Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ao, L.; Xiao, H.Y.; Xiang, X.; Li, S.; Liu, K.Z.; Huang, H.; Zu, X.T. Functionalization of a GaSe Monolayer by Vacancy and Chemical Element Doping. Phys. Chem. Chem. Phys. 2015, 17, 10737–10748. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, Y.; Guo, M.; Yu, L.; Huang, B. Tunable Electronic and Dielectric Behavior of GaS and GaSe Monolayers. Phys. Chem. Chem. Phys. 2013, 15, 7098–7105. [Google Scholar] [CrossRef] [PubMed]
- Özdamar, B.; Özbal, G.; Çlnar, M.N.; Sevim, K.; Kurt, G.; Kaya, B.; Sevinçli, H. Structural, Vibrational, and Electronic Properties of Single-Layer Hexagonal Crystals of Group IV and V Elements. Phys. Rev. B 2018, 98, 045431. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, K.; Waters, K.; Wang, G.; Gahtori, B.; Haranath, D.; Pandey, R. Thermoelectric Properties of SnSe Nanoribbons: A Theoretical Aspect. Mater. Res. Express 2016, 3, 035013. [Google Scholar] [CrossRef] [Green Version]
- Gajić, R.; Meisels, R.; Kuchar, F.; Hingerl, K. All-Angle Left-Handed Negative Refraction in Kagomé and Honeycomb Lattice Photonic Crystals. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 165310. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Zhang, J.R.; Chen, L.; Guo, J.; Shen, S.; Au, C.T.; Yin, S.F.; Cai, M.Q. Density Functional Theory Calculation on Two-Dimensional MoS2/BiOX (X = Cl, Br, I) van Der Waals Heterostructures for Photocatalytic Action. Appl. Surf. Sci. 2019, 492, 157–165. [Google Scholar] [CrossRef]
- Xu, L.; Yang, M.; Wang, S.J.; Feng, Y.P. Electronic and Optical Properties of the Monolayer Group-IV Monochalcogenides MX (M = Ge, Sn; X = S, Se, Te). Phys. Rev. B 2017, 95, 235434. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Shao, H.; Ni, G.; Li, J.; Lu, H.; Zhang, R.; Peng, B.; Zhu, Y.; Zhu, H.; et al. First-Principles Study on the Electronic, Optical, and Transport Properties of Monolayer α- and β-GeSe. Phys. Rev. B 2017, 96, 245421. [Google Scholar] [CrossRef] [Green Version]
- Yap, W.C.; Yang, Z.; Mehboudi, M.; Yan, J.A.; Barraza-Lopez, S.; Zhu, W. Layered Material GeSe and Vertical GeSe/MoS2 p-n Heterojunctions. Nano Res. 2018, 11, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, D.D.; Patel, R.J.; Hickner, M.A.; Schaak, R.E. Single-Crystal Colloidal Nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132, 15170–15172. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, S.; Sun, S.; Xie, M.; Cai, B.; Zeng, H. GeSe Monolayer Semiconductor with Tunable Direct Band Gap and Small Carrier Effective Mass. Appl. Phys. Lett. 2015, 107, 122107. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Yan, P.; Tu, J.; Xu, Y.; He, L. Increasing the Photocatalytic Properties of Monolayer Black Phase GeSe by 3d Transition Metal Doping: From Ultraviolet to Infrared Absorption. Mol. Catal. 2020, 496, 111195. [Google Scholar] [CrossRef]
- Yang, L.; Wu, M.; Yao, K. Transition-Metal-Doped Group-IV Monochalcogenides: A Combination of Two-Dimensional Triferroics and Diluted Magnetic Semiconductors. Nanotechnology 2018, 29, 215703. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, X.; Li, H.; He, L. Surface Doping of Nonmetal Atoms Enhances Photocatalytic Performance of Monolayer GeSe for Degradation of Organic Pollution. Chem. Phys. Lett. 2021, 785, 139156. [Google Scholar] [CrossRef]
- Li, S.; Hou, Y.; Li, D.; Zou, B.; Zhang, Q.; Cao, Y.; Tang, G. Realization of High Thermoelectric Performance in Solution-Synthesized Porous Zn and Ga Codoped SnSe Nanosheets. J. Mater. Chem. A Mater. 2022, 10, 12429–12437. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhou, S.; Bai, Y.; Zhao, J. Oxidation Resistance of Monolayer Group-IV Monochalcogenides. ACS Appl. Mater. Interfaces 2017, 9, 12013–12020. [Google Scholar] [CrossRef]
- von Rohr, F.O.; Ji, H.; Cevallos, F.A.; Gao, T.; Ong, N.P.; Cava, R.J. High-Pressure Synthesis and Characterization of β-GeSe—A Six-Membered-Ring Semiconductor in an Uncommon Boat Conformation. J. Am. Chem. Soc. 2017, 139, 2771–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. First-Principles Investigation of B- and N-Doped Fluorographene. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 035434. [Google Scholar] [CrossRef]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Ahmed, S.; Subrina, S. Functionalization of Electronic, Spin and Optical Properties of GeSe Monolayer by Substitutional Doping: A First-Principles Study. Nanotechnology 2021, 32, 305701. [Google Scholar] [CrossRef]
- Shafique, A.; Shin, Y.H. Thermoelectric and Phonon Transport Properties of Two-Dimensional IV-VI Compounds. Sci. Rep. 2017, 7, 506. [Google Scholar] [CrossRef] [Green Version]
- Dyachenko, A.A.; Lukoyanov, A.V.; Shorikov, A.O.; Anisimov, V.I. Magnetically Driven Phase Transitions with a Large Volume Collapse in MnSe under Pressure: A DFT+DMFT Study. Phys. Rev. B 2018, 98, 085139. [Google Scholar] [CrossRef]
- Youn, S.J.; Min, B.I.; Freeman, A.J. Crossroads Electronic Structure of MnS, MnSe, and MnTe. Phys. Status Solidi (b) 2004, 241, 1411–1414. [Google Scholar] [CrossRef]
- Hung, T.L.; Huang, C.H.; Deng, L.Z.; Ou, M.N.; Chen, Y.Y.; Wu, M.K.; Huyan, S.Y.; Chu, C.W.; Chen, P.J.; Lee, T.K. Pressure Induced Superconductivity in MnSe. Nat. Commun. 2021, 12, 5436. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, P.J.; Lee, Y.P.; Shin, S.W.; Kim, T.H.; Kang, J.; Rhee, J.Y. Realization of Room-Temperature Ferromagnetism and of Improved Carrier Mobility in Mn-Doped ZnO Film by Oxygen Deficiency, Introduced by Hydrogen and Heat Treatments. Adv. Mater. 2007, 19, 3496–3500. [Google Scholar] [CrossRef]
- Bardeen, J.; Shockley, W. Deformation Potentials and Mobilities in Non-Polar Crystals. Phys. Rev. 1950, 80, 72–80. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, G.; Zhang, Y.W. Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 2014, 136, 6269–6275. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhang, X.; He, W.; Lei, L.; Peng, Y.; Xiang, G. Structure-Dependent High-TC Ferromagnetism in Mn-Doped GeSe. Nanoscale 2022, 14, 13343–13351. [Google Scholar] [CrossRef] [PubMed]
Dopant | a (Å) | b (Å) | θ1˚ | θ2˚ | θ3˚ | d1 (Å) | d2 (Å) | d3 (Å) | d4 (Å) |
---|---|---|---|---|---|---|---|---|---|
None | 7.97 | 8.52 | 96.38 | 97.53 | 97.53 | 2.55 | 2.68 | 2.68 | |
Mn | 7.96 | 8.27 | 92.96 | 101.55 | 101.55 | 2.57 | 2.68 | 2.68 | 2.86 |
Mn-Cl | 7.84 | 9.19 | 89.60 | 108.49 | 97.18 | 2.59 | 2.62 | 2.79 | 2.61 |
Mn-Br | 7.87 | 9.17 | 90.42 | 107.85 | 97.70 | 2.59 | 2.61 | 2.78 | 2.79 |
Dopant | Spin | Bandgap (eV) |
---|---|---|
None | up | 1.13(D) |
down | 1.13(D) | |
Mn | up | 0.95(I) |
down | 1.08(I) | |
Mn-Cl | up | 0.58(I) |
down | 1.07(I) | |
Mn-Br | up | 0.57(I) |
down | 1.08(I) |
Dopant | Spin | Carrier | ma (m0) | mb (m0) | Ca (N/m) | Cb (N/m) | Ea (eV) | Eb (eV) | μa (cm2v−1s−1) | μb (cm2v−1s−1) |
---|---|---|---|---|---|---|---|---|---|---|
None | electron | 0.37 | 0.13 | 45.56 | 22.65 | 6.77 | 1.22 | 172 | 7494 | |
hole | 0.31 | 0.14 | 45.56 | 22.65 | 10.18 | 4.92 | 96 | 450 | ||
Mn | up | electron | 0.14 | 0.18 | 49.84 | 35.13 | 4.26 | 2.02 | 1735 | 4230 |
hole | 0.32 | 0.18 | 49.84 | 35.13 | 7.06 | 5.80 | 183 | 339 | ||
down | electron | 0.16 | 0.19 | 49.84 | 35.13 | 2.59 | 1.63 | 3739 | 5603 | |
hole | 0.30 | 0.24 | 49.84 | 35.13 | 7.66 | 4.76 | 148 | 338 | ||
Mn-Cl | up | electron | 1.79 | 6.94 | 29.05 | 33.79 | 0.31 | 1.52 | 673 | 8 |
hole | 0.42 | 0.63 | 29.05 | 33.79 | 4.12 | 3.35 | 111 | 130 | ||
down | electron | 0.24 | 0.4 | 29.05 | 33.79 | 3.23 | 0.65 | 526 | 9060 | |
hole | 1.39 | 2.27 | 29.05 | 33.79 | 1.24 | 2.69 | 107 | 16 | ||
Mn-Br | up | electron | 1.57 | 1.88 | 30.36 | 17.58 | 0.23 | 1.96 | 2987 | 20 |
hole | 0.42 | 0.62 | 30.36 | 17.58 | 4.51 | 3.44 | 98 | 66 | ||
down | electron | 0.26 | 0.35 | 30.36 | 17.58 | 2.4 | 0.8 | 944 | 3652 | |
hole | 2.58 | 6.39 | 30.36 | 17.58 | 1.68 | 2.42 | 14 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Zhang, X.; Gong, D.; Nie, Y.; Xiang, G. Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties. Nanomaterials 2023, 13, 1862. https://doi.org/10.3390/nano13121862
He W, Zhang X, Gong D, Nie Y, Xiang G. Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties. Nanomaterials. 2023; 13(12):1862. https://doi.org/10.3390/nano13121862
Chicago/Turabian StyleHe, Wenjie, Xi Zhang, Dan Gong, Ya Nie, and Gang Xiang. 2023. "Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties" Nanomaterials 13, no. 12: 1862. https://doi.org/10.3390/nano13121862
APA StyleHe, W., Zhang, X., Gong, D., Nie, Y., & Xiang, G. (2023). Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties. Nanomaterials, 13(12), 1862. https://doi.org/10.3390/nano13121862