Time–Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of 3 nm CdSe QDs and Assembly into Quasi-Homodimers in Solution
2.2. 2DES Experimental Methods
2.3. Theoretical Methods
3. Results and Discussion
3.1. Comparison of Computed and Experimental Time–Frequency Polarization Maps
3.2. Modeling of Action-Based Photocurrent Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebentrost, P.; Stopa, M.; Aspuru-Guzik, A. Förster Coupling in Nanoparticle Excitonic Circuits. Nano Lett. 2010, 10, 2849–2856. [Google Scholar] [CrossRef] [Green Version]
- Spittel, D.; Poppe, J.; Meerbach, C.; Ziegler, C.; Hickey, S.G.; Eychmüller, A. Absolute Energy Level Positions in Cdse Nanostructures from Potential-Modulated Absorption Spectroscopy (Emas). ACS Nano 2017, 11, 12174–12184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagan, C.R.; Bassett, L.C.; Murray, C.B.; Thompson, S.M. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem. Rev. 2021, 121, 3186–3233. [Google Scholar] [CrossRef]
- Koley, S.; Cui, J.; Panfil, Y.E.; Banin, U. Coupled Colloidal Quantum Dot Molecules. Acc. Chem. Res. 2021, 54, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Collini, E. 2D Electronic Spectroscopic Techniques for Quantum Technology Applications. J. Phys. Chem. C 2021, 125, 13096–13108. [Google Scholar] [CrossRef]
- Dibenedetto, C.N.; Fanizza, E.; De Caro, L.; Brescia, R.; Panniello, A.; Tommasi, R.; Ingrosso, C.; Giannini, C.; Agostiano, A.; Curri, M.L. Coupling in Quantum Dot Molecular Hetero-Assemblies. Mater. Res. Bull. 2022, 146, 111578. [Google Scholar] [CrossRef]
- Hamilton, J.R.; Amarotti, E.; Dibenedetto, C.N.; Striccoli, M.; Levine, R.D.; Collini, E.; Remacle, F. Harvesting a Wide Spectral Range of Electronic Coherences with Disordered Quasi-Homo Dimeric Assemblies at Room Temperature. Adv. Quantum Technol. 2022, 5, 2200060. [Google Scholar] [CrossRef]
- Gattuso, H.; Levine, R.D.; Remacle, F. Massively Parallel Classical Logic Via Coherent Dynamics of an Ensemble of Quantum Systems with Dispersion in Size. Proc. Natl. Acad. Sci. USA 2020, 117, 21022. [Google Scholar] [CrossRef]
- Komarova, K.; Gattuso, H.; Levine, R.D.; Remacle, F. Quantum Device Emulates the Dynamics of Two Coupled Oscillators. J. Phys. Chem. Lett. 2020, 11, 6990–6995. [Google Scholar] [CrossRef] [PubMed]
- Komarova, K.; Gattuso, H.; Levine, R.D.; Remacle, F. Parallel Quantum Computation of Vibrational Dynamics. Front. Phys. 2020, 8, 486. [Google Scholar] [CrossRef]
- Remacle, F.; Levine, R.D. A Quantum Information Processing Machine for Computing by Observables. Proc. Natl. Acad. Sci. USA 2023, 120, e2220069120. [Google Scholar] [CrossRef] [PubMed]
- Fresch, B.; Hiluf, D.; Collini, E.; Levine, R.D.; Remacle, F. Molecular Decision Trees Realized by Ultrafast Electronic Spectroscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 17183–17188. [Google Scholar] [CrossRef] [PubMed]
- Collini, E.; Gattuso, H.; Levine, R.D.; Remacle, F. Ultrafast Fs Coherent Excitonic Dynamics in Cdse Quantum Dots Assemblies Addressed and Probed by 2d Electronic Spectroscopy. J. Chem. Phys. 2021, 154, 014301. [Google Scholar] [CrossRef] [PubMed]
- Collini, E.; Gattuso, H.; Bolzonello, L.; Casotto, A.; Volpato, A.; Dibenedetto, C.N.; Fanizza, E.; Striccoli, M.; Remacle, F. Quantum Phenomena in Nanomaterials: Coherent Superpositions of Fine Structure States in Cdse Nanocrystals at Room Temperature. J. Phys. Chem. C 2019, 123, 31286–31293. [Google Scholar] [CrossRef] [Green Version]
- Collini, E.; Gattuso, H.; Kolodny, Y.; Bolzonello, L.; Volpato, A.; Fridman, H.T.; Yochelis, S.; Mor, M.; Dehnel, J.; Lifshitz, E. Room-Temperature Inter-Dot Coherent Dynamics in Multilayer Quantum Dot Materials. J. Phys. Chem. C 2020, 124, 1622–16231. [Google Scholar] [CrossRef]
- Gelzinis, A.; Augulis, R.; Butkus, V.; Robert, B.; Valkunas, L. Two-Dimensional Spectroscopy for Non-Specialists. Biochim. Et Biophys. Acta (BBA)—Bioenerg. 2019, 1860, 271–285. [Google Scholar] [CrossRef]
- Brańczyk, A.M.; Turner, D.B.; Scholes, G.D. Crossing Disciplines—A View on Two-Dimensional Optical Spectroscopy. Ann. Der Phys. 2014, 526, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Hybl, J.D.; Albrecht, A.W.; Faeder, S.M.G.; Jonas, D.M. Two-Dimensional Electronic Spectroscopy. Chem. Phys. Lett. 1998, 297, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Bolzonello, L.; Volpato, A.; Meneghin, E.; Collini, E. Versatile Setup for High-Quality Rephasing, Non-Rephasing, and Double Quantum 2d Electronic Spectroscopy. J. Opt. Soc. Am. B 2017, 34, 1223–1233. [Google Scholar] [CrossRef]
- Eckbreth, A.C. Boxcars: Crossed-Beam Phase-Matched Cars Generation in Gases. Appl. Phys. Lett. 2008, 32, 421–423. [Google Scholar] [CrossRef]
- Mueller, S.; Draeger, S.; Ma, X.; Hensen, M.; Kenneweg, T.; Pfeiffer, W.; Brixner, T. Fluorescence-Detected Two-Quantum and One-Quantum–Two-Quantum 2d Electronic Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1964–1969. [Google Scholar] [CrossRef] [Green Version]
- Bakulin, A.A.; Silva, C.; Vella, E. Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work. J. Phys. Chem. Lett. 2016, 7, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karki, K.J.; Widom, J.R.; Seibt, J.; Moody, I.; Lonergan, M.C.; Pullerits, T.; Marcus, A.H. Coherent Two-Dimensional Photocurrent Spectroscopy in a Pbs Quantum Dot Photocell. Nat. Commun. 2014, 5, 5869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardin, G.; Autry, T.M.; Silverman, K.L.; Cundiff, S.T. Multidimensional Coherent Photocurrent Spectroscopy of a Semiconductor Nanostructure. Opt. Express 2013, 21, 28617–28627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, Q.; Ma, F.; Chen, S.; Wei, Q.; Su, X.; Buyanova, I.A.; Chen, W.M.; Ponseca, C.S., Jr.; Linares, M.; Karki, K.J. Vibronic Coherence Contributes to Photocurrent Generation in Organic Semiconductor Heterojunction Diodes. Nat. Commun. 2020, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Bolzonello, L.; Bernal-Texca, F.; Gerling, L.G.; Ockova, J.; Collini, E.; Martorell, J.; Van Hulst, N.F. Photocurrent-Detected 2d Electronic Spectroscopy Reveals Ultrafast Hole Transfer in Operating Pm6/Y6 Organic Solar Cells. J. Phys. Chem. Lett. 2021, 12, 3983–3988. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Gallina, F.; Fresch, B. Simulating Action-2d Electronic Spectroscopy of Quantum Dots: Insights on the Exciton and Biexciton Interplay from Detection-Mode and Time-Gating. Phys. Chem. Chem. Phys. 2022, 24, 27645–27659. [Google Scholar] [CrossRef] [PubMed]
- Karki, K.J.; Ciappina, M.F. Advances in Nonlinear Spectroscopy Using Phase Modulated Light Fields: Prospective Applications in Perturbative and Non-Perturbative Regimes. Adv. Phys. X 2022, 7, 2090856. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and Characterization of Nearly Monodisperse Cde (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Roberge, A.; Dunlap, J.H.; Ahmed, F.; Greytak, A.B. SizeDependent Pbs Quantum Dot Surface Chemistry Investigated Via Gel Permeation Chromatography. Chem. Mater. 2020, 32, 6588–6594. [Google Scholar] [CrossRef]
- Dibenedetto, C.N.; Fanizza, E.; Brescia, R.; Kolodny, Y.; Remennik, S.; Panniello, A.; Depalo, N.; Yochelis, S.; Comparelli, R.; Agostiano, A.; et al. Coupling Effects in Qd Dimers at Sub-Nanometer Interparticle Distance. Nano Res. 2020, 13, 1071–1080. [Google Scholar] [CrossRef]
- Irgen-Gioro, S.; Spencer, A.P.; Hutson, W.O.; Harel, E. Coherences of Bacteriochlorophyll a Uncovered Using 3d-Electronic Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 6077–6081. [Google Scholar] [CrossRef]
- Luttinger, J.M.; Kohn, W. Motion of Electrons and Holes in Perturbed Periodic Fields. Phys. Rev. 1955, 97, 869–883. [Google Scholar] [CrossRef] [Green Version]
- Brus, L. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Zunger, A. Electronic Structure Theory of Semiconductor Quantum Dots. MRS Bull. 1998, 23, 35–42. [Google Scholar] [CrossRef]
- Efros Al, L.; Rosen, M. The Electronic Structure of Semi-Conducting Nanocrystal. Ann. Rev. Mater. Sci. 2000, 30, 475–521. [Google Scholar] [CrossRef]
- Righetto, M.; Bolzonello, L.; Volpato, A.; Amoruso, G.; Panniello, A.; Fanizza, E.; Striccoli, M.; Collini, E. Deciphering Hot-and Multi-Exciton Dynamics in Core–Shell Qds by 2d Electronic Spectroscopies. Phys. Chem. Chem. Phys. 2018, 20, 18176–18183. [Google Scholar] [CrossRef] [Green Version]
- Efros, A.L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D.J.; Bawendi, M. Band-Edge Exciton in Quantum Dots of Semiconductors with a Degenerate Valence Band: Dark and Bright Exciton States. Phys. Rev. B 1996, 54, 4843–4856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, D.J.; Bawendi, M.G. Measurement and Assignment of the Size-Dependent Optical Spectrum in Cdse Quantum Dots. Phys. Rev. B 1996, 53, 16338–16346. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.Y.; Scholes, G.D. Using Two-Dimensional Photon Echo Spectroscopy to Probe the Fine Structure of the Ground State Biexciton of Cdse Nanocrystals. J. Lumin. 2011, 131, 366–374. [Google Scholar] [CrossRef]
- Kjellberg, P.; Brüggemann, B.; Pullerits, T. Two-Dimensional Electronic Spectroscopy of an Excitonically Coupled Dimer. Phys. Rev. B 2006, 74, 024303. [Google Scholar] [CrossRef]
- Draeger, S.; Roeding, S.; Brixner, T. Rapid-Scan Coherent 2d Fluorescence Spectroscopy. Opt. Express 2017, 25, 3259–3267. [Google Scholar] [CrossRef]
- Calhoun, T.R.; Ginsberg, N.S.; Schlau-Cohen, G.S.; Cheng, Y.C.; Ballottari, M.; Bassi, R.; Fleming, G.R. Quantum Coherence Enabled Determination of the Energy Landscape in Light-Harvesting Complex Ii. J. Phys. Chem. B 2009, 113, 16291–16295. [Google Scholar] [CrossRef]
- Mork, A.J.; Lee, E.M.; Tisdale, W.A. Temperature Dependence of Acoustic Vibrations of Cdse and Cdse–Cds Core–Shell Nanocrystals Measured by Low-Frequency Raman Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 28797–28801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, A.; Milota, F.; Mančal, T.; Pullerits, T.; Sperling, J.; Hauer, J.; Kauffmann, H.F.; Christensson, N. Double-Quantum Two-Dimensional Electronic Spectroscopy of a Three-Level System: Experiments and Simulations. J. Chem. Phys. 2010, 133, 094505. [Google Scholar] [CrossRef] [PubMed]
- Gellen, T.A.; Bizimana, L.A.; Carbery, W.P.; Breen, I.; Turner, D.B. Ultrabroadband Two-Quantum Two-Dimensional Electronic Spectroscopy. J. Chem. Phys. 2016, 145, 064201. [Google Scholar] [CrossRef]
- Damtie, F.A.; Wacker, A.; Pullerits, T.; Karki, K.J. Two-Dimensional Action Spectroscopy of Excitonic Systems: Explicit Simulation Using a Phase-Modulation Technique. Phys. Rev. A 2017, 96, 053830. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Mukamel, S.; Scholes, G.D. Two-Dimensional Electronic Double-Quantum Coherence Spectroscopy. Acc. Chem. Res. 2009, 42, 1375–1384. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.W.; Gundogdu, K.; Turner, D.B.; Li, X.; Cundiff, S.T.; Nelson, K.A. Two-Quantum 2d Ft Electronic Spectroscopy of Biexcitons in Gaas Quantum Wells. Science 2009, 324, 1169. [Google Scholar] [CrossRef]
- Christensson, N.; Milota, F.; Nemeth, A.; Pugliesi, I.; Riedle, E.; Sperling, J.; Pullerits, T.; Kauffmann, H.F.; Hauer, J. Electronic Double-Quantum Coherences and Their Impact on Ultrafast Spectroscopy: The Example of Β-Carotene. J. Phys. Chem. Lett. 2010, 1, 3366–3370. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamilton, J.R.; Amarotti, E.; Dibenedetto, C.N.; Striccoli, M.; Levine, R.D.; Collini, E.; Remacle, F. Time–Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy. Nanomaterials 2023, 13, 2096. https://doi.org/10.3390/nano13142096
Hamilton JR, Amarotti E, Dibenedetto CN, Striccoli M, Levine RD, Collini E, Remacle F. Time–Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy. Nanomaterials. 2023; 13(14):2096. https://doi.org/10.3390/nano13142096
Chicago/Turabian StyleHamilton, James R., Edoardo Amarotti, Carlo N. Dibenedetto, Marinella Striccoli, Raphael D. Levine, Elisabetta Collini, and Francoise Remacle. 2023. "Time–Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy" Nanomaterials 13, no. 14: 2096. https://doi.org/10.3390/nano13142096
APA StyleHamilton, J. R., Amarotti, E., Dibenedetto, C. N., Striccoli, M., Levine, R. D., Collini, E., & Remacle, F. (2023). Time–Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy. Nanomaterials, 13(14), 2096. https://doi.org/10.3390/nano13142096