Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Vegetal material
2.3. Microbial Strains
2.4. Green Synthesis of AgNPs
2.5. Characterization of AgNPs
2.5.1. UV-Visible Spectroscopy
2.5.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.5.3. Dynamic Light Scattering (DLS) and Zeta-Potential
2.5.4. Transmission Electron Microscope (TEM)
2.6. Antifungal Properties of C. citratus Aqueous Extract and Synthesized AgNPs
2.7. Imaging of the Strains Mostly Affected by C. citratus Aqueous Extract and Synthesized AgNPs
2.8. Statistical Analysis
3. Results
3.1. Successful Synthesis and Characterization of AgNPs the Aqueous Extract of C. citratus
3.2. The Aqueous Extract and Synthesized AgNPs of C. citratus Proved Remarkable Growth Inhibition of the Tested Candida Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Mlalila, N.G.; Swai, H.S.; Hilonga, A.; Kadam, D.M. Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol. Sci. Appl. 2016, 10, 1–9. [Google Scholar] [CrossRef]
- AboElmaaty, S.A.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Sheraba, N.S.; Hassan, M.G.; Badawy, M.S.E.M.; Ghareeb, A.; Hamed, A.A.; Gabr, E.Z. Biofilm inhibitory activity of actinomycete-synthesized AgNPs with low cytotoxic effect: Experimental and in silico study. Microorganisms 2023, 11, 102. [Google Scholar] [CrossRef]
- Rosman, N.S.R.; Harun, N.A.; Idris, I.; Ismail, W.I.W. Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete.; Marphysa moribidii: Biosynthesis, characterization, and antibacterial applications. Heliyon 2020, 6, e05462. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014, 55, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Serov, D.A.; Astashev, M.E.; Semenova, A.A.; Lisitsyn, A.B. Ag2O nanoparticles as a candidate for antimicrobial compounds of the new generation. Pharmaceuticals 2022, 15, 968. [Google Scholar] [CrossRef] [PubMed]
- Al-Zubaidi, S.; Al-Ayafi, A.; Abdelkader, H. Biosynthesis.; Characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolate. J. Nanotechnol. Res. 2019, 2, 22–35. [Google Scholar] [CrossRef]
- Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017, 10, 862–876. [Google Scholar] [CrossRef]
- Habeeb Rahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef]
- Theodoridis, S.; Drakou, E.G.; Hickler, T.; Thines, M.; Nogues-Bravo, D. Evaluating natural medicinal resources and their exposure to global change. Lancet Planet. Health 2023, 7, e155–e163. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, M.P. Lemon Grass (Cymbopogon citratus). In Grasses—Benefits, Diversities and Functional Roles, 1st ed.; Almusaed, A., Al-Samaraee, S.M.S., Eds.; IntechOpen: London, UK, 2017; pp. 121–141. [Google Scholar]
- Christenhusz, M.J.M.; Byng, J.Y. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Tibenda, J.J.; Yi, Q.; Wang, X.; Zhao, Q. Review of phytomedicine, phytochemistry, ethnopharmacology, toxicology, and pharmacological activities of Cymbopogon genus. Front. Pharmacol. 2022, 13, 997918, Erratum in Front. Pharmacol. 2022, 13, 1109233. [Google Scholar] [CrossRef]
- Oladeji, O.S.; Adelowo, F.E.; Ayodele, D.T.; Odelade, K.A. Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Sci. Afr. 2019, 6, e00137. [Google Scholar] [CrossRef]
- Panda, S.K.; Daemen, M.; Sahoo, G.; Luyten, W. Essential Oils as Novel Anthelmintic Drug Candidates. Molecules 2022, 27, 8327. [Google Scholar] [CrossRef] [PubMed]
- Gürer, E.S.; Tunc, T. Investigation of Antimicrobial and Cytotoxic Activities of Palmarosa (Cymbopogon martinii) Essential Oil. Cumhur. Sci. J. 2022, 43, 594–599. [Google Scholar] [CrossRef]
- Rojas-Armas, J.P.; Arroyo-Acevedo, J.L.; Palomino-Pacheco, M.; Herrera-Calderón, O.; Ortiz-Sánchez, J.M.; Rojas-Armas, A.; Calva, J.; Castro-Luna, A.; Hilario-Vargas, J. The Essential Oil of Cymbopogon citratus Stapt and Carvacrol: An Approach of the Antitumor Effect on 7,12-Dimethylbenz-[α]-anthracene (DMBA)-Induced Breast Cancer in Female Rats. Molecules 2020, 25, 3284. [Google Scholar] [CrossRef]
- da Rocha Neto, A.C.; Navarro, B.B.; Canton, L.; Maraschin, M.; Di Piero, R.M. Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action. LWT 2019, 105, 385–392. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts. Biochim. Open 2017, 4, 107–111. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef]
- Nyamath, S.; Karthikeyan, B. In vitro Antifungal activity of lemongrass (Cymbopogon citratus) leaf extracts. J. Pharmacogn. Phytochem. 2018, 7, 1148–1151. [Google Scholar]
- Madeira, P.L.; Carvalho, L.T.; Paschoal, M.A.; de Sousa, E.M.; Moffa, E.B.; da Silva, M.A.; Tavarez, R.d.J.R.; Gonçalves, L.M. In vitro effects of lemongrass extract on Candida albicans biofilms.; human cells viability.; and denture surface. Front. Cell. Infect. Microbiol. 2016, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Saigal, S.; Bhargava, A.; Mehra, S.K.; Dakwala, F. Identification of Candida albicans by using different culture medias and its association in potentially malignant and malignant lesions. Contemp. Clin. Dent. 2011, 2, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Chee, H.Y. In vitro antifungal activity of equol against Candida albicans. Mycobiology 2010, 38, 328–330. [Google Scholar] [CrossRef]
- Rakib-Uz-Zaman, S.M.; Hoque Apu, E.; Muntasir, M.N.; Mowna, S.A.; Khanom, M.G.; Jahan, S.S.; Akter, N.R.; Khan, M.A.; Shuborna, N.S.; Shams, S.M.; et al. Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges 2022, 13, 18. [Google Scholar] [CrossRef]
- Al-Otibi, F.; Alshammry, N.A.; Alharbi, R.I.; Bin-Jumah, M.N.; AlSubaie, M.M. Silver Nanoparticles of Artemisia sieberi Extracts: Chemical Composition and Antimicrobial Activities. Plants 2023, 12, 2093. [Google Scholar] [CrossRef]
- Rizwana, H.; AlOtibi, F.; Al-Malki, N. Chemical composition.; FTIR studies and antibacterial activity of Passiflora edulis f. edulis (Fruit). J. Pure Appl. Microbiol. 2019, 13, 2489–2498. [Google Scholar] [CrossRef]
- Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of light scattering techniques to nanoparticle characterization and development. Front. Chem. 2018, 6, 237. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Ajayi, E.; Afolayan, A. Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 015017. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, X.; Qingkui, G.; Wenliang, Q.; Wen, Z.; Ning, W.; Min, Z. Anticancer activity of green synthesised AgNPs from Cymbopogon citratus (LG) against lung carcinoma cell line A549. IET Nanobiotechnol. 2019, 13, 178–182. [Google Scholar] [CrossRef]
- Mulwandari, M.; Asysyafiiyah, L.; Sirajuddin, M.I.; Cahyandaru, N. Direct synthesis of lemongrass (Cymbopogon citratus L.) essential oil-silver nanoparticles (EO-AgNPs) as biopesticides and application for lichen inhibition on stones. Heliyon 2022, 8, e09701. [Google Scholar] [CrossRef]
- Keshari, A.; Pal, G.; Saxena, S.; Srivastava, R.; Srivashtav, V. Fabrication and characterization of biosynthesized silver nanoparticles using Cymbopogon citratus and evaluation of its antioxidant.; free radicals and reducing power activity. Nanomed. Res. J. 2020, 5, 132–142. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ganjewala, D. Synthesis of silver nanoparticles from Cymbopogon flexuosus leaves extract and their antibacterial properties. Int. J. Plant Sci. Ecol. 2015, 1, 225–230. [Google Scholar]
- Singh, D.; Bansal, A.; Jain, A.; Tyagi, L.K.; Mondal, S.; Patel, R.K. GC-MS based lemon grass metabolite analysis involved in the synthesis of silver nanoparticles and evaluation of photo-catalytic degradation of methylene blue. Biometals 2021, 34, 1121–1139. [Google Scholar] [CrossRef]
- Gomaa, N.A.; Mahdy, A.M.M.; Fawzy, R.N.; Ahmed, G.A. Green synthesis of silver nanoparticle by plant extracts to control tomato wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Int. J. Sustain. Dev. Sci. 2021, 4, 1–14. [Google Scholar] [CrossRef]
- Gustafsson, O.; Gustafsson, S.; Manukyan, L.; Mihranyan, A. Significance of brownian motion for nanoparticle and virus capture in nanocellulose-based filter paper. Membranes 2018, 8, 90. [Google Scholar] [CrossRef]
- Manik, U.P.; Nande, A.; Raut, S.; Dhoble, S.J. Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results Mater. 2020, 6, 100086. [Google Scholar] [CrossRef]
- Mohamed, S.; El-Naggar, K.; Khalil, M. Green synthesis of silver nanoparticles using egyptian propolis extract and its antimicrobial activity. Egypt. J. Chem. 2022, 65, 453–464. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Taghizadeh, S.M.; Ghasemi, Y.; Berenjian, A. Immobilization of cells by magnetic nanoparticles. Methods Mol. Biol. 2020, 2100, 427–435. [Google Scholar] [CrossRef]
- Firacative, C. Invasive fungal disease in humans: Are we aware of the real impact? Memórias Do Inst. Oswaldo Cruz 2020, 115, e200430. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, T.K.; Aqel, N.; Al-Dujaili, E.A.S. Antimicrobial activity of liquid residues of Cymbopogon citratus oil extracts antimicrobial activity of liquid residues of Cymbopogon citratus oil extracts. J. Phys. Conf. Ser. 2020, 1660, 012006. [Google Scholar] [CrossRef]
- Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.J.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J. Ethnopharmacol. 2020, 246, 112188. [Google Scholar] [CrossRef] [PubMed]
- Rhimi, W.; Mohammed, M.A.; Zarea, A.A.K.; Greco, G.; Tempesta, M.; Otranto, D.; Cafarchia, C. Antifungal, Antioxidant and Antibiofilm Activities of Essential Oils of Cymbopogon spp. Antibiotics 2022, 11, 829. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.B.A.; Akisue, G.; Cardoso, L.M.L.; Junqueira, J.C.; Jorge, A.O.C. Antimicrobial activity of the essential oil of Cymbopogon citratus (DC) Stapf. on Staphylococcus spp.; Streptococcus mutans and Candida spp. Rev. Bras. Plantas Med. 2013, 15, 474–482. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Galovičová, L.; Borotová, P.; Vukovic, N.L.; Vukic, M.; Kačániová, M. Cymbopogon citratus essential oil: Its application as an antimicrobial agent in food preservation. Agronomy 2022, 12, 155. [Google Scholar] [CrossRef]
- Ahamad, I.; Bano, F.; Anwer, R.; Srivastava, P.; Kumar, R.; Fatma, T. Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Front. Microbiol. 2022, 12, 741493. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A.; Bdeer, R. In vitro antifungal resistance profile of Candida strains isolated from Saudi women suffering from vulvovaginitis. Eur. J. Med. Res. 2020, 25, 1. [Google Scholar] [CrossRef]
- Mobin, M.; Szeszs, M.W.; Takahashi, J.P.; Martins, M.; de Hippólito, D.D.C.; Porto, J.C.S.; Teles, J.B.; de Lima, S.G.; Melhem, M.S.C. Antifungal susceptibility of Candida species isolated from horticulturists with onychomycosis in Piauí, Brazil. Iran. J. Public Health 2018, 47, 1816–1821. [Google Scholar]
- Cunha, F.A.; Lima, M.C.N.; Martins, R.T.; Cunha, M.C.S.O.; Bandeira, M.A.A.B.; Menezes, E.A.; Fechine, P.B.A. Synergistic effect between silver nanoparticles produced by green synthesis and lemongrass essential oil (Cymbopogon citratus (DC.) Stapf) against Candida albicans. Lat. Am. J. Pharm. 2018, 37, 964–968. [Google Scholar]
- De Toledo, L.G.; Ramos, M.A.D.S.; Spósito, L.; Castilho, E.M.; Pavan, F.R.; Lopes, É.D.O.; Zocolo, G.J.; Silva, F.A.N.; Soares, T.H.; Dos Santos, A.G.; et al. Essential oil of Cymbopogon nardus (L.) rendle: A strategy to combat fungal infections caused by Candida species. Int. J. Mol. Sci. 2016, 17, 1252. [Google Scholar] [CrossRef] [PubMed]
Tested Material | Absorption (cm−1) | Appearance | Group | Compound Class |
---|---|---|---|---|
3395 | Medium | N-H stretching | Aliphatic primary amine | |
2932 | Medium | C-H stretching | Alkane | |
1606 | Medium | C = C stretching | Alkene | |
Aqueous extract | 1516 | Medium | N-O stretching | Nitro compound |
1409 | Medium | O-H bending | Alcohol | |
1269, 1050 | Medium | C-N stretching | Amine | |
829, 776 | Strong | C-H bending | Alkene | |
601 | Strong | C-Br or C-I stretching | Halo-compound | |
3272 | Strong, Broad | O-H Stretching | Alcohol | |
2218, 2191 | Weak | CΞC stretching | Alkyne (disubstituted) | |
AgNPs | 2129 | Weak | CΞC stretching | Alkyne (monosubstituted) |
2044, 2010, 1980 | Medium | C = C=C stretching | Allene | |
1635 | Medium | N-H bending | Amine |
Organisms | Negative Control | Terbinafine (0.125 µg/mL) | AgNO3 (2 µM) | Crude Extract (10%) | AgNPs (100%) | |
---|---|---|---|---|---|---|
C. albicans | Mean ± SD | 88 ± 0.1 | 74 ± 0.33 | 79 ± 0.23 | 67 ± 0.67 | 66 ± 0.15 |
p-value | ---------- | 0.019 * | 0.337 | 0.135 | 0.025 * | |
C. tropicalis | Mean ± SD | 87.9 ± 0.2 | 76 ± 0.1 | 80 ± 0 | 71 ± 0.22 | 69 ± 0.36 |
p-value | ---------- | 0.043 * | 0.394 | 0.201 | 0.033 * | |
C. parapsilosis | Mean ± SD | 88 ± 0.2 | 70 ± 0.21 | 77 ± 0.08 | 68 ± 0.01 | 68 ± 0.11 |
p-value | ---------- | 0.033 * | 0.241 | 0.055 | 0.033 * | |
C. glabrata | Mean ± SD | 87.8 ± 0.5 | 77 ± 0.35 | 80 ± 0.19 | 73 ± 0.1 | 67 ± 0.13 |
p-value | ---------- | 0.025 * | 0.394 | 0.241 | 0.11 | |
C. krusei | Mean ± SD | 88 ± 0.3 | 70 ± 0.09 | 77 ± 0.1 | 68 ± 0.11 | 69 ± 0.17 |
p-value | ---------- | 0.043 * | 0.241 | 0.055 | 0.033 * | |
Rhodotorula sp. | Mean ± SD | 87.7 ± 0.7 | 72.9 ± 0.1 | 78 ± 0.09 | 70 ± 0.16 | 67 ± 0.1 |
p-value | ---------- | 0.025 * | 0.286 | 0.109 | 0.055 | |
C. famata | Mean ± SD | 88 ± 0.3 | 70 ± 0.55 | 75 ± 0.11 | 66 ± 0.1 | 65 ± 0.08 |
p-value | ---------- | 0.014 * | 0.166 | 0.055 | 0.019 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Otibi, F.; Albulayhid, L.S.; Alharbi, R.I.; Almohsen, A.A.; AlShowiman, G.M. Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp. Nanomaterials 2023, 13, 2198. https://doi.org/10.3390/nano13152198
Al-Otibi F, Albulayhid LS, Alharbi RI, Almohsen AA, AlShowiman GM. Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp. Nanomaterials. 2023; 13(15):2198. https://doi.org/10.3390/nano13152198
Chicago/Turabian StyleAl-Otibi, Fatimah, Luluwah S. Albulayhid, Raedah I. Alharbi, Atheer A. Almohsen, and Ghada M. AlShowiman. 2023. "Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp." Nanomaterials 13, no. 15: 2198. https://doi.org/10.3390/nano13152198
APA StyleAl-Otibi, F., Albulayhid, L. S., Alharbi, R. I., Almohsen, A. A., & AlShowiman, G. M. (2023). Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp. Nanomaterials, 13(15), 2198. https://doi.org/10.3390/nano13152198