRef]
- Liu, T.; Pan, Z.; Kato, K.; Vequizo, J.J.M.; Yanagi, R.; Zheng, X.; Yu, W.; Yamakata, A.; Chen, B.; Hu, S.; et al. A General Interfacial-Energetics-Tuning Strategy for Enhanced Artificial Photosynthesis. Nat. Commun. 2022, 13, 7783. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.H.; Debnath, T.; Wang, Y.; Pohl, D.; Besteiro, L.V.; Meira, D.M.; Huang, S.; Yang, F.; Rellinghaus, B.; et al. Silver Nanoparticle Enhanced Metal-Organic Matrix with Interface-Engineering for Efficient Photocatalytic Hydrogen Evolution. Nat. Commun. 2023, 14, 541. [Google Scholar] [CrossRef]
- Tavasoli, A.; Gouda, A.; Zahringer, T.; Li, Y.F.; Quaid, H.; Viasus Perez, C.J.; Song, R.; Sain, M.; Ozin, G. Enhanced Hybrid Photocatalytic Dry Reforming Using a Phosphated Ni-CeO2 Nanorod Heterostructure. Nat. Commun. 2023, 14, 1435. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, S.; Guo, Y.; Wang, H.; Wei, J.; Su, X.; Zhang, H.; Liu, Z.; Wang, J. Designing Covalent Organic Frameworks with Co-O4 Atomic Sites for Efficient CO2 Photoreduction. Nat. Commun. 2023, 14, 1147. [Google Scholar] [CrossRef]
- Qin, B.; Saeed, M.Z.; Li, Q.; Zhu, M.; Feng, Y.; Zhou, Z.; Fang, J.; Hossain, M.; Zhang, Z.; Zhou, Y.; et al. General Low-Temperature Growth of Two-Dimensional Nanosheets from Layered and Nonlayered Materials. Nat. Commun. 2023, 14, 304. [Google Scholar] [CrossRef]
- Gibson, Q.D.; Manning, T.D.; Zanella, M.; Zhao, T.; Murgatroyd, P.A.E.; Robertson, C.M.; Jones, L.A.H.; McBride, F.; Raval, R.; Cora, F.; et al. Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi4O4SeCl2. J. Am. Chem. Soc. 2020, 142, 847–856. [Google Scholar] [CrossRef]
- Hao, G.; Zhang, C.; Chen, Z.; Xu, Y. Nanoconfinement Synthesis of Ultrasmall Bismuth Oxyhalide Nanocrystals with Size-Induced Fully Reversible Potassium-Ion Storage and Ultrahigh Volumetric Capacity. Adv. Funct. Mater. 2022, 32, 2201352. [Google Scholar] [CrossRef]
- Li, D.; Sun, Y.; Li, M.; Cheng, X.; Yao, Y.; Huang, F.; Jiao, S.; Gu, M.; Rui, X.; Ali, Z.; et al. Rational Design of an Artificial SEI: Alloy/Solid Electrolyte Hybrid Layer for a Highly Reversible Na and K Metal Anode. ACS Nano 2022, 16, 16966–16975. [Google Scholar] [CrossRef]
- Wu, X.; Liu, N.; Wang, M.; Qiu, Y.; Guan, B.; Tian, D.; Guo, Z.; Fan, L.; Zhang, N. A Class of Catalysts of BiOX (X = Cl, Br, I) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries. ACS Nano 2019, 13, 13109–13115. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Lv, D.; Liu, C.; Lai, W.; Sun, C.; Su, Z.; Xu, X.; Hao, W.; Dou, S.X.; et al. Promoted Photocharge Separation in 2D Lateral Epitaxial Heterostructure for Visible-Light-Driven CO2 Photoreduction. Adv. Mater. 2020, 32, 2004311. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, G.; Fan, F.; Song, C.; Wang, F.; Xing, Q.; Wang, C.; Wu, H.; Yan, H. Strain-Tunable van der Waals Interactions in Few-Layer Black Phosphorus. Nat. Commun. 2019, 10, 2447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Li, J.; Mao, C.; Liu, S.; Wang, X.; Liu, X.; Zhao, S.; Liu, X.; Huang, Y.; Zhang, L. Van Der Waals Gap-Rich BiOCl Atomic Layers Realizing Efficient, Pure-Water CO2-to-CO Photocatalysis. Nat. Commun. 2021, 12, 5923. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Y.; Wang, E.; Wang, B.; Zhao, H.; Zeng, Y.; Zhang, Q.; Wu, Y.; Gu, L.; Li, X.; et al. Determining the Interlayer Shearing in Twisted Bilayer MoS2 by Nanoindentation. Nat. Commun. 2022, 13, 3898. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Shi, G.; Zhong, L.; Liu, L.; Zhang, H.; Yang, C.; Yu, K.; Zhu, C.; Li, J.; Zhang, S.; et al. A Two-Dimensional van der Waals Heterostructure with Isolated Electron-Deficient Cobalt Sites toward High-Efficiency CO2 Electroreduction. J. Am. Chem. Soc. 2022, 144, 21502–21511. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; An, J.; Qi, L.; Xue, Y.; Li, G.; Lyu, Q.; Yang, W.; Li, Y. Synthesis of Crystalline Phosphine-Graphdiyne with Self-Adaptive p-π Conjugation. J. Am. Chem. Soc. 2023, 145, 864–872. [Google Scholar] [CrossRef]
- Guo, S.; Li, X.; Li, J.; Wei, B. Boosting Photocatalytic Hydrogen Production from Water by Photothermally Induced Biphase Systems. Nat. Commun. 2021, 12, 1343. [Google Scholar] [CrossRef]
- Liao, X.; Lan, X.; Ni, N.; Yang, P.; Yang, Y.; Chen, X. Bismuth Oxychloride Nanowires for Photocatalytic Decomposition of Organic Dyes. ACS Appl. Nano Mater. 2021, 4, 3887–3892. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, L.; Liang, F.; An, D.; Chen, Z.; Feng, D.; Xian, M. Water-Assisted Synthesis of Shape-Specific BiOCl Nanoflowers with Enhanced Adsorption and Photosensitized Degradation of Rhodamine B. Environ. Chem. Lett. 2019, 18, 243–249. [Google Scholar] [CrossRef]
- Nakagawa, F.; Saruyama, M.; Takahata, R.; Sato, R.; Matsumoto, K.; Teranishi, T. In Situ Control of Crystallinity of 3D Colloidal Crystals by Tuning the Growth Kinetics of Nanoparticle Building Blocks. J. Am. Chem. Soc. 2022, 144, 5871–5877. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, P.; Hu, L.; Sun, C.; Li, J.; Feng, X.; Wang, B. Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. J. Am. Chem. Soc. 2021, 143, 7897–7902. [Google Scholar] [CrossRef]
- Greciano, E.E.; Calbo, J.; Orti, E.; Sanchez, L. N-Annulated Perylene Bisimides to Bias the Differentiation of Metastable Supramolecular Assemblies into J- and H-Aggregates. Angew. Chem. Int. Ed. Engl. 2020, 59, 17517–17524. [Google Scholar] [CrossRef]
- Wan, H.; Xu, Q.; Wu, J.; Lian, C.; Liu, H.; Zhang, B.; He, J.; Chen, D.; Lu, J. SuFEx-Enabled Elastic Polysulfates for Efficient Removal of Radioactive Iodomethane and Polar Aprotic Organics through Weak Intermolecular Forces. Angew. Chem. Int. Ed. Engl. 2022, 61, 202208577. [Google Scholar] [CrossRef]
- Weng, S.; Chen, B.; Xie, L.; Zheng, Z.; Liu, P. Facile in Situ Synthesis of a Bi/BiOCl Nanocomposite with High Photocatalytic Activity. J. Mater. Chem. A 2013, 1, 3068. [Google Scholar] [CrossRef]
- Liu, G.; Wang, B.; Zhu, X.; Ding, P.; Zhao, J.; Li, H.; Chen, Z.; Zhu, W.; Xia, J. Edge-Site-Rich Ordered Macroporous BiOCl Triggers C=O Activation for Efficient CO2 Photoreduction. Small 2022, 18, 2105228. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Qiu, T.; Yang, L.; Han, Q.; Shen, Q.; Zhou, X.; Zhou, Y.; Zou, Z. Bismuth Vacancy-Induced Efficient CO2 Photoreduction in BiOCl Directly from Natural Air: A Progressive Step toward Photosynthesis in Nature. Nano Lett. 2021, 21, 10260–10266. [Google Scholar] [CrossRef]
- Cao, X.; Huang, A.; Liang, C.; Chen, H.C.; Han, T.; Lin, R.; Peng, Q.; Zhuang, Z.; Shen, R.; Chen, H.M.; et al. Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C-H Bonds via Water Oxidation. J. Am. Chem. Soc. 2022, 144, 3386–3397. [Google Scholar] [CrossRef]
- Hiratsuka, T.; Tanaka, H.; Miyahara, M.T. Mechanism of Kinetically Controlled Capillary Condensation in Nanopores: A Combined Experimental and Monte Carlo Approach. ACS Nano 2017, 11, 269–276. [Google Scholar] [CrossRef]
- Wang, W.; Favaro, M.; Chen, E.; Trotochaud, L.; Bluhm, H.; Choi, K.S.; van de Krol, R.; Starr, D.E.; Galli, G. Influence of Excess Charge on Water Adsorption on the BiVO4(010) Surface. J. Am. Chem. Soc. 2022, 144, 17173–17185. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, P.; Kang, X.; Zheng, L.; Mo, G.; Wu, R.; Tai, J.; Han, B. Efficient Electrocatalytic Reduction of CO2 to Ethane over Nitrogen-Doped Fe2O3. J. Am. Chem. Soc. 2022, 144, 14769–14777. [Google Scholar] [CrossRef]
- Jiang, R.; Lu, G.; Wang, M.; Dang, T.; Liu, J.; Yan, Z. Facet-Dependent Photoactivity of Mn3O4/BiOCl for Naproxen Detoxication: Strengthening Effect of Mn Valence Cycle. Appl. Catal. B Environ. 2021, 299, 120672. [Google Scholar] [CrossRef]
- Nalawade, Y.; Pepper, J.; Harvey, A.; Griffin, A.; Caffrey, D.; Kelly, A.G.; Coleman, J.N. All-Printed Dielectric Capacitors from High-Permittivity, Liquid-Exfoliated BiOCl Nanosheets. ACS Appl. Electron. Mater. 2020, 2, 3233–3241. [Google Scholar] [CrossRef]
- Liu, Q.; Li, H.; Zhang, H.; Shen, Z.; Ji, H. The Role of Cs Dopants for Improved Activation of Molecular Oxygen and Degradation of Tetracycline over Carbon Nitride. Chin. Chem. Lett. 2022, 33, 4756–4760. [Google Scholar] [CrossRef]
- Nie, X.; Li, G.; Li, S.; Luo, Y.; Luo, W.; Wan, Q.; An, T. Highly Efficient Adsorption and Catalytic Degradation of Ciprofloxacin by a Novel Heterogeneous Fenton Catalyst of Hexapod-Like Pyrite Nanosheets Mineral Clusters. Appl. Catal. B Environ. 2022, 300, 120734. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced Solar Light–Driven Photocatalytic Degradation of Tetracycline and Organic Pollutants by Novel One–Dimensional ZnWO4 Nanorod–Decorated Two–Dimensional Bi2WO6 Nanoflakes. J. Taiwan Inst. Chem. E 2020, 110, 58–70. [Google Scholar] [CrossRef]
- Kadam, A.N.; Babu, B.; Lee, S.W.; Kim, J.; Yoo, K. Morphological Guided Sphere to Dendrite BiVO4 for Highly Efficient Organic Pollutant Removal and Photoelectrochemical Performance under Solar Light. Chemosphere 2022, 305, 135461. [Google Scholar] [CrossRef]
- Song, Z.; Dong, X.; Fang, J.; Xiong, C.; Wang, N.; Tang, X. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis. J. Hazard. Mater. 2019, 377, 371–380. [Google Scholar] [CrossRef]
- Song, Z.; Dong, X.; Wang, N.; Zhu, L.; Luo, Z.; Fang, J.; Xiong, C. Efficient Photocatalytic Defluorination of Perfluorooctanoic Acid over BiOCl Nanosheets via a Hole Direct Oxidation Mechanism. Chem. Eng. J. 2017, 317, 925–934. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Liu, Y.; Mirza, Z.A.; Zhao, C.; Xiao, W. Microwave-Assisted Synthesis of BiOCl and its Adsorption and Photocatalytic Activity. Ceram. Int. 2015, 41, 8028–8033. [Google Scholar] [CrossRef]
- Haider, Z.; Zheng, J.Y.; Kang, Y.S. Surfactant Free Fabrication and Improved Charge Carrier Separation Induced Enhanced Photocatalytic Activity of 001 Facet Exposed Unique Octagonal BiOCl Nanosheets. Phys. Chem. Chem. Phys. 2016, 18, 19595–19604. [Google Scholar] [CrossRef]
- Zhang, X.; Ai, Z.; Jia, F.; Zhang, L. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. J. Phys. Chem. C 2008, 112, 747–753. [Google Scholar] [CrossRef]
- Yang, C.; Li, F.; Li, T.; Cao, W. Ionic-Liquid Assisted Ultrasonic Synthesis of BiOCl with Controllable Morphology and Enhanced Visible Light and Sunlight Photocatalytic Activity. J. Mol. Catal. A Chem. 2016, 418–419, 132–137. [Google Scholar] [CrossRef]
- Gao, X.; Peng, W.; Tang, G.; Guo, Q.; Luo, Y. Highly Efficient and Visible-Light-Driven BiOCl for Photocatalytic Degradation of Carbamazepine. J. Alloys Compd. 2018, 757, 455–465. [Google Scholar] [CrossRef]
- Tian, J.; Chen, Z.; Deng, X.; Sun, Q.; Sun, Z.; Li, W. Improving Visible Light Driving Degradation of Norfloxacin over Core-Shell Hierarchical BiOCl Microspherical Photocatalyst by Synergistic Effect of Oxygen Vacancy and Nanostructure. Appl. Surf. Sci. 2018, 453, 373–382. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Li, Y.; Wu, G.; Zhao, J. CTAB Induced Hierarchical Bismuth Microspheres for Visible-Light Photocatalytic Study. J. Colloid Interface Sci. 2017, 505, 519–527. [Google Scholar] [CrossRef]
- Li, Q.; Ren, J.; Hao, Y.j.; Li, Y.l.; Wang, X.j.; Liu, Y.; Su, R.; Li, F.T. Insight into Reactive Species-Dependent Photocatalytic Toluene Mineralization and Deactivation Pathways via Modifying Hydroxyl Groups and Oxygen Vacancies on BiOCl. Appl. Catal. B Environ. 2022, 317, 121761. [Google Scholar] [CrossRef]
BiOCl Morphology | Light Source | Pollutant | Irradiation Time | Degradation Rate | Ref. |
---|---|---|---|---|---|
Nanosheets | 300 W Xe lamp A.M 1.5 | Norfloxacin | 180 min | 84% | This work |
Nanosheets | 10 W UV light 254 nm | Perfluorooctanoic acid | 3 h | 78% | [45] |
Nanosheets | 10 W UV light 254 nm | Perfluorooctanoic acid | 24 h | 59.3% | [46] |
Nanosheets | 500 W Xe lamp | Rhodamine B | 3.5 h | 72.5% | [47] |
Octagonal nanosheets | 300 W Xe lamp λ > 400 nm | Rhodamine B | 2 h | 61.7% | [48] |
Microspheres | 500 W halogen tungsten lamp λ > 420 nm | Methyl orange | 3 h | 15% | [49] |
Microspheres | 300 W Xe lamp λ > 400 nm | Methyl orange | 180 min | 51.1% | [50] |
Microspheres | 350 W Xe lamp λ > 420 nm | Carbamazepine | 180 min | 70% | [51] |
Microspheres | 300 W Xe lamp λ > 420 nm | Norfloxacin | 120 min | 57.8% | [52] |
Microspheres | 500 W iodine tungsten lamp white light of 380–830 nm | Bisphenol A | 3 h | 47.4% | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Li, M.; Liao, L.; Guo, L.; Liu, H.; Wang, B.; Li, Z. High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation. Nanomaterials 2023, 13, 1841. https://doi.org/10.3390/nano13121841
Song D, Li M, Liao L, Guo L, Liu H, Wang B, Li Z. High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation. Nanomaterials. 2023; 13(12):1841. https://doi.org/10.3390/nano13121841
Chicago/Turabian StyleSong, Dongxue, Mingxia Li, Lijun Liao, Liping Guo, Haixia Liu, Bo Wang, and Zhenzi Li. 2023. "High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation" Nanomaterials 13, no. 12: 1841. https://doi.org/10.3390/nano13121841
APA StyleSong, D., Li, M., Liao, L., Guo, L., Liu, H., Wang, B., & Li, Z. (2023). High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation. Nanomaterials, 13(12), 1841. https://doi.org/10.3390/nano13121841