Single-Exciton Photoluminescence in a GaN Monolayer inside an AlN Nanocolumn
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Time-Integrated Photoluminescence Spectra
3.2. Temperature-Dependent and Time-Resolved Photoluminescence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jmerik, V.N.; Shubina, T.V.; Mizerov, A.M.; Belyaev, K.G.; Sakharov, A.V.; Zamoryanskaya, M.V.; Sitnikova, A.A.; Davydov, V.Y.; Kop’ev, P.S.; Lutsenko, E.V.; et al. AlGaN quantum well structures for deep-UV LEDs grown by plasma-assisted MBE using sub-monolayer digital-alloying technique. J. Cryst. Growth 2009, 311, 2080–2083. [Google Scholar] [CrossRef]
- Bayerl, D.; Islam, S.M.; Jones, C.M.; Protasenko, V.; Jena, D.; Kioupakis, E. Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl. Phys. Lett. 2016, 109, 241102. [Google Scholar] [CrossRef]
- Jmerik, V.N.; Nechaev, D.V.; Toropov, A.A.; Evropeitsev, E.A.; Kozlovsky, V.I.; Martovitsky, V.P.; Rouvimov, S.; Ivanov, S.V. High-efficiency electron-beam-pumped sub-240-nm ultraviolet emitters based on ultra-thin GaN/AlN multiple quantum wells grown by plasma-assisted molecular-beam epitaxy on c-Al2O3. Appl. Phys. Express 2018, 11, 091003. [Google Scholar] [CrossRef]
- Wang, Y.; Rong, X.; Ivanov, S.; Jmerik, V.; Chen, Z.; Wang, H.; Wang, T.; Wang, P.; Jin, P.; Chen, Y.; et al. Deep Ultraviolet Light Source from Ultrathin GaN/AlN MQW Structures with Output Power over 2 Watt. Adv. Opt. Mater. 2019, 7, 1801763. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ichikawa, S.; Funato, M.; Kawakami, Y. Self-Limiting Growth of Ultrathin GaN/AlN Quantum Wells for Highly Efficient Deep Ultraviolet Emitters. Adv. Opt. Mater. 2019, 7, 1900860. [Google Scholar] [CrossRef]
- Wei, T.; Islam, S.M.; Jahn, U.; Yan, J.; Lee, K.; Bharadwaj, S.; Ji, X.; Wang, J.; Li, J.; Protasenko, V.; et al. GaN/AlN quantum-disk nanorod 280 nm deep ultraviolet light emitting diodes by molecular beam epitaxy. Opt. Lett. 2020, 45, 121. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Wang, P.; Laleyan, D.A.; Sun, K.; Sun, Y.; Ahn, C.; Kira, M.; Kioupakis, E.; Mi, Z. Monolayer GaN excitonic deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2020, 116, 013101. [Google Scholar] [CrossRef]
- Liu, C.; Melanson, B.; Zhang, J. AlGaN-Delta-GaN Quantum Well for DUV LEDs. Photonics 2020, 7, 87. [Google Scholar] [CrossRef]
- Dimkou, I.; Harikumar, A.; Donatini, F.; Lähnemann, J.; den Hertog, M.I.; Bougerol, C.; Bellet-Amalric, E.; Mollard, N.; Ajay, A.; Ledoux, G.; et al. Assessment of AlGaN/AlN superlattices on GaN nanowires as active region of electron-pumped ultraviolet sources. Nanotechnology 2020, 31, 204001. [Google Scholar] [CrossRef] [Green Version]
- Sheng, B.; Bertram, F.; Schmidt, G.; Veit, P.; Müller, M.; Wang, P.; Sun, X.; Qin, Z.; Shen, B.; Wang, X.; et al. Cathodoluminescence nano-characterization of individual GaN/AlN quantum disks embedded in nanowires. Appl. Phys. Lett. 2020, 117, 133106. [Google Scholar] [CrossRef]
- Jmerik, V.; Toropov, A.; Davydov, V.; Ivanov, S. Monolayer-Thick GaN/AlN Multilayer Heterostructures for Deep-Ultraviolet Optoelectronics. Phys. Status Solidi RRL 2021, 15, 2100242. [Google Scholar] [CrossRef]
- Jmerik, V.; Nechaev, D.; Semenov, A.; Evropeitsev, E.; Shubina, T.; Toropov, A.; Yagovkina, M.; Alekseev, P.; Borodin, B.; Orekhova, K.; et al. 2D-GaN/AlN Multiple Quantum Disks/Quantum Well Heterostructures for High-Power Electron-Beam Pumped UVC Emitters. Nanomaterials 2023, 13, 1077. [Google Scholar] [CrossRef]
- Toropov, A.A.; Evropeitsev, E.A.; Nestoklon, M.O.; Smirnov, D.S.; Shubina, T.V.; Kaibyshev, V.K.; Budkin, G.V.; Jmerik, V.N.; Nechaev, D.V.; Rouvimov, S.; et al. Strongly Confined Excitons in GaN/AlN Nanostructures with Atomically Thin GaN Layers for Efficient Light Emission in Deep-Ultraviolet. Nano Lett. 2020, 20, 158–165. [Google Scholar] [CrossRef]
- Weisbuch, C.; Miller, R.C.; Dingle, R.; Gossard, A.C.; Wiegmann, W. Intrinsic radiative recombination from quantum states in GaAs-AℓxGa1−xAs multi-quantum well structures. Solid State Commun. 1981, 37, 219–222. [Google Scholar] [CrossRef]
- Deveaud, B.; Clérot, F.; Roy, N.; Satzke, K.; Sermage, B.; Katzer, D.S. Enhanced radiative recombination of free excitons in GaAs quantum wells. Phys. Rev. Lett. 1991, 67, 2355–2358. [Google Scholar] [CrossRef]
- Andreani, L.C.; Tassone, F.; Bassani, F. Radiative lifetime of free excitons in quantum wells. Solid State Commun. 1991, 77, 641–645. [Google Scholar] [CrossRef]
- Holmes, M.J.; Choi, K.; Kako, S.; Arita, M.; Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 2014, 14, 982. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Aoki, T.; Gao, K.; Arita, M.; Arakawa, Y.; Holmes, M.J. Enhanced Single-Photon Emission from GaN Quantum Dots in Bullseye Structures. ACS Photonics 2021, 8, 1656–1661. [Google Scholar] [CrossRef]
- Tamariz, S.; Callsen, G.; Stachurski, J.; Shojiki, K.; Butté, R.; Grandjean, N. Toward Bright and Pure Single Photon Emitters at 300 K Based on GaN Quantum Dots on Silicon. ACS Photonics 2020, 7, 1515–1522. [Google Scholar] [CrossRef]
- Nechaev, D.V.; Koshelev, O.A.; Ratnikov, V.V.; Brunkov, P.N.; Myasoedov, A.V.; Sitnikova, A.A.; Ivanov, S.V.; Jmerik, V.N. Effect of stoichiometric conditions and growth mode on threading dislocations filtering in AlN/c-Al2O3 templates grown by PA MBE. Superlattices Microst. 2020, 138, 106368. [Google Scholar] [CrossRef]
- Jmerik, V.N.; Nechaev, D.V.; Orekhova, K.N.; Prasolov, N.D.; Kozlovsky, V.I.; Sviridov, D.E.; Zverev, M.M.; Gamov, N.A.; Grieger, L.; Wang, Y.; et al. Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range. Nanomaterials 2021, 11, 2553. [Google Scholar] [CrossRef]
- Claudon, J.; Bleuse, J.; Malik, N.S.; Bazin, M.; Jaffrennou, P.; Gregersen, N.; Sauvan, C.; Lalanne, P.; Gérard, J.-M. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 2010, 4, 174–177. [Google Scholar] [CrossRef]
- Rakhlin, M.; Sorokin, S.; Kazanov, D.; Sedova, I.; Shubina, T.; Ivanov, S.; Mikhailovskii, V.; Toropov, A. Bright single-photon emitters with a CdSe quantum dot and multimode tapered nanoantenna for the visible spectral range. Nanomaterials 2021, 11, 916. [Google Scholar] [CrossRef]
- Rakhlin, M.; Klimko, G.; Sorokin, S.; Kulagina, M.; Zadiranov, Y.; Kazanov, D.; Shubina, T.; Ivanov, S.; Toropov, A. Bright single-photon sources for the telecommunication O-band based on an InAs quantum dot with (In)GaAs asymmetric barriers in a photonic nanoantenna. Nanomaterials 2022, 12, 1562. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C. Diffraction Grating Handbook, 7th ed.; Newport Corporation: New York, NY, USA, 2014; 265p. [Google Scholar]
- Arita, M.; Le Roux, F.; Holmes, M.J.; Kako, S.; Arakawa, Y. Ultraclean Single Photon Emission from a GaN Quantum Dot. Nano Lett. 2017, 17, 2902–2907. [Google Scholar] [CrossRef]
- Labeau, O.; Tamarat, P.; Lounis, B. Temperature Dependence of the Luminescence Lifetime of Single CdSe/ZnS Quantum Dots. Phys. Rev. Lett. 2003, 90, 257404. [Google Scholar] [CrossRef] [Green Version]
- Vermeersch, R.; Jacopin, G.; Castioni, F.; Rouvière, J.-L.; García-Cristóbal, A.; Cros, A.; Pernot, J.; Daudin, B. Ultrathin GaN quantum wells in AlN nanowires for UV-C emission. Nanotechnology 2023, 34, 275603. [Google Scholar] [CrossRef] [PubMed]
- Mula, G.; Adelmann, C.; Moehl, S.; Oullier, J.; Daudin, B. Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN(0001). Phys. Rev. B 2001, 64, 195406. [Google Scholar] [CrossRef]
- Adelmann, C.; Daudin, B.; Oliver, R.A.; Briggs, G.A.D.; Rudd, R.E. Nucleation and growth of GaN/AlN quantum dots. Phys. Rev. B 2004, 70, 125427. [Google Scholar] [CrossRef] [Green Version]
- Koblmüller, G.; Averbeck, R.; Riechert, H.; Hyun, Y.-J.; Pongratz, P. Strain relaxation dependent island nucleation rates during the Stranski–Krastanow growth of GaN on AlN by molecular beam epitaxy. Appl. Phys. Lett. 2008, 93, 243105. [Google Scholar] [CrossRef]
- Sohi, P.; Martin, D.; Grandjean, N. Critical thickness of GaN on AlN: Impact of growth temperature and dislocation density. Semicond. Sci. Technol. 2017, 32, 075010. [Google Scholar] [CrossRef]
- Widmann, F.; Daudin, B.; Feuillet, G.; Samson, Y.; Rouvie‘re, J.L.; Pelekanos, N. Growth kinetics and optical properties of self-organized GaN quantum dots. J. Appl. Phys. 1998, 83, 7618. [Google Scholar] [CrossRef]
- Hrytsaienko, M.; Gallart, M.; Ziegler, M.; Crégut, O.; Tamariz, S.; Butté, R.; Grandjean, N.; Hönerlage, B.; Gilliot, P. Dark-level trapping, lateral confinement, and built-in electric field contributions to the carrier dynamics in c-plane GaN/AlN quantum dots emitting in the UV range. J. Appl. Phys. 2021, 129, 054301. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Zhang, Y.; Huang, P.; Lu, T.-C.; Kuo, H.-C.; Li, S.; Yang, X.; Chen, H.; Liu, D.; et al. High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability. Sci. Rep. 2014, 4, 5166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayerl, D.; Kioupakis, E. Room-temperature stability of excitons and transverse-electric polarized deep-ultraviolet luminescence in atomically thin GaN quantum wells. Appl. Phys. Lett. 2019, 115, 131101. [Google Scholar] [CrossRef] [Green Version]
- Koster, G.F.; Wheeler, R.G.; Dimmock, J.O.; Statz, H. Properties of the Thirty-Two Point Groups; MIT Press: Cambridge, MA, USA, 1963. [Google Scholar]
- Bir, G.I.; Pikus, G.E. Symmetry and Strain-Induced Effects in Semiconductors; Wiley: New York, NY, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evropeitsev, E.; Nechaev, D.; Jmerik, V.; Zadiranov, Y.; Kulagina, M.; Troshkov, S.; Guseva, Y.; Berezina, D.; Shubina, T.; Toropov, A. Single-Exciton Photoluminescence in a GaN Monolayer inside an AlN Nanocolumn. Nanomaterials 2023, 13, 2053. https://doi.org/10.3390/nano13142053
Evropeitsev E, Nechaev D, Jmerik V, Zadiranov Y, Kulagina M, Troshkov S, Guseva Y, Berezina D, Shubina T, Toropov A. Single-Exciton Photoluminescence in a GaN Monolayer inside an AlN Nanocolumn. Nanomaterials. 2023; 13(14):2053. https://doi.org/10.3390/nano13142053
Chicago/Turabian StyleEvropeitsev, Eugenii, Dmitrii Nechaev, Valentin Jmerik, Yuriy Zadiranov, Marina Kulagina, Sergey Troshkov, Yulia Guseva, Daryia Berezina, Tatiana Shubina, and Alexey Toropov. 2023. "Single-Exciton Photoluminescence in a GaN Monolayer inside an AlN Nanocolumn" Nanomaterials 13, no. 14: 2053. https://doi.org/10.3390/nano13142053
APA StyleEvropeitsev, E., Nechaev, D., Jmerik, V., Zadiranov, Y., Kulagina, M., Troshkov, S., Guseva, Y., Berezina, D., Shubina, T., & Toropov, A. (2023). Single-Exciton Photoluminescence in a GaN Monolayer inside an AlN Nanocolumn. Nanomaterials, 13(14), 2053. https://doi.org/10.3390/nano13142053