Novel Spiro-Core Dopant-Free Hole Transporting Material for Planar Inverted Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Deposition of the HTMs
2.3. Preparation of the Perovskite Triple-Cation Cs0.05FA0.79MA0.16Pb(I0.85Br0.15)3 (CsFAMA) Precursor Solution
2.4. Device Fabrication
2.5. Device Characterizations
3. Results and Discussion
3.1. Synthesis and Photoelectrochemical Properties
3.2. Electrical Characterization and Performance Analysis
3.3. Morphological Characterization of the Films
3.4. Charge Recombination Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, J.G.; Cabrera-Espinoza, A.; Martínez-Ferrero, E.; Delgado, J.L.; Palomares, E. Chalcogen-Substituted PCBM Derivatives as Ternary Components in PM6:Y6 Solar Cells. Mater. Adv. 2022, 3, 1071–1078. [Google Scholar] [CrossRef]
- Huang, X.-M.; Chen, N.; Ye, D.-N.; Zhong, A.-G.; Liu, H.; Li, Z.; Liu, S.-Y. Structurally Complementary Star-Shaped Unfused Ring Electron Acceptors with Simultaneously Enhanced Device Parameters for Ternary Organic Solar Cells. Solar RRL 2023, 7, 2300143. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, H.; Yu, B.B.; Akin, S.; Liu, Y.; Shen, Z.; Pan, L.; Cai, H. Interface Modification to Achieve High-Efficiency and Stable Perovskite Solar Cells. Chem. Eng. J. 2022, 433, 134613. [Google Scholar] [CrossRef]
- Akman, E.; Shalan, A.E.; Sadegh, F.; Akin, S. Moisture-Resistant FAPbI3 Perovskite Solar Cell with 22.25% Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation. ChemSusChem 2021, 14, 1176–1183. [Google Scholar] [CrossRef]
- Hao, M.; Duan, T.; Ma, Z.; Ju, M.G.; Bennett, J.A.; Liu, T.; Guo, P.; Zhou, Y. Flattening Grain-Boundary Grooves for Perovskite Solar Cells with High Optomechanical Reliability. Adv. Mater. 2023, 35, 2211155. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Xu, C.Y.; Niu, L.B.; Elseman, A.M.; Wang, G.; Liu, D.B.; Yao, Y.Q.; Liao, L.P.; Zhou, G.D.; Song, Q.L. High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Appl. Mater. Interfaces 2019, 11, 22021–22027. [Google Scholar] [CrossRef]
- Dunlap-Shohl, W.A.; Zhou, Y.; Padture, N.P.; Mitzi, D.B. Synthetic Approaches for Halide Perovskite Thin Films. Chem. Rev. 2019, 119, 3193–3295. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.-P.; Grätzel, M.; Hagfeldt, A.; Abate, A. Perowskit-Solarzellen: Atomare Ebene, Schichtqualität und Leistungsfähigkeit der Zellen. Angew. Chem. 2018, 130, 2582–2598. [Google Scholar] [CrossRef]
- Kumar, N.M.; Chopra, S.S.; de Oliveira, A.K.V.; Ahmed, H.; Vaezi, S.; Madukanya, U.E.; Castañón, J.M. Solar PV Module Technologies. In Photovoltaic Solar Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2020; pp. 51–78. [Google Scholar]
- Sundaram, S.; Benson, D.; Mallick, T.K. Overview of the PV Industry and Different Technologies. In Solar Photovoltaic Technology Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 7–22. [Google Scholar]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Cell-Pv-Eff-Emergingpv. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 29 June 2023).
- Rehman, M.A.; Park, S.; Khan, M.F.; Bhopal, M.F.; Nazir, G.; Kim, M.; Farooq, A.; Ha, J.; Rehman, S.; Jun, S.C.; et al. Development of Directly Grown-Graphene–Silicon Schottky Barrier Solar Cell Using Co-Doping Technique. Int. J. Energy Res. 2022, 46, 11510–11522. [Google Scholar] [CrossRef]
- Kadam, K.D.; Rehman, M.A.; Kim, H.; Rehman, S.; Khan, M.A.; Patil, H.; Aziz, J.; Park, S.; Abdul Basit, M.; Khan, K.; et al. Enhanced and Passivated Co-Doping Effect of Organic Molecule and Bromine on Graphene/HfO2/Silicon Metal–Insulator–Semiconductor (MIS) Schottky Junction Solar Cells. ACS Appl. Energy Mater. 2022, 5, 10509–10517. [Google Scholar] [CrossRef]
- Jeng, J.Y.; Chiang, Y.F.; Lee, M.H.; Peng, S.R.; Guo, T.F.; Chen, P.; Wen, T.C. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Park, N.G.; Zhu, K. Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules. Nat. Rev. Mater. 2020, 5, 333–350. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, S.; Chen, S.; Xiao, X.; Zhao, J.; Huang, J. Defect Compensation in Formamidinium–Caesium Perovskites for Highly Efficient Solar Mini-Modules with Improved Photostability. Nat. Energy 2021, 6, 633–641. [Google Scholar] [CrossRef]
- Azmi, R.; Ugur, E.; Seitkhan, A.; Aljamaan, F.; Subbiah, A.S.; Liu, J.; Harrison, G.T.; Nugraha, M.I.; Eswaran, M.K.; Babics, M.; et al. Damp Heat–Stable Perovskite Solar Cells with Tailored-Dimensionality 2D/3D Heterojunctions. Science 2022, 376, 73–77. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Wu, X.; Sheppard, S.A.; Zhang, S.; Gao, D.; Long, N.J.; Zhu, Z. Organometallic-Functionalized Interfaces for Highly Efficient Inverted Perovskite Solar Cells. Science 2022, 376, 416–420. [Google Scholar] [CrossRef]
- Huang, C.; Fu, W.; Li, C.Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A.K.Y.; Chen, H. Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 2528–2531. [Google Scholar] [CrossRef]
- Aktas, E.; Phung, N.; Köbler, H.; González, D.A.; Méndez, M.; Kafedjiska, I.; Turren-Cruz, S.H.; Wenisch, R.; Lauermann, I.; Abate, A.; et al. Understanding the Perovskite/Self-Assembled Selective Contact Interface for Ultra-Stable and Highly Efficient p-i-n Perovskite Solar Cells. Energy Environ. Sci. 2021, 14, 3976–3985. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth for Efficient Hybrid Perovskite Solar Cells. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1600474. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Park, S.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Shin, H.W.; Ahn, T.K.; Noh, J.H.; Yoon, S.C.; et al. Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured P-Type NiO Electrode Formed by a Pulsed Laser Deposition. Adv. Mater. 2015, 27, 4013–4019. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Que, M.; Xing, Y.; Que, W. High Efficiency Hysteresis-Less Inverted Planar Heterojunction Perovskite Solar Cells with a Solution-Derived NiOx Hole Contact Layer. J. Mater. Chem. A Mater. 2015, 3, 24495–24503. [Google Scholar] [CrossRef]
- Jo, J.W.; Seo, M.-S.; Park, M.; Kim, J.-Y.; Park, J.S.; Han, I.K.; Ahn, H.; Jung, J.W.; Sohn, B.-H.; Ko, M.J.; et al. Improving Performance and Stability of Flexible Planar-Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material. Adv. Funct. Mater. 2016, 26, 4464–4471. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Liu, C.; Zhang, T.; Zhang, N.; Zhang, S.; Chen, J.; Xu, Q.; Ouyang, J.; Gong, H. 20.7% Highly Reproducible Inverted Planar Perovskite Solar Cells with Enhanced Fill Factor and Eliminated Hysteresis. Energy Environ. Sci. 2019, 12, 1622–1633. [Google Scholar] [CrossRef]
- Xiao, Q.; Wu, F.; Han, M.M.; Li, Z.; Zhu, L.N.; Li, Z. A Pseudo-Two-Dimensional Conjugated Polysquaraine: An Efficient p-Type Polymer Semiconductor for Organic Photovoltaics and Perovskite Solar Cells. J. Mater. Chem. A Mater. 2018, 6, 13644–13651. [Google Scholar] [CrossRef]
- Hu, L.; Sun, K.; Wang, M.; Chen, W.; Yang, B.; Fu, J.; Xiong, Z.; Li, X.; Tang, X.; Zang, Z.; et al. Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. ACS Appl. Mater. Interfaces 2017, 9, 43902–43909. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells. Adv. Energy Mater. 2017, 7, 1601193. [Google Scholar] [CrossRef]
- Lai, X.; Du, M.; Meng, F.; Li, G.; Li, W.; Kyaw, A.K.K.; Wen, Y.; Liu, C.; Ma, H.; Zhang, R.; et al. High-Performance Inverted Planar Perovskite Solar Cells Enhanced by Thickness Tuning of New Dopant-Free Hole Transporting Layer. Small 2019, 15, 1904715. [Google Scholar] [CrossRef]
- Yang, L.; Cai, F.; Yan, Y.; Li, J.; Liu, D.; Pearson, A.J.; Wang, T. Conjugated Small Molecule for Efficient Hole Transport in High-Performance p-i-n Type Perovskite Solar Cells. Adv. Funct. Mater. 2017, 27, 1702613. [Google Scholar] [CrossRef]
- Yadagiri, B.; Narayanaswamy, K.; Chowdhury, T.H.; Islam, A.; Gupta, V.; Singh, S.P. Application of Small Molecules Based on a Dithienogermole Core in Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells. Mater. Chem. Front. 2020, 4, 2168–2175. [Google Scholar] [CrossRef]
- García-Benito, I.; Zimmermann, I.; Urieta-Mora, J.; Aragó, J.; Calbo, J.; Perles, J.; Serrano, A.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; et al. Heteroatom Effect on Star-Shaped Hole-Transporting Materials for Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1801734. [Google Scholar] [CrossRef]
- Sun, X.; Xue, Q.; Zhu, Z.; Xiao, Q.; Jiang, K.; Yip, H.L.; Yan, H.; Li, Z. Fluoranthene-Based Dopant-Free Hole Transporting Materials for Efficient Perovskite Solar Cells. Chem. Sci. 2018, 9, 2698–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, D.; Boschloo, G.; Hagfeldt, A. High-Efficient Solid-State Perovskite Solar Cell without Lithium Salt in the Hole Transport Material. Nano 2014, 9, 1440001. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Tress, W.; Domanski, K.; Anaraki, E.H.; Turren-Cruz, S.H.; Roose, B.; Boix, P.P.; Grätzel, M.; Saliba, M.; Abate, A.; et al. Identifying and Suppressing Interfacial Recombination to Achieve High Open-Circuit Voltage in Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 1207–1212. [Google Scholar] [CrossRef]
- Yadagiri, B.; Chowdhury, T.H.; He, Y.; Kaneko, R.; Islam, A.; Singh, S.P. Pyridyl-Functionalized Spiro[Fluorene-Xanthene] as a Dopant-Free Hole-Transport Material for Stable Perovskite Solar Cells. Mater. Chem. Front. 2021, 5, 7276–7285. [Google Scholar] [CrossRef]
- Xu, B.; Zhu, Z.; Zhang, J.; Liu, H.; Chueh, C.C.; Li, X.; Jen, A.K.Y. 4-Tert-Butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700683. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, J.; Hua, Y.; Liu, P.; Wang, L.; Ruan, C.; Li, Y.; Boschloo, G.; Johansson, E.M.J.; Kloo, L.; et al. Tailor-Making Low-Cost Spiro[Fluorene-9,9′-Xanthene]-Based 3D Oligomers for Perovskite Solar Cells. Chem 2017, 2, 676–687. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Zhang, J.; Tu, D.; Yang, Q.; Wang, X.; Liu, X.; Cheng, F.; Qiao, Y.; Li, G.; Guo, X.; et al. A Spirobixanthene-Based Dendrimeric Hole-Transporting Material for Perovskite Solar Cells. Solar RRL 2020, 4, 1900367. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Z.; Zhang, J.; Zhou, C.; Chen, Z.; Chen, L.; Zhang, S.; Jia, X.; Zhang, J.; Zhou, Y.; et al. Impact of Alkyl Chain Length on the Properties of Fluorenyl-Based Linear Hole-Transport Materials in p-i-n Perovskites Solar Cells. ACS Appl. Energy Mater. 2022, 5, 7988–7996. [Google Scholar] [CrossRef]
- Deng, Z.; He, M.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.; Zhang, Z.; Xu, H.; Qiu, Y.; Xie, Z.; et al. Design of Low Crystallinity Spiro-Typed Hole Transporting Material for Planar Perovskite Solar Cells to Achieve 21.76% Efficiency. Chem. Mater. 2021, 33, 285–297. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Li, C.; Qiu, S.; Liu, X.; Zeng, L.; Liu, C.; Mai, Y.; Guo, F. Spiro-Linked Molecular Hole-Transport Materials for Highly Efficient Inverted Perovskite Solar Cells. Solar RRL 2020, 4, 1900389. [Google Scholar] [CrossRef]
- Li, W.; Cariello, M.; Méndez, M.; Cooke, G.; Palomares, E. Self-Assembled Molecules for Hole-Selective Electrodes in Highly Stable and Efficient Inverted Perovskite Solar Cells with Ultralow Energy Loss. ACS Appl. Energy Mater. 2022, 6, 1239–1247. [Google Scholar] [CrossRef]
- Pérez-Tejada, R.; Martínez De Baroja, N.; Franco, S.; Pellejà, L.; Orduna, J.; Andreu, R.; Garín, J. Organic Sensitizers Bearing a Trialkylsilyl Ether Group for Liquid Dye Sensitized Solar Cells. Dye Pigment. 2015, 123, 293–303. [Google Scholar] [CrossRef]
- Hu, L.; Li, M.; Yang, K.; Xiong, Z.; Yang, B.; Wang, M.; Tang, X.; Zang, Z.; Liu, X.; Li, B.; et al. PEDOT:PSS Monolayers to Enhance the Hole Extraction and Stability of Perovskite Solar Cells. J. Mater. Chem. A Mater. 2018, 6, 16583–16589. [Google Scholar] [CrossRef]
- Vaghi, L.; Rizzo, F. The Future of Spirobifluorene-Based Molecules as Hole-Transporting Materials for Solar Cells. Solar RRL 2023, 7, 2201108. [Google Scholar] [CrossRef]
- Loizos, M.; Tountas, M.; Tzoganakis, N.; Chochos, C.L.; Nega, A.; Schiza, A.; Polyzoidis, C.; Gregoriou, V.G.; Kymakis, E. Enhancing the Lifetime of Inverted Perovskite Solar Cells Using a New Hydrophobic Hole Transport Material. Energy Adv. 2022, 1, 312–320. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, L.; Zhang, M.; Hameiri, Z.; Liu, X.; Bai, Y.; Hao, X. PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review. Solar RRL 2022, 6, 2200234. [Google Scholar] [CrossRef]
- Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Hole Transporting Materials for Perovskite Solar Cells: A Chemical Approach. Chem. Soc. Rev. 2018, 47, 8541–8571. [Google Scholar] [CrossRef]
- Ke, Q.B.; Wu, J.R.; Lin, C.C.; Chang, S.H. Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar Cells. Polymers 2022, 14, 823. [Google Scholar] [CrossRef]
- Hatamvand, M.; Vivo, P.; Liu, M.; Tayyab, M.; Dastan, D.; Cai, X.; Chen, M.; Zhan, Y.; Chen, Y.; Huang, W. The Role of Different Dopants of Spiro-OMeTAD Hole Transport Material on the Stability of Perovskite Solar Cells: A Mini Review. Vacuum 2023, 214, 112076. [Google Scholar] [CrossRef]
- Jena, A.K.; Numata, Y.; Ikegami, M.; Miyasaka, T. Role of Spiro-OMeTAD in Performance Deterioration of Perovskite Solar Cells at High Temperature and Reuse of the Perovskite Films to Avoid Pb-Waste. J. Mater. Chem. A Mater. 2018, 6, 2219–2230. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, J.; Wang, X.; Liu, X.; Tu, D.; Zhang, J.; Guo, X.; Li, C. A Dispiro-Type Fluorene-Indenofluorene-Centered Hole Transporting Material for Efficient Planar Perovskite Solar Cells. Solar RRL 2018, 2, 1800048. [Google Scholar] [CrossRef]
- Jeon, N.J.; Lee, H.G.; Kim, Y.C.; Seo, J.; Noh, J.H.; Lee, J.; Seok, S. O-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic-Organic Hybrid Perovskite Solar Cells. J. Am. Chem. Soc. 2014, 136, 7837–7840. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Bi, S.; Wang, X.; Leng, X.; Han, M.; Xue, B.; Li, Q.; Zhou, H.; Li, Z. Similar or Different: The Same Spiro-Core but Different Alkyl Chains with Apparently Improved Device Performance of Perovskite Solar Cells. Sci. China Chem. 2019, 62, 739–745. [Google Scholar] [CrossRef]
- Yin, H.; Jin, M.; Chen, W.; Chen, C.; Zheng, L.; Wei, P.; Han, S. Solvent-Free Copper-Catalyzed N-Arylation of Amino Alcohols and Diamines with Aryl Halides. Tetrahedron Lett. 2012, 53, 1265–1270. [Google Scholar] [CrossRef]
- Rakstys, K.; Saliba, M.; Gao, P.; Gratia, P.; Kamarauskas, E.; Paek, S.; Jankauskas, V.; Nazeeruddin, M.K. Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylidene-Based Hole-Transporting Material. Angew. Chem. Int. Ed. 2016, 55, 7464–7468. [Google Scholar] [CrossRef]
- Malinkiewicz, O.; Yella, A.; Lee, Y.H.; Espallargas, G.M.; Graetzel, M.; Nazeeruddin, M.K.; Bolink, H.J. Perovskite Solar Cells Employing Organic Charge-Transport Layers. Nat. Photonics 2014, 8, 128–132. [Google Scholar] [CrossRef]
- Golubev, T.; Liu, D.; Lunt, R.; Duxbury, P. Understanding the Impact of C60 at the Interface of Perovskite Solar Cells via Drift-Diffusion Modeling. AIP Adv. 2019, 9, 035026. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W. Effect of BCP Buffer Layer on Eliminating Charge Accumulation for High Performance of Inverted Perovskite Solar Cells. RSC Adv. 2017, 7, 35819–35826. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.G.; Aktas, E.; Martínez-Ferrero, E.; Capodilupo, A.L.; Corrente, G.A.; Beneduci, A.; Palomares, E. Increasing the Stability of Perovskite Solar Cells with Dibenzofulvene-Based Hole Transporting Materials. Electrochim. Acta 2022, 432, 141190. [Google Scholar] [CrossRef]
- Gao, F.; Li, Z.; Wang, J.; Rao, A.; Howard, I.A.; Abrusci, A.; Massip, S.; McNeill, C.R.; Greenham, N.C. Trap-Induced Losses in Hybrid Photovoltaics. ACS Nano 2014, 8, 3213–3221. [Google Scholar] [CrossRef] [PubMed]
- Credgington, D.; Kim, Y.; Labram, J.; Anthopoulos, T.D.; Durrant, J.R. Analysis of Recombination Losses in a Pentacene/C60 Organic Bilayer Solar Cell. J. Phys. Chem. Lett. 2011, 2, 2759–2763. [Google Scholar] [CrossRef]
- Cowan, S.R.; Roy, A.; Heeger, A.J. Recombination in Polymer-Fullerene Bulk Heterojunction Solar Cells. Phys. Rev. B Condens. Matter. Mater. Phys. 2010, 82, 245207. [Google Scholar] [CrossRef] [Green Version]
- Kirchartz, T.; Nelson, J. Meaning of Reaction Orders in Polymer: Fullerene Solar Cells. Phys. Rev. B Condens. Matter. Mater. Phys. 2012, 86, 165201. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ma, Y.; Wang, Y.; Ma, Q.; Wang, Z.; Yang, Z.; Wan, M.; Mahmoudi, T.; Hahn, Y.-B.; Mai, Y. Hole-Transport Management Enables 23%-Efficient and Stable Inverted Perovskite Solar Cells with 84% Fill Factor. Nanomicro Lett. 2023, 15, 117. [Google Scholar] [CrossRef]
- Suresh, M.S. Measurement of Solar Cell Parameters Using Impedance Spectroscopy. Sol. Energy Mater. Sol. Cells 1996, 43, 21–28. [Google Scholar] [CrossRef]
- Shuttle, C.G.; O’Regan, B.; Ballantyne, A.M.; Nelson, J.; Bradley, D.D.C.; de Mello, J.; Durrant, J.R. Experimental Determination of the Rate Law for Charge Carrier Decay in a Polythiophene: Fullerene Solar Cell. Appl. Phys. Lett. 2008, 92, 093311. [Google Scholar] [CrossRef]
- Unger, E.L.; Hoke, E.T.; Bailie, C.D.; Nguyen, W.H.; Bowring, A.R.; Heumüller, T.; Christoforo, M.G.; McGehee, M.D. Hysteresis and Transient Behavior in Current-Voltage Measurements of Hybrid-Perovskite Absorber Solar Cells. Energy Environ. Sci. 2014, 7, 3690–3698. [Google Scholar] [CrossRef]
- O’Regan, B.C.; Barnes, P.R.F.; Li, X.; Law, C.; Palomares, E.; Marin-Beloqui, J.M. Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO2: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J–V Hysteresis. J. Am. Chem. Soc. 2015, 137, 5087–5099. [Google Scholar] [CrossRef] [Green Version]
- Snaith, H.J.; Abate, A.; Ball, J.M.; Eperon, G.E.; Leijtens, T.; Noel, N.K.; Stranks, S.D.; Wang, J.T.W.; Wojciechowski, K.; Zhang, W. Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515. [Google Scholar] [CrossRef]
- Gelmetti, I.; Montcada, N.F.; Pérez-Rodríguez, A.; Barrena, E.; Ocal, C.; García-Benito, I.; Molina-Ontoria, A.; Martín, N.; Vidal-Ferran, A.; Palomares, E. Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage. Energy Environ. Sci. 2019, 12, 1309–1316. [Google Scholar] [CrossRef]
- Gadisa, A.; Svensson, M.; Andersson, M.R.; Inganas, O. Correlation between Oxidation Potential and Open-Circuit Voltage of Composite Solar Cells Based on Blends of Polythiophenes/Fullerene Derivative. Appl. Phys. Lett. 2004, 84, 1609–1611. [Google Scholar] [CrossRef]
- Elumalai, N.K.; Uddin, A. Open Circuit Voltage of Organic Solar Cells: An in-Depth Review. Energy Environ. Sci. 2016, 9, 391–410. [Google Scholar] [CrossRef]
- Martina, K.; Rinaldi, L.; Baricco, F.; Boffa, L.; Cravotto, G. Highly Efficient Mechanochemical N-Arylation of Amino Alcohols and Diamines with Cu0 Powder. Synlett 2015, 26, 2789–2794. [Google Scholar] [CrossRef] [Green Version]
- Breslow, R.; Marks, P.A. Novel Molecules That Selectively Inhibit Histone Deacetylase 6 Relative to Histone Deacetylase. U.S. Patent Application No. 15/355,959, 18 November 2016. [Google Scholar]
Material | Advantages | Refs. | Disadvantages | Refs. |
---|---|---|---|---|
PEDOT:PSS |
| [47] |
| [23,26,48,49] |
PTAA |
| [50,51,52] |
| [32,49,50] |
Spiro-OMeTAD |
| [44,48,53] |
| [44,54] |
Syl-SC |
| [This work] |
| [This work] |
HTM | Concentration (mg/mL) | Scan | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | HI | Ref. |
---|---|---|---|---|---|---|---|---|
PEDOT:PSS | / | Forward | 21.21 | 0.864 | 76.60 | 14.03 (13.64 ± 0.76) | 0.049 | This work |
Reverse | 21.37 | 0.866 | 79.70 | 14.76 (14.26 ± 0.86) | ||||
Doped spiro | / | Forward | 19.01 | 0.880 | 66.2 | 11.08 | 0.088 | [38] |
Reverse | 19.00 | 0.890 | 71.9 | 12.15 (10.69 ± 1.48) | ||||
Undoped spiro | / | Forward | 19.55 | 0.890 | 72.1 | 12.54 | 0.109 | [38] |
Reverse | 19.53 | 0.914 | 78.8 | 14.07 (11.92 ± 1.57) | ||||
Syl-SC | 2 | Forward | 20.04 | 0.909 | 64.00 | 11.66 (10.49 ± 0.74) | 0.108 | This work |
Reverse | 20.00 | 0.938 | 69.60 | 13.07 (12.35 ± 0.65) | ||||
Syl-SC | 0.8 | Forward | 19.54 | 0.986 | 78.60 | 15.15 (15.01 ± 0.23) | 0.039 | This work |
Reverse | 19.57 | 1.006 | 80.10 | 15.77 (15.00 ± 0.90) | ||||
Syl-SC | 0.5 | Forward | 20.02 | 0.931 | 76.80 | 14.30 (12.94 ± 1.51) | 0.052 | This work |
Reverse | 19.94 | 0.956 | 79.20 | 15.09 (13.79 ± 1.43) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royo, R.; Sánchez, J.G.; Li, W.; Martinez-Ferrero, E.; Palomares, E.; Andreu, R.; Franco, S. Novel Spiro-Core Dopant-Free Hole Transporting Material for Planar Inverted Perovskite Solar Cells. Nanomaterials 2023, 13, 2042. https://doi.org/10.3390/nano13142042
Royo R, Sánchez JG, Li W, Martinez-Ferrero E, Palomares E, Andreu R, Franco S. Novel Spiro-Core Dopant-Free Hole Transporting Material for Planar Inverted Perovskite Solar Cells. Nanomaterials. 2023; 13(14):2042. https://doi.org/10.3390/nano13142042
Chicago/Turabian StyleRoyo, Raquel, José G. Sánchez, Wenhui Li, Eugenia Martinez-Ferrero, Emilio Palomares, Raquel Andreu, and Santiago Franco. 2023. "Novel Spiro-Core Dopant-Free Hole Transporting Material for Planar Inverted Perovskite Solar Cells" Nanomaterials 13, no. 14: 2042. https://doi.org/10.3390/nano13142042
APA StyleRoyo, R., Sánchez, J. G., Li, W., Martinez-Ferrero, E., Palomares, E., Andreu, R., & Franco, S. (2023). Novel Spiro-Core Dopant-Free Hole Transporting Material for Planar Inverted Perovskite Solar Cells. Nanomaterials, 13(14), 2042. https://doi.org/10.3390/nano13142042