Construction of Aggregation-Induced Emission Molecule–MnO2 Composite Nanoprobe and Its Application in Alkaline Phosphatase Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instrumentation
2.3. Preparation of MnO2–SiO2 NPs
2.4. Synthesis of 9,10-Bis [2-(6-sulfonatopropoxyl)naphthylethenyl]anthracene
2.5. The Detection of ALP with MnO2-SiO2–AIE Nanocomposite System
2.6. Detection of ALP in Human Serum Sample
3. Results and Discussion
3.1. Preparation and Characterization of Nanoparticles
3.2. Synthesis and Characterization of Anthracene Derivatives
3.3. Construction of MnO2–SiO2–AIE Nanocomposite System
3.4. Concentration Optimization of MnO2 Nanosheet
3.5. Detection of ALP by MnO2–SiO2–BSNVA Composite System
3.6. Detection of ALP in Human Serum Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Wang, W.; Zhang, X.; Jiang, A.; Yang, Y.; Zhu, H. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects. Trends Anal. Chem. 2021, 136, 116189–116217. [Google Scholar] [CrossRef]
- Li, G.; Fu, H.; Chen, X.; Gong, P.; Chen, G.; Xia, L.; Wang, H.; You, J.; Wu, Y. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal. Chem. 2016, 88, 2720–2726. [Google Scholar] [CrossRef]
- Su, W.; Qiu, T.; Zhang, M.; Hao, C.; Zeng, P.; Huang, Z.; Du, W.; Yun, T.; Xuan, Y.; Zhang, L.; et al. Systems biomarker characteristics of circulating alkaline phosphatase activities for 48 types of human diseases. Curr. Med. Res. Opin. 2022, 38, 201–209. [Google Scholar] [PubMed]
- Gutman, E.; Sproul, E.; Gutman, A. Significance of increased phosphatase activity of bone at the site of osteoblastic metastases secondary to carcinoma of the prostate gland. Am. J. Cancer 1936, 28, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Li, T.; Yang, X.; Jia, N.; Yang, X.; Song, H. Serum levels of PSA, ALP, ICTP, and BSP in prostate cancer patients and the significance of ROC curve in the diagnosis of prostate cancer bone metastases. Genet. Mol. Res. 2016, 15, 15027707–15027715. [Google Scholar] [CrossRef]
- Ooi, K.; Shiraki, K.; Morishita, Y.; Nobori, T. High-molecular intestinal alkaline phosphatase in chronic liver diseases. J. Clin. Lab. Anal. 2007, 21, 133–139. [Google Scholar] [CrossRef]
- Chen, B.; Dai, D.; Tang, H.; Chen, X.; Ai, X.; Huang, X.; Wei, W.; Xie, X. Pre-treatment serum alkaline phosphatase and lactate dehydrogenase as prognostic factors in triple negative breast cancer. J. Cancer 2016, 7, 2309–2316. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Gao, J.; Tao, Y.L.; Xu, B.Q.; Tu, Z.W.; Liu, Z.G.; Zeng, M.S.; Xia, Y.F. Increased pretreatment levels of serum LDH and ALP as poor prognostic factors for nasopharyngeal carcinoma. Chin. J. Cancer 2012, 31, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Maisano, R.; Azzarello, D.; Del Medico, P.; Maisano, M.; Bottari, M.; Egitto, G.; Nardi, M. Alkaline phosphatase levels as a prognostic factor in metastatic colorectal cancer treated with the FOLFOX 4 regimen: A monoinstitutional retrospective study. Tumori 2011, 97, 39–42. [Google Scholar] [CrossRef]
- Smyth, C.; Bhan, J.; Dhaliwal, A.; Sorokina, T.; Alarcon, M.; Levitz, J. CA 19-9 and ALP as potential biomarkers for pancreatic cancer risk: Analysis from a large lab test database. J. Clin. Oncol. 2015, 33, 15211. [Google Scholar] [CrossRef]
- Wang, C.; Gao, J.; Cao, Y.; Tan, H. Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal. Chim. Acta 2018, 1004, 74–81. [Google Scholar] [CrossRef]
- Si, F.; Zhang, Y.; Lu, J.; Hou, M.; Yang, H.; Liu, Y. A highly sensitive, eco-friendly electrochemical assay for alkaline phosphatase activity based on a photoATRP signal amplification strategy. Talanta 2023, 252, 123775–123781. [Google Scholar] [CrossRef]
- Zeng, Y.; Ren, J.; Wang, S.; Mai, J.; Qu, B.; Zhang, Y.; Shen, A.; Hu, J. Rapid and reliable detection of alkaline phosphatase by a hot spots amplification strategy based on well-controlled assembly on single nanoparticle. ACS Appl. Mater. Interfaces 2017, 9, 29547–29553. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Wang, M.; Yi, X.; Sun, D. Enzyme-triggered click chemistry combined with surface-enhanced Raman spectroscopy for the simple and sensitive detection of alkaline phosphatase activity from complex biological samples. Analyst 2022, 147, 2494–2499. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, S.; Lu, S.; Liu, G.; Sun, J.; Yang, X. Fluorometric and colorimetric dual-readout immunoassay based on an alkaline phosphatase-triggered reaction. Anal. Chem. 2019, 91, 7828–7834. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zhou, Q.; Yang, M.; Zhang, J.; Chen, X. Microwave-assisted synthesis of sulfur quantum dots for detection of alkaline phosphatase activity. Nanomaterials 2022, 12, 2787–2796. [Google Scholar] [CrossRef]
- Ning, K.; Fu, Y.; Wu, J.; Sun, Y.; Liu, K.; Ye, K.; Liu, J.; Wu, Y.; Liang, J. Inner filter effect-based red-shift and fluorescence dual-sensor platforms with sulfur quantum dots for detection and bioimaging of alkaline phosphatase. Anal. Methods 2023, 15, 79–86. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Liu, Y.; Zhang, W.; Sun, Y.; Ma, P.; Song, D. A Strategy for the determination of alkaline phosphatase based on the self-triggered degradation of metal-organic frameworks by phosphate. Anal. Chem. 2023, 95, 3414–3422. [Google Scholar] [CrossRef]
- Peng, C.; Xue, Y.; Zhu, X.; Fan, Y.; Li, J.; Wang, E. Midas touch: Engineering activity of metal-organic frameworks via coordination for biosensing. Anal. Chem. 2022, 94, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Pei, K.; Li, D.; Qi, W.; Wu, D. Ultrarapid microwave-assisted synthesis of fluorescent silver coordination polymer nanoparticles and its application in detecting alkaline phosphatase activity. Molecules 2023, 28, 1892–1906. [Google Scholar] [CrossRef]
- Lin, J.H.; Yang, Y.C.; Shih, Y.C.; Hung, S.Y.; Lu, C.Y.; Tseng, W.L. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay. Biosens. Bioelectron. 2016, 77, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Amirjani, A.; Tsoulos, T.V.; Sajjadi, S.H.; Antonucci, A.; Wu, S.; Tagliabue, G.; Haghshenas, D.F.; Boghossian, A.A. Plasmon-induced near-infrared fluorescence enhancement of singlewalled carbon nanotubes. Carbon 2022, 194, 162–175. [Google Scholar] [CrossRef]
- Yao, S.; Liu, S.; Tian, X.; Zheng, T.; Cao, C.; Niu, C.; Chen, Y.; Chen, J.; Huang, H.; Wen, H. A ZnII-based metal−organic framework with a rare tcj topology as a turn-on fluorescent sensor for acetylacetone. Inorg. Chem. 2019, 58, 3578–3581. [Google Scholar] [CrossRef]
- Luo, F.; Guo, M.; Zheng, L.; Cai, Z. Efficient fluorescence-enhanced probe for cyanide ions based on a tetraphenylethene pyridine coordinated copper-iodide complex. RSC Adv. 2023, 13, 19738–19745. [Google Scholar] [PubMed]
- Li, X.; Yang, H.; Zheng, P.; Lin, D.; Zhang, Z.; Kang, M.; Wang, D.; Tang, B. Aggregation-induced emission materials: A platform for diverse energy transformation and applications. J. Mater. Chem. A 2023, 11, 4850–4875. [Google Scholar] [CrossRef]
- Mai, D.K.; Lee, J.; Min, I.; Vales, T.P.; Choi, K.H.; Park, B.; Cho, S.; Kim, H.J. Aggregation-induced emission of tetraphenylethene-conjugated phenanthrene derivatives and their Bio-imaging applications. Nanomaterials 2018, 8, 728–739. [Google Scholar]
- Geng, W.; Feng, Y.; Chen, Y.; Zhang, X.; Zhang, H.; Yang, F.; Wang, X. Interactions of amino group functionalized tetraphenylvinyl and DNA: A label-free “On-Off-On” fluorescent aptamer sensor toward ampicillin. Biosensors 2023, 13, 504–514. [Google Scholar] [CrossRef]
- Chen, Q.; Bian, N.; Cao, C.; Qiu, X.; Qi, A.; Han, B. Glucosamine hydrochloride functionalized tetraphenylethylene: A novel fluorescent probe for alkaline phosphatase based on the aggregation-induced emission. Chem. Commun. 2010, 46, 4067–4069. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176. [Google Scholar] [CrossRef]
- Su, Y.; Lin, H.; Li, H.; Lien, C.; Shih, Y.; Lai, C. Mannoside-functionalized silica nanocomposite-encapsulated doxorubicin for MDA-MB-231 cancer cell targeting and delivery. ACS Appl. Nano Mater. 2023, 6, 4957–4968. [Google Scholar]
- Sohal, N.; Maity, B.; Shetti, N.; Basu, S. Biosensors based on MnO2 nanostructures: A review. ACS Appl. Nano Mater. 2021, 4, 2285–2302. [Google Scholar] [CrossRef]
- Fan, D.; Shang, C.; Gu, W.; Wang, E.; Dong, S. Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: A simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection. ACS Appl. Mater. Interfaces 2017, 9, 25870–25877. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, D.; Wang, Q.; Chao, J. An intelligent, autocatalytic, DNAzyme biocircuit for amplified imaging of intracellular microRNAs. Nanoscale 2023, 15, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Song, Y.; Zhu, C.; Li, H.; Du, D.; Su, X.; Lin, Y. MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal. Chem. 2018, 90, 2618–2624. [Google Scholar] [CrossRef]
- Abadeer, N.; Brennan, M.; Wilson, W.; Murphy, C. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano 2014, 8, 8392–8406. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, Z.; Yan, G.; Zhang, X.; Yang, C.; Meng, H.; Chen, Z.; Liu, H.; Tan, W. A smart DNAzyme-MnO2 nanosystem for efficient gene silencing. Angew. Chem. Int. Ed. 2015, 54, 4801–4805. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yuan, C.; Tan, H.; Zhang, Z.; Jia, Y.; Na, N.; Ouyang, J. Plasmon-enhanced fluorescent sensor based on aggregation-induced emission for the study of protein conformational transformation. Adv. Funct. Mater. 2019, 29, 1807211–1807222. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Zhang, Q.; Zhang, G.; Wu, S.; Yang, H.; Zhou, Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Anal. Chim. Acta 2022, 1231, 340445–340453. [Google Scholar] [CrossRef]
- Wang, D.; Gao, X.; Li, G.; Xue, T.; Yang, H.; Xu, H. Facile colorimetric assay of alkaline phosphatase activity using polydiacetylene liposomes with calcium ions and pyrophosphate. Sens. Actuators B Chem. 2019, 289, 85–92. [Google Scholar] [CrossRef]
- Mahato, K.; Chandra, P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens. Bioelectron. 2019, 128, 9–16. [Google Scholar] [CrossRef]
- Ye, K.; Wang, L.; Song, H.; Li, X.; Niu, X. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J. Mater. Chem. B 2019, 7, 4794–4800. [Google Scholar] [CrossRef] [PubMed]
- Sappia, L.; Felice, B.; Sanchez, M.; Martí, M.; Madrid, R.; Pividori, M. Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in vitro applications. Sens. Actuators B Chem. 2019, 281, 221–228. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, H.; Zhou, Y.; Wang, B.; Xiao, J.; Wang, Y.; Peng, Y. Ratiometric detection and bioimaging of endogenous alkaline phosphatase by a NIR fluorescence probe. Sens. Actuators B Chem. 2022, 358, 131505–131511. [Google Scholar] [CrossRef]
- Sun, J.; Liu, M.; Wang, P.; Gao, Z.; Mu, J.; Chen, Q. Novel high-selectivity fluorescent probe for detecting alkaline phosphatase activity in marine environment. J. Nanosci. Nanotechnol. 2020, 20, 3348–3355. [Google Scholar] [CrossRef]
- Cai, M.; Ding, C.; Wang, F.; Ye, M.; Zhang, C.; Xian, Y. A ratiometric fluorescent assay for the detection and bioimaging of alkaline phosphatase based on near infrared Ag2S quantum dots and calcein. Biosens. Bioelectron. 2019, 137, 148–153. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, C.; Hu, F.; Gao, Y.; Wang, Z.; Li, H.; Liu, J.; Liu, B.; Yang, C. Detection of bacterial alkaline phosphatase activity by enzymatic in situ self-assembly of the AIEgen-peptide conjugate. Anal. Chem. 2020, 92, 5185–5190. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Li, Y.; Yang, B.; Zhou, T.; Deng, J. Lanthanide-free infinite coordination polymer nanoparticles for real-time monitoring of alkaline phosphatase and its application for digital algal bloom detection. ACS Appl. Nano Mater. 2021, 4, 11134–11144. [Google Scholar] [CrossRef]
- Gregory, J.D. The Stability of N-Ethylmaleimide and its Reaction with Sulfhydryl Groups. J. Am. Chem. Soc. 1955, 77, 3922–3923. [Google Scholar] [CrossRef]
Method | Detection Limit | Reference |
---|---|---|
Colorimetry | 5.4 mU/mL | [39] |
Colorimetry Colorimetry | 0.87 mU/mL 0.7 mU/mL | [40] [41] |
Electrochemical | 3 mU/mL | [42] |
Electrochemical | 2.12 mU/mL | [12] |
Fluorescence | 0.87 mU/mL | [43] |
Fluorescence Fluorescence Fluorescence Fluorescence | 0.73 mU/mL 1.28 mU/mL 6.6 mU/mL 3.2 mU/mL | [44] [45] [46] [47] |
Fluorescence | 0.38 mU/mL | This work |
Sample No. | Added | Detected | Recovery (%) | RSD (n = 5, %) |
---|---|---|---|---|
1 | 40 mU/mL | 44.34 mU/mL | 110.9 | 2.81 |
2 | 80 mU/mL | 86.54 mU/mL | 108.2 | 2.24 |
3 | 120 mU/mL | 128.38 mU/mL | 107.0 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhao, J.; Li, H. Construction of Aggregation-Induced Emission Molecule–MnO2 Composite Nanoprobe and Its Application in Alkaline Phosphatase Detection. Nanomaterials 2023, 13, 2138. https://doi.org/10.3390/nano13142138
Cui Y, Zhao J, Li H. Construction of Aggregation-Induced Emission Molecule–MnO2 Composite Nanoprobe and Its Application in Alkaline Phosphatase Detection. Nanomaterials. 2023; 13(14):2138. https://doi.org/10.3390/nano13142138
Chicago/Turabian StyleCui, Yanyun, Jun Zhao, and Huidan Li. 2023. "Construction of Aggregation-Induced Emission Molecule–MnO2 Composite Nanoprobe and Its Application in Alkaline Phosphatase Detection" Nanomaterials 13, no. 14: 2138. https://doi.org/10.3390/nano13142138
APA StyleCui, Y., Zhao, J., & Li, H. (2023). Construction of Aggregation-Induced Emission Molecule–MnO2 Composite Nanoprobe and Its Application in Alkaline Phosphatase Detection. Nanomaterials, 13(14), 2138. https://doi.org/10.3390/nano13142138