Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review
Abstract
:1. Introduction
2. Historical Trajectory of MOF Evolution
3. Properties and Structural Characteristics of MOFs
4. Synthetic Routes for MOF Development
4.1. Solvothermal/Hydrothermal Approach
Type of MOF | Precursor Materials | Solvent Type | Experimental Parameters | Comments | Ref. | |
---|---|---|---|---|---|---|
Organic Ligand | Metal Salt | |||||
MIL-47 | C8H6O4 | V2O5 | DMF | 180 °C 20 h | Chemical and thermal robustness | [61] |
UiO-66 | C8H6O4 | Co3O4 | DMF | 120 °C 24 h | Charge separation, as well as visible irradiation adsorption increasement | [63] |
SIMOF-4 | C8H6O6 | Ca(NO3)2·2H2O | C2H6O/H2O | 120 °C 72 h | Exceptional electrochemical features | [64] |
Cd/Zr MOF | C8H6O4 | CdCl2 | DMF | 120 °C 2 h | Enhanced photocatalytic efficiency | [65] |
Bi MOF | C6H3(CO2H)3 | Bi(NO3)3·5H2O | DMF | 120 °C 24 h | Presence of microporosity | [59] |
Ni/Mn MOF | C6H3(CO2H)3 | Ni(CH3COO)2·4H2O Mn(CH3COO)2·4H2O | C2H6O/H2O | 150 °C 15 h | Exceptional electrochemical features | [66] |
La MOF | La(NO3)2·6H2O | H3L | DMF | 90 °C 72 h | Enhanced sensitivity to amino acids, as well as antibiotics | [67] |
Typ MOF | C15H11N3 | Ni(NO3)2·6H2O | C2H6O/H2O | 160 °C 120 h | Caffeine adsorption ability | [68] |
4.2. Microwave Approach
Type of MOF | Precursor Materials | Solvent Type | Experimental Parameters | Comments | Ref. | |
---|---|---|---|---|---|---|
Organic Ligand | Metal Salt | |||||
Zr-UiO-66 Hf-UiO-66 | C8H6O4 | ZrCl4 HfCl4 | DMF | 110 °C 3 min | Exceptional curcumin removal efficiency | [70] |
UTSA-16 | C6H8O7 | Zn(CH3COO)2·2H2O | C2H6O/H2O | 90 °C 240 min | Increased robustness and selectivity Exceptional CO2 capture efficiency | [73] |
Ni-MOF-74 | DHBDC | Ni(NO3)2·6H2O | DMSO DMF | 100 °C 40 min | Adjustable porosity | [74] |
MIL-88B | C8H6O4 | FeCl3·6H2O NiCl2·6H2O | DMF | 100 °C 60 min | Exceptional photocatalytic attributes | [77] |
Cd/Zr MOF | C8H6O4 | ZrCl4 CdCl2 | DMF | 120 °C 30 min | Enhanced photocatalytic efficiency | [65] |
Al-MIL-53 | C8H6O4 | AlCl3·6H2O | DMF | 220 °C 2 min | Exceptional furfural separation ability | [79] |
Zr MOF | CH2O2 | ZrOCl2·8H2O | DMF | 100 °C 60 min | Efficiency in gas separation applications | [80] |
UiO-66 | C8H6O4 | ZrCl4 | DMF | 120 °C 30 min | Efficiency in sensing applications | [81] |
4.3. Sonochemical Approach
Type of MOF | Precursor Materials | Solvent Type | Experimental Parameters | Comments | Ref. | |
---|---|---|---|---|---|---|
Organic Ligand | Metal Salt | |||||
U-CD-MOF | Cyclodextrin | KOH | CH3OH | 20 kHz 10 min 60 °C | Efficiency in caffeic acid loading | [89] |
TMU-34 | 3,6-di(4-pyridyl)-1,4-dihydro-1,2,4,5-tetrazine | Zn(CH3COO)2·2H2O | DMF | 40 kHz 160 min 120 °C | Efficiency in sensing applications | [90] |
MOF-525 | Tetrakis (4-carboxyphenyl) porphyrin | ZrCl4·8H2O | DMF | 20 kHz 150 min 80 °C | Enhanced surface area and pore volume | [91] |
MOF-545 | Tetrakis (4-carboxyphenyl) porphyrin | ZrCl4·8H2O | DMF | 20 kHz 30 min 80 °C | Enhanced surface area and pore volume | [91] |
Co MOF | C9H6O6 | Co(CH3CO2)2·4H2O | Distilled water | 40 kHz 30 min 25 °C | Increased Congo red dye removal effectiveness | [92] |
4.4. Mechanochemical Approach
4.5. Ambient Temperature Stirring Approach
4.6. Electrospinning Approach
4.7. Carbonization Approach
4.8. Electrochemical Approach
5. Environmental Applications of MOFs in Wastewater Treatment
5.1. Adsorptive Removal of Heavy Metals
5.2. Adsorptive Removal of Fluoride
5.3. Adsorptive Removal of Organic Dyes
5.4. Adsorptive Removal of Antibiotics
5.5. Adsorptive Removal of Pesticides and Herbicides
5.6. Adsorptive Removal of Endocrine-Disrupting Substances
5.7. General Limitations
6. Biomedical Applications of MOFs
6.1. MOFs in Cancer Disease
6.2. MOFs in Diabetes and Wound Healing
6.3. MOFs in Brain and Neurological Disorders
6.4. Toxicity Issues of MOFs
6.5. Limitations in Biomedical Applications
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Chen, G.; Ding, K. Self-Supported Catalysts. Chem. Rev. 2009, 109, 322. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477. [Google Scholar] [CrossRef]
- Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191. [Google Scholar] [CrossRef]
- McEnaney, B.; Alain, E.; Yin, Y.F.; Mays, T.J. Porous carbons for gas storage and separation. In Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance; NATO Science Series; Springer: Dordrecht, The Netherlands, 2001; Volume 374, p. 295. [Google Scholar] [CrossRef]
- Borns, D.J. Theory and Applications of Transport in Porous Media; Hassanizadeh, S.M., Ed.; Springer: Dordrecht, The Netherlands, 2006; p. 407. [Google Scholar]
- Morris, R.E.; Wheatley, P.S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. Engl. 2008, 47, 4966. [Google Scholar] [CrossRef]
- Manocha, S.M. Porous carbons. Sadhana 2003, 28, 335. [Google Scholar] [CrossRef]
- Tchinsa, A.; Hossain, M.F.; Wang, T.; Zhou, Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. Chemosphere 2021, 284, 131393. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Z.; Yu, G.; Wu, H.; Chen, H.; Zhou, L.; Zhang, Y.; Su, Y.; Tan, S.; Yang, L.; et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere 2021, 272, 129501. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Tomic, E.A. Thermal stability of coordination polymers. J. Appl. Polym. Sci. 1965, 9, 3745–3752. [Google Scholar] [CrossRef]
- Hoskins, B.F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4‴-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554. [Google Scholar] [CrossRef]
- Feng, L.; Wang, K.Y.; Willman, J.; Zhou, H.C. Hierarchy in metal-organic frameworks. ACS Cent. Sci. 2020, 6, 359–367. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706. [Google Scholar] [CrossRef]
- Gascon, J.; Hernandez-Alonso, M.D.; Almeida, A.R.; van Klink, G.P.M.; Kapteijn, F.; Mul, G. Isoreticular MOFs as efficient photocatalysts with tunable band gap: An operando FTIR study of the photoinduced oxidation of propylene. ChemSusChem 2008, 1, 981–983. [Google Scholar] [CrossRef]
- Uemura, K.; Matsuda, R.; Kitagawa, S. Flexible microporous coordination polymers. J. Solid State Chem. 2005, 178, 2420–2429. [Google Scholar] [CrossRef]
- Kesanli, B.; Lin, W. Chiral porous coordination networks: Rational design and applications in enantioselective processes. Coord. Chem. Rev. 2003, 246, 305–326. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Sava, D.F.; Eubank, J.F.; Adil, K.; Guillerm, V. Zeolite-like metal-organic frameworks (ZMOFs): Design, synthesis, and properties. Chem. Soc. Rev. 2014, 44, 228–249. [Google Scholar] [CrossRef] [Green Version]
- Emam, H.E.; Abdelhameed, R.M.; Ahmed, H.B. Adsorptive performance of MOFs and MOF containing composites for clean energy and safe environment. J. Environ. Chem. Eng. 2020, 8, 104386. [Google Scholar] [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Falaise, C.; Volkringer, C.; Facqueur, J.; Bousquet, T.; Gasnot, L.; Loiseau, T. Capture of iodine in highly stable metal-organic frameworks: A systematic study. Chem. Commun. 2013, 49, 10320–10322. [Google Scholar] [CrossRef]
- Ferey, C.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042. [Google Scholar] [CrossRef] [PubMed]
- O’Hearn, D.J.; Bajpai, A.; Zaworotko, M.J. The “Chemistree” of porous coordination networks: Taxonomic classification of porous solids to guide crystal engineering studies. Small 2021, 17, 2006351. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N. Zeolitic Imidazolate Frameworks (ZIF-8) for biomedical applications: A review. Curr. Med. Chem. 2021, 28, 7023–7075. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Larabi, C.; Quadrelli, E.A. Titration of Zr3(μ-OH) hydroxy groups at the cornerstones of bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and their reaction with [AuMe(PMe3)]. Eur. J. Inorg. Chem. 2012, 2012, 3014–3022. [Google Scholar] [CrossRef]
- Bieniek, A.; Terzyk, A.P.; Wisniewski, M.; Roszek, K.; Kowalczyk, P.; Sarkisov, L.; Keskin, S.; Kaneko, K. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Prog. Mater. Sci. 2021, 117, 100743. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; Hua, T.; Lan, X.; Han, S.; Cheng, J.; Du, K.S.; Hu, Y.; Chen, Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. Sci. Total Environ. 2022, 804, 150096. [Google Scholar] [CrossRef]
- Yang, C.; Xia, Y. Trifluoromethyl-modified hierarchical nanoporous Metal-Organic Framework nanoparticles for adsorption of fluorine-containing pesticides. ACS Appl. Nano Mater. 2022, 5, 5268–5277. [Google Scholar] [CrossRef]
- Gao, M.; Liu, G.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Wang, J.; Yang, X.; Xu, D. Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. TrAC Trends Anal. Chem. 2021, 137, 116226. [Google Scholar] [CrossRef]
- Yee, K.K.; Reimer, N.; Liu, J.; Cheng, S.Y.; Yiu, S.M.; Weber, J.; Stock, N.; Xu, Z. Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase. J. Am. Chem. Soc. 2013, 135, 7795–7798. [Google Scholar] [CrossRef]
- Gautam, S.; Agrawal, H.; Thakur, M.; Akbari, A.; Sharda, H.; Kaur, R.; Amini, M. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. J. Environ. Chem. Eng. 2020, 8, 103726. [Google Scholar] [CrossRef]
- Moharramnejad, M.; Tayebi, L.; Akbarzadeh, A.R.; Maleki, A. A simple, robust, and efficient structural model to predict thermal stability of zinc metal-organic frameworks (Zn-MOFs): The QSPR approach. Microporous Mesoporous Mater. 2022, 336, 111815. [Google Scholar] [CrossRef]
- Butova, V.V.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metalorganic frameworks: Structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016, 85, 280–307. [Google Scholar] [CrossRef]
- Moi, R.; Maity, K.; Biradha, K. Binary solvent system composed of polar protic and polar aprotic solvents for controlling the dimensionality of MOFs in the solvothermal synthesis. Cryst. Growth Des. 2022, 22, 1276–1282. [Google Scholar] [CrossRef]
- Qiu, B.; Yang, C.; Guo, W.; Xu, Y.; Liang, Z.; Ma, D.; Zou, R. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal–organic frameworks. J. Mater. Chem. A 2017, 5, 8081–8086. [Google Scholar] [CrossRef]
- Strauss, I.; Mundstock, A.; Hinrichs, D.; Himstedt, R.; Knebel, A.; Reinhardt, C.; Dorfs, D.; Caro, J. The interaction of guest molecules with Co-MOF-74: A Vis/NIR and Raman Approach. Angew. Chem. Int. Ed. 2018, 57, 7434–7439. [Google Scholar] [CrossRef]
- Fan, W.K.; Tahir, M. Recent advances on cobalt metal organic frameworks (MOFs) for photocatalytic CO2 reduction to renewable energy and fuels: A review on current progress and future directions. Energy Convers. Manag. 2022, 253, 115180. [Google Scholar] [CrossRef]
- Li, Y.S.; Yi, J.W.; Wei, J.H.; Wu, Y.P.; Li, B.; Liu, S.; Jiang, C.; Yu, H.G.; Li, D.S. Three 2D polyhalogenated Co(II)-based MOFs: Syntheses, crystal structure and electrocatalytic hydrogen evolution reaction. J. Solid State Chem. 2020, 281, 121052. [Google Scholar] [CrossRef]
- Abrori, S.A.; Septiani, N.L.W.; Hakim, F.N.; Maulana, A.; Suyatman, N.; Anshori, I.; Yuliarto, B. Non-enzymatic electrochemical detection for uric acid based on a glassy carbon electrode modified with MOF-71. IEEE Sens. J. 2021, 21, 170–177. [Google Scholar] [CrossRef]
- Van Ngo, T.; Moussa, M.; Tung, T.T.; Coghlan, C.; Losic, D. Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors. Electrochim. Acta 2020, 329, 135104. [Google Scholar] [CrossRef]
- Wang, S.; Belmabkhout, Y.; Cairns, A.J.; Li, G.; Huo, Q.; Liu, Y.; Eddaoudi, M. Tuning gas adsorption properties of zeolite-like supramolecular assemblies with gis topology via functionalization of isoreticular metal-organic squares. ACS Appl. Mater. Interfaces 2017, 9, 33521–33527. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhong, M.; He, P.; Shao, J.; Wang, Q.; Li, K.; Zhao, W. Transformation of 2D Co-LDH into 3D hierarchical hollow Co3O4 polyhedral arrays with enhanced electrochemical performance for supercapacitors. J. Alloys Compd. 2020, 826, 154241. [Google Scholar] [CrossRef]
- Meng, X.; Zhong, R.L.; Song, X.Z.; Song, S.Y.; Hao, Z.M.; Zhu, M.; Zhao, S.N.; Zhang, H.J. A stable, pillar-layer metal–organic framework containing uncoordinated carboxyl groups for separation of transition metal ions. Chem. Commun. 2014, 50, 6406–6408. [Google Scholar] [CrossRef]
- Han, L.; Xu, L.P.; Qin, L.; Zhao, W.N.; Yan, X.Z.; Yu, L. Syntheses, crystal structures, and physical properties of two non-interpenetrated pillar-layered metal-organic frameworks based on N, N′-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide pillar. Cryst. Growth Des. 2013, 13, 4260–4267. [Google Scholar] [CrossRef]
- Lillerud, K.P.; Olsbye, U.; Tilset, M. Designing heterogeneous catalysts by incorporating enzyme-like functionalities into MOFs. Top. Catal. 2010, 53, 859–868. [Google Scholar] [CrossRef]
- Healy, C.; Patil, K.M.; Wilson, B.H.; Hermanspahn, L.; Harvey-Reid, N.C.; Howard, B.I.; Kleinjan, C.; Kolien, J.; Payet, F.; Telfer, S.G.; et al. The thermal stability of metal-organic frameworks. Coord. Chem. Rev. 2020, 419, 213388. [Google Scholar] [CrossRef]
- Huang, D.; Wang, G.; Cheng, M.; Zhang, G.; Chen, S.; Liu, Y.; Li, Z.; Xue, W.; Lei, L.; Xiao, R. Optimal preparation of catalytic metal-organic framework derivatives and their efficient application in advanced oxidation processes. Chem. Eng. J. 2021, 421, 127817. [Google Scholar] [CrossRef]
- Wang, G.; Huang, D.; Cheng, M.; Chen, S.; Zhang, G.; Du, L.; Lei, L.; Chen, Y.; Li, R.; Liu, Y. An insight into the bridging role of Co3O4 in MOF-derived binary metal oxide modified sheet-like g-C3N4 for photo-assisted peroxymonosulfate activation. Environ. Sci. Nano 2022, 9, 4393–4410. [Google Scholar] [CrossRef]
- Sharanyakanth, P.S.; Radhakrishnan, M. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Sci. Technol. 2020, 104, 102–116. [Google Scholar] [CrossRef]
- Huang, X.; Huang, L.; Babu Arulmani, S.R.; Yan, J.; Li, Q.; Tang, J.; Wan, K.; Zhang, H.; Xiao, T.; Shao, M. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review. Environ. Res. 2022, 204, 112381. [Google Scholar] [CrossRef]
- Jalayeri, H.; Aprea, P.; Caputo, D.; Peluso, A.; Pepe, F. Synthesis of aminofunctionalized MIL-101(Cr) MOF for hexavalent chromium adsorption from aqueous solutions. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100300. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.H. Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 2020, 420, 213407. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Y.; Song, W.J. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: A review. Microchim. Acta 2020, 187, 234. [Google Scholar] [CrossRef]
- Wei, P.; Xie, H.; Zhu, X.; Zhao, R.; Ji, L.; Tong, X.; Luo, Y.; Cui, G.; Wang, Z.; Sun, X. CoS2 nanoparticles-embedded N-doped carbon nanobox derived from ZIF-67 for electrocatalytic N2-to-NH3 fixation under ambient conditions. ACS Sustain. Chem. Eng. 2020, 8, 29–33. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Hsieh, P.F.; Law, Z.X.; Lin, C.H.; Tsai, D.H. Understanding solvothermal growth of metal-organic framework colloids for CO2 capture applications. Langmuir 2022, 38, 4415–4424. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Tran, K.N.T.; Van Tan, L.; Tran, V.A.; Doan, V.D.; Lee, T.; Nguyen, T.D. Microwave-assisted solvothermal synthesis of bimetallic metalorganic framework for efficient photodegradation of organic dyes. Mater. Chem. Phys. 2021, 272, 125040. [Google Scholar] [CrossRef]
- Denisov, G.L.; Primakov, P.V.; Nelyubina, Y.V. A new metal-organic framework: Product of solvothermal synthesis in 3D-printed autoclaves. Russ. J. Coord. Chem. 2021, 47, 253–260. [Google Scholar] [CrossRef]
- Zorainy, M.Y.; Sheashea, M.; Kaliaguine, S.; Gobara, M.; Boffito, B.C. Facile solvothermal synthesis of a MIL-47(V) metal–organic framework for a high-performance epoxy/MOF coating with improved anticorrosion properties. RSC Adv. 2022, 12, 9008–9022. [Google Scholar] [CrossRef]
- Li, J.; Hurlock, M.J.; Goncharov, V.G.; Li, X.; Guo, X.; Zhang, Q. Solvent-free and phase-selective synthesis of aluminum trimesate metal-organic frameworks. Inorg. Chem. 2021, 60, 4623–4632. [Google Scholar] [CrossRef]
- Fiaz, M.; Athar, M.; Rani, S.; Najam-ul-Haq, M.; Farid, M.A. One pot solvothermal synthesis of Co3O4@UiO-66 and CuO@UiO-66 for improved current density towards hydrogen evolution reaction. Mater. Chem. Phys. 2020, 239, 122320. [Google Scholar] [CrossRef]
- Main, R.M.; Cordes, D.B.; Desai, A.V.; Slawin, A.M.Z.; Wheatley, P.; Armstrong, A.R.; Morris, R.E. Solvothermal synthesis of a novel calcium metal-organic framework: High temperature and electrochemical behaviour. Molecules 2021, 26, 7048. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Wang, Y.; Ge, S.; Ding, X.; Cui, Z.; Shao, Q. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Adv. Compos. Hybrid Mater. 2021, 4, 150–161. [Google Scholar] [CrossRef]
- Guan, H.; Yang, Y.; Luo, H.; Chen, H.; Zhou, H. Improved electrochemical performance of a Li1.2Ni0.2Mn0.6O2 cathode by a hydrothermal method with a metal-organic framework as a precursor. ACS Appl. Energy Mater. 2021, 4, 2506–2513. [Google Scholar] [CrossRef]
- Wang, T.T.; Liu, J.Y.; Guo, R.; An, J.D.; Huo, J.Z.; Liu, Y.Y.; Shi, W.; Ding, B. Solvothermal preparation of a lanthanide metal-organic framework for highly sensitive discrimination of nitrofurantoin and l-tyrosine. Molecules 2021, 26, 3673. [Google Scholar] [CrossRef]
- Olawale, M.D.; Obaleye, J.O.; Oladele, E.O. Solvothermal synthesis and characterization of novel [Ni(II)(Tpy)(Pydc)]·2H2O metal–organic framework as an adsorbent for the uptake of caffeine drug from aqueous solution. New J. Chem. 2020, 44, 18780–18791. [Google Scholar] [CrossRef]
- Moustafa, M.G.; Aboraia, A.M.; Butova, V.V.; Elmasry, F.; Guda, A.A. Facile synthesis of ZnNC derived from a ZIF-8 metal-organic framework by the microwave-assisted solvothermal technique as an anode material for lithium-ion batteries. New J. Chem. 2022, 46, 9138–9145. [Google Scholar] [CrossRef]
- Thi Dang, Y.; Hoang, H.T.; Dong, H.C.; Bui, K.B.T.; Nguyen, L.H.T.; Phan, T.B.; Kawazoe, Y.; Doan, T.L.H. Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Microporous Mesoporous Mater. 2020, 298, 110064. [Google Scholar] [CrossRef]
- Albuquerque, G.H.; Herman, G.S. Chemically modulated microwave-assisted synthesis of MOF-74(Ni) and preparation of metal-organic framework-matrix based membranes for removal of metal ions from aqueous media. Cryst. Growth Des. 2017, 17, 156–162. [Google Scholar] [CrossRef]
- Bazzi, L.; Ayouch, I.; Tachallait, H.; Hankari, E.L. Ultrasound and microwave assisted-synthesis of ZIF-8 from zinc oxide for the adsorption of phosphate. Results Eng. 2022, 13, 100378. [Google Scholar] [CrossRef]
- Gaikwad, S.; Kim, S.J.; Han, S. Novel metal–organic framework of UTSA-16 (Zn) synthesized by a microwave method: Outstanding performance for CO2 capture with improved stability to acid gases. J. Ind. Eng. Chem. 2020, 87, 250–263. [Google Scholar] [CrossRef]
- Laha, S.; Chakraborty, A.; Maji, T.K. Synergistic role of microwave and perturbation toward synthesis of hierarchical porous MOFs with tunable porosity. Inorg. Chem. 2020, 59, 3775–3782. [Google Scholar] [CrossRef]
- Zorainy, M.Y.; Kaliaguine, S.; Gobara, M.; Elbasuney, S.; Boffito, D.C. Microwave-assisted synthesis of the flexible iron-based MIL-88B metal-organic framework for advanced energetic systems. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2538–2556. [Google Scholar] [CrossRef]
- Wei, F.; Zheng, T.; Ren, Q.; Chen, H.; Peng, J.; Ma, Y.; Liu, Z.; Liang, Z.; Chen, D. Preparation of metal–organic frameworks by microwave-assisted ball milling for the removal of CR from wastewater. Green Process. Synth. 2022, 11, 595–603. [Google Scholar] [CrossRef]
- Nguyen, L.H.T.; Nguyen, H.T.T.; Le, B.Q.G.; Dang, M.H.D.; Nguyen, T.T.T.; Mai, N.X.D.; Doan, T.L.H. Microwave-assisted solvothermal synthesis of defective zirconium-organic framework as a recyclable nano-adsorbent with superior adsorption capacity for efficient removal of toxic organic dyes. Colloid Interface Sci. Commun. 2022, 46, 100511. [Google Scholar] [CrossRef]
- Sud, D.; Kaur, G. A comprehensive review on synthetic approaches for metalorganic frameworks: From traditional solvothermal to greener protocols. Polyhedron 2021, 193, 114897. [Google Scholar] [CrossRef]
- Mao, H.; Li, S.H.; Zhang, A.S.; Xu, L.H.; Lu, H.X.; Lv, J.; Zhao, Z.P. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave. Sep. Purif. Technol. 2021, 272, 118813. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Y.; Zhou, C.; Mu, B.; Chen, L. Microwave-assisted synthesis of Zr-based metal–organic framework (Zr-fum-fcu-MOF) for gas adsorption separation. Chem. Phys. Lett. 2021, 780, 138906. [Google Scholar] [CrossRef]
- Appelhans, L.N.; Hughes, L.; McKenzie, B.; Rodriguez, M.; Griego, J.; Briscoe, J.; Moorman, M.; Frederick, E.; Wright, J.B. Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization. Microporous Mesoporous Mater. 2021, 323, 111133. [Google Scholar] [CrossRef]
- Dehane, A.; Merouani, S.; Hamdaoui, O.; Ashokkumar, M. An alternative technique for determining the number density of acoustic cavitation bubbles in sonochemical reactors. Ultrason. Sonochem. 2022, 82, 105872. [Google Scholar] [CrossRef]
- Hayati, P.; Mehrabadi, Z.; Karimi, M.; Janczak, J.; Mohammadi, K.; Mahmoudi, G.; Dadi, F.; Fard, M.G.S.; Hasanzadeh, A.; Rostamnia, S. Photocatalytic activity of new nanostructures of an Ag(I) metal–organic framework (Ag-MOF) for the efficient degradation of MCPA and 2,4-D herbicides under sunlight irradiation. New J. Chem. 2021, 45, 3408–3417. [Google Scholar] [CrossRef]
- Yu, K.; Lee, Y.R.; Seo, J.Y.; Baek, K.Y.; Chung, Y.M.; Ahn, W.S. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous Mesoporous Mater. 2021, 316, 110985. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Wang, Y.; Chen, T.; Wu, J.; Liu, X.; Lin, C. Ultraweak chemiluminescence enhanced on the surface of lanthanide metal–organic framework nanosheets synthesized by ultrasonic wave. Appl. Surf. Sci. 2022, 579, 151860. [Google Scholar] [CrossRef]
- Fouad, O.A.; Ali, A.E.; Mohamed, G.G.; Mahmoud, N.F. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr(III) ion determination in centrum multivitamin and real water samples. Microchem. J. 2022, 175, 107228. [Google Scholar] [CrossRef]
- Abdolalian, P.; Morsali, A.; Tizhoush, S.K. Sono-synthesis of basic metal-organic framework for reusable catalysis of organic reactions in the eco-friendly conditions. J. Solid State Chem. 2021, 303, 122525. [Google Scholar] [CrossRef]
- Karbalaee Hosseini, A.; Tadjarodi, A. Sonochemical synthesis of nanoparticles of Cd metal organic framework based on thiazole ligand as a new precursor for fabrication of cadmium sulfate nanoparticles. Mater. Lett. 2022, 322, 132481. [Google Scholar] [CrossRef]
- Shen, M.; Zhou, J.; Elhadidy, M.; Xianyu, Y.; Feng, J.; Liu, D.; Ding, T. Cyclodextrin metal–organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application. Ultrason. Sonochem. 2022, 86, 106003. [Google Scholar] [CrossRef]
- Tian, H.X.; Zha, M.; Ding, J.G.; Zhu, L.M.; Li, B.L.; Wu, B. Visible-light-driven and ultrasonic-assisted copper metal-organic frameworks and graphene oxide nanocomposite for decolorization of dyes. J. Solid State Chem. 2021, 304, 122627. [Google Scholar] [CrossRef]
- Yu, C.X.; Chen, J.; Zhang, Y.; Song, W.B.; Li, X.Q.; Chen, F.J.; Zhang, Y.J.; Liu, D.; Liu, L.L. Highly efficient and selective removal of anionic dyes from aqueous solution by using a protonated metal-organic framework. J. Alloys Compd. 2021, 853, 157383. [Google Scholar] [CrossRef]
- Chen, D.; Cao, Y.; Chen, N.; Feng, P. Synthesis and characterization of cobalt metal organic frameworks prepared by ultrasonic wave-assisted ball milling for adsorptive removal of congo red dye from aqueous solutions. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1231–1240. [Google Scholar] [CrossRef]
- Titi, H.M.; Do, J.L.; Howarth, A.J.; Nagapudi, K.; Friscic, T. Simple, scalable mechanosynthesis of metal–organic frameworks using liquid-assisted resonant acoustic mixing (LA-RAM). Chem. Sci. 2020, 11, 7578–7584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Głowniak, S.; Szczęsniak, B.; Choma, J.; Jaroniec, M. Mechanochemistry: Toward green synthesis of metal–organic frameworks. Mater. Today 2021, 46, 109–124. [Google Scholar] [CrossRef]
- Thorne, M.F.; Gomez, M.L.R.; Bumstead, A.M.; Li, S.; Bennett, T.D. Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal–organic frameworks. Green Chem. 2020, 22, 2505–2512. [Google Scholar] [CrossRef]
- Taheri, M.; Bernardo, I.D.; Lowe, A.; Nisbet, D.R.; Tsuzuki, T. Green full conversion of ZnO nanopowders to well-dispersed Zeolitic Imidazolate Framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption. Cryst. Growth Des. 2020, 20, 2761–2773. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, X.; Huang, H.; Guo, X.; Qiao, Z.; Zhong, C. Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation. J. Mater. Chem. A 2020, 8, 3180–3185. [Google Scholar] [CrossRef]
- Brekalo, I.; Yuan, W.; Mottillo, C.; Lu, Y.; Zhang, Y.; Casaban, J.; Holman, K.T.; James, S.L.; Duarte, F.; Williams, P.A.; et al. Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chem. Sci. 2020, 11, 2141–2147. [Google Scholar] [CrossRef] [Green Version]
- Taheri, M.; Enge, T.G.; Tsuzuki, T. Water stability of cobalt doped ZIF-8: A quantitative study using optical analyses. Mater. Today Chem. 2020, 16, 100231. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Ng, M.; Milner, P.J. Rapid mechanochemical synthesis of metal–organic frameworks using exogenous organic base. Dalt. Trans. 2020, 49, 16238–16244. [Google Scholar] [CrossRef]
- Beamish-Cook, J.; Shankland, K.; Murray, C.A.; Vaqueiro, P. Insights into the mechanochemical synthesis of MOF-74. Cryst. Growth Des. 2021, 21, 3047–3055. [Google Scholar] [CrossRef]
- Gomez-Lopez, P.; Murat, M.; Hidalgo-Herrador, J.M.; Carrillo-Carrion, C.; Balu, A.M.; Luque, R.; Rodríguez-Padron, D. Mechanochemical synthesis of nickel-modified metal-organic frameworks for reduction reactions. Catalysts 2021, 11, 526. [Google Scholar] [CrossRef]
- Zhao, P.; Jian, M.; Xu, R.; Zhang, Q.; Xiang, C.; Liu, R.; Zhang, X.; Liu, H. Removal of arsenic(III) from water by 2D zeolitic imidazolate framework-67 nanosheets. Environ. Sci. Nano 2020, 7, 3616–3626. [Google Scholar] [CrossRef]
- Tong, L.; Huang, S.; Shen, Y.; Liu, S.; Ma, X.; Zhu, F.; Chen, G.; Ouyang, G. Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nat. Commun. 2022, 13, 951. [Google Scholar] [CrossRef]
- Sui, Q.; Guo, Y.; Xiang, C.; Wang, Q.; Luo, Y.; Sun, L.; Xu, F.; Zhang, J.; Xie, J.; Zou, Y. Room temperature boronized and phosphated cobalt-nickel metal-organic framework as the electrode material for supercapacitors. J. Energy Storage 2022, 51, 104372. [Google Scholar] [CrossRef]
- Zhang, D.; Xiang, Q. Simple and efficient size-controllable engineering of zeolitic imidazolate framework (ZIF-8) and M-ZIF-8 by changing addition order. Mater. Lett. 2021, 289, 129418. [Google Scholar] [CrossRef]
- Duo, H.; Wang, S.; Lu, X.; Wang, L.; Liang, X.; Guo, Y. Magnetic mesoporous carbon nanosheets derived from two-dimensional bimetallic metal-organic frameworks for magnetic solid-phase extraction of nitroimidazole antibiotics. J. Chromatogr. A 2021, 1645, 462074. [Google Scholar] [CrossRef]
- Dai, S.; Nouar, F.; Zhang, S.; Tissot, A.; Serre, C. One-step room-temperature synthesis of metal(IV) carboxylate metal-organic frameworks. Angew. Chem. 2021, 133, 4328–4334. [Google Scholar] [CrossRef]
- He, H.; Li, L.; Liu, Y.; Kassymova, M.; Li, D.; Zhang, L.; Jiang, H.L. Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Res. 2020, 14, 444–449. [Google Scholar] [CrossRef]
- Ge, K.; Sun, S.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z.; Cao, J.; Yang, Y.; Zhang, Y.; Pan, M.; et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 2021, 60, 12097–12102. [Google Scholar] [CrossRef]
- Geng, S.; Lin, E.; Li, X.; Liu, W.; Wang, T.; Wang, Z.; Sensharma, D.; Darwish, S.; Andaloussi, Y.H.; Pham, T.; et al. Scalable room-temperature synthesis of highly robust ethane-selective metal-organic frameworks for efficient ethylene purification. J. Am. Chem. Soc. 2021, 143, 8654–8660. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, W.; Kaiser, A.; Dou, Y.; Kaiser, A.; Zhang, W. Electrospinning of metal-organic frameworks for energy and environmental applications. Adv. Sci. 2020, 7, 1902590. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiong, J.; Chen, C.; Li, Q.; Liu, J.; Zhang, Z. Regulating the dissociation of LiCl and transportation of Li ions within UiO-66-NH2 framework for humidity sensing applications with superb comprehensive performances. J. Alloys Compd. 2020, 818, 152854. [Google Scholar] [CrossRef]
- Teo, W.L.; Zhou, W.; Qian, C.; Zhao, Y. Industrializing metal–organic frameworks: Scalable synthetic means and their transformation into functional materials. Mater. Today 2021, 47, 170–186. [Google Scholar] [CrossRef]
- Ostermann, R.; Cravillon, J.; Weidmann, C.; Wiebcke, M.; Smarsly, B.M. Metal–organic framework nanofibers via electrospinning. Chem. Commun. 2011, 47, 442–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Shi, X.; Ma, T.; Rong, H.; Wang, Z.; Cui, F.; Zhu, G.; Wang, C. Constructing mesoporous adsorption channels and MOF-polymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants. ACS Appl. Mater. Interfaces 2021, 13, 755–764. [Google Scholar] [CrossRef]
- Jia, J.; Wu, H.; Xu, L.; Dong, F.; Jia, Y.; Liu, X. Removal of acidic organic ionic dyes from water by electrospinning a polyacrylonitrile composite MIL101(Fe)-NH2 nanofiber membrane. Molecules 2022, 27, 2035. [Google Scholar] [CrossRef]
- Shahriari, T.; Zeng, Q.; Ebrahimi, A.; Chauhan, N.P.S.; Sargazi, G.; Hosseinzadeh, A. An efficient ultrasound assisted electrospinning synthesis of a biodegradable polymeric Ni-MOF supported by PVA- fibrous network as a novel CH4 adsorbent. Appl. Phys. A 2022, 128, 446. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, G.; Li, J.; Liu, Y.; Yuan, J.; Chen, J.; Zhan, H.; Wen, Z. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440. [Google Scholar] [CrossRef]
- Fan, L.; Xue, M.; Kang, Z.; Li, H.; Qiu, S. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J. Mater. Chem. 2012, 22, 25272–25276. [Google Scholar] [CrossRef]
- Wang, G.; Huang, D.; Cheng, M.; Chen, S.; Zhang, G.; Lei, L.; Chen, Y.; Du, L.; Li, R.; Liu, Y. Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials. Coord. Chem. Rev. 2022, 460, 214467. [Google Scholar] [CrossRef]
- Hao, M.; Qiu, M.; Yang, H.; Hu, B.; Wang, X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total Environ. 2021, 760, 143333. [Google Scholar] [CrossRef]
- Jian, S.; Ma, X.; Wang, Q.; Wu, J.; Wang, Y.; Jiang, S.; Xu, W.; Yang, W. Hierarchical porous Co3O4 nanocages with elaborate microstructures derived from ZIF-67 toward lithium storage. Vacuum 2021, 184, 109879. [Google Scholar] [CrossRef]
- Ma, X.; Guo, H.; Zhang, C.; Chen, D.; Tian, Z.; Wang, Y.; Chen, Y.; Wang, S.; Han, J.; Lou, Z.; et al. ZIF-67/wood derived self-supported carbon composites for electromagnetic interference shielding and sound and heat insulation. Inorg. Chem. Front. 2022, 9, 6305–6316. [Google Scholar] [CrossRef]
- Ma, X.; Pan, J.; Guo, H.; Wang, J.; Zhang, C.; Han, J.; Lou, Z.; Ma, C.; Jiang, S.; Zhang, K. Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 2023, 33, 2213431. [Google Scholar] [CrossRef]
- Pu, X.; Qin, X.; Han, Q.; Li, R.; Zhu, F.; Yu, W.; Liu, J.; Sun, H.; Zhao, J.; Ling, H.; et al. Preparation and carbonization of metal organic framework Zn(BDC)(Ted)0.5 for enhancing moisture resistance and methane storage capacity. Ind. Eng. Chem. Res. 2021, 60, 3809–3818. [Google Scholar] [CrossRef]
- Kukulka, W.; Cendrowski, K.; Michalkiewicz, B.; Mijowska, E. MOF-5 derived carbon as material for CO2 absorption. RSC Adv. 2019, 9, 18527–18537. [Google Scholar] [CrossRef]
- Christensen, D.B.; Mortensen, R.L.; Kramer, S.; Kegnæs, S. Study of CoCu alloy nanoparticles supported on MOF-derived carbon for hydrosilylation of ketones. Catal. Lett. 2020, 150, 1537–1545. [Google Scholar] [CrossRef]
- Huo, Q.; Li, J.; Qi, X.; Liu, G.; Zhang, X.; Zhang, B.; Ning, Y.; Fu, Y.; Liu, J.; Liu, S. Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization. Chem. Eng. J. 2019, 378, 122106. [Google Scholar] [CrossRef]
- Hong, S.; Kim, Y.; Kim, Y.; Suh, K.; Yoon, M.; Kim, K. Hierarchical porous carbon materials prepared by direct carbonization of metal-organic frameworks as an electrode material for supercapacitors. Bull. Korean Chem. Soc. 2021, 42, 309–314. [Google Scholar] [CrossRef]
- Xu, X.; Yang, T.; Zhang, Q.; Xia, W.; Ding, Z.; Eid, K.; Abdullah, A.M.; Hossain, S.A.; Zhang, M.; Tang, S.; et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 2020, 390, 124493. [Google Scholar] [CrossRef]
- Sanchez, N.C.; Guzman-Mar, J.L.; Hinojosa-Reyes, L.; Palomino, G.T.; Cabello, C.P. Carbon composite membrane derived from MIL-125-NH2 MOF for the enhanced extraction of emerging pollutants. Chemosphere 2019, 231, 510–517. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Li, W.; Lei, Z.; Cheng, N.; Tan, Y.; Mu, S.; Sun, X. Highly exposed active sites of defect-enriched derived MOFs for enhanced oxygen reduction reaction. ACS Sustain. Chem. Eng. 2019, 7, 17855–17862. [Google Scholar] [CrossRef]
- Jia, Z.; Hao, S.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Electrochemical fabrication of metal–organic frameworks membranes and films: A review. Microporous Mesoporous Mater. 2020, 305, 110322. [Google Scholar] [CrossRef]
- Jia, H.; Lu, S.; Ra Shin, S.H.; Sushko, M.L.; Tao, X.; Hummel, M.; Thallapally, P.K.; Liu, J.; Gu, Z. In situ anodic electrodeposition of two-dimensional conductive metal-organic framework@nickel foam for high-performance flexible supercapacitor. J. Power Sources 2022, 526, 231163. [Google Scholar] [CrossRef]
- Aimutis, W.R. Plant-based proteins: The good, bad, and ugly. Annu. Rev. Food Sci. Technol. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Soshino, Y.; Juma, O.; Miyata, A. A sustainable water supply business model by utilization of the innovative water flocculants, a case study in Bagamoyo, Tanzania. In Technology Entrepreneurship and Sustainable Development; Disaster Risk Reduction; Ray, P., Shaw, R., Eds.; Springer: Singapore, 2022; pp. 297–318. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Jafari, N.; Ebrahimpour, K.; Karimi, M.; Rostamnia, S.; Behnami, A.; Ghanbari, R.; Mohammadi, A.; Rahimi, B.; Abdolahnejad, A. A novel ternary heterogeneous TiO2/BiVO4/NaY-Zeolite nanocomposite for photocatalytic degradation of microcystin-leucine arginine (MC-LR) under visible light. Ecotoxicol. Environ. Saf. 2021, 210, 111862. [Google Scholar] [CrossRef]
- Rasheed, T.; Hassan, A.A.; Bilal, M.; Hussain, T.; Rizwan, K. Metal-organic frameworks-based adsorbents: A review from removal perspective of various environmental contaminants from wastewater. Chemosphere 2020, 259, 127369. [Google Scholar] [CrossRef] [PubMed]
- Amenaghawon, A.N.; Anyalewechi, C.L.; Darmokoesoemo, H.; Kusuma, H.S. Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. J. Environ. Manag. 2022, 302, 113989. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Mokhtar, M.B.; Majid, N.A. Household water filtration technology to ensure safe drinking water supply in the Langat River Basin, Malaysia. Water 2021, 13, 1032. [Google Scholar] [CrossRef]
- Wang, Y.; Kuntke, P.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J.N.; Lei, Y. Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective. Water Res. 2022, 209, 117891. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y. Removal of microplastics by coagulation treatment in waters and prospect of recycling of separated microplastics: A mini-review. J. Environ. Chem. Eng. 2022, 10, 108197. [Google Scholar] [CrossRef]
- Thamaraiselvan, C.; Thakur, A.K.; Gupta, A.; Arnusch, C.J. Electrochemical removal of organic and inorganic pollutants using robust laser-induced graphene membranes. ACS Appl. Mater. Interfaces 2021, 13, 1452–1462. [Google Scholar] [CrossRef]
- Lu, Q.; Li, N.; Zhang, X. Supramolecular recognition PVDF/PVA ultrafiltration membrane for rapid removing aromatic compounds from water. Chem. Eng. J. 2022, 436, 132889. [Google Scholar] [CrossRef]
- Yan, H.; Lai, C.; Wang, D.; Liu, S.; Li, X.; Zhou, X.; Yi, H.; Li, B.; Zhang, M.; Li, L.; et al. In situ chemical oxidation: Peroxide or persulfate coupled with membrane technology for wastewater treatment. J. Mater. Chem. A 2021, 9, 11944–11960. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Anubha, M.; Jayashree, S. Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environ. Pollut. 2022, 298, 118844. [Google Scholar] [CrossRef]
- Issaka, E.; Darko, A.M.U.; Yakubu, J.N.O.; Fapohunda, S.; Ali, F.O.; Bilal, N. Advanced catalytic ozonation for degradation of pharmaceutical pollutants—A review. Chemosphere 2022, 289, 133208. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Han, L.; Wang, J.; Zhu, L.; Zeng, H. Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism. Adv. Colloid Interface Sci. 2021, 289, 102360. [Google Scholar] [CrossRef]
- Bao, J.; Li, H.; Xu, Y.; Chen, S.; Wang, Z.; Jiang, C.; Li, H.; Wei, Z.; Sun, S.; Zhao, W.; et al. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. J. Mater. Sci. Technol. 2021, 78, 131–143. [Google Scholar] [CrossRef]
- Novikau, R.; Lujaniene, G. Adsorption behaviour of pollutants: Heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): A review. J. Environ. Manag. 2022, 309, 114685. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, J.; Su, F.; He, X. Removal of polystyrene nanoplastics from aqueous solutions by a novel magnetic zeolite adsorbent. Hum. Ecol. Risk Assess. Int. J. 2023, 29, 327–346. [Google Scholar] [CrossRef]
- Mariyam, S.; Zuhara, S.; Al-Ansari, T.; Mackey, L.; Mckay, G. Novel high-capacity model for copper binary ion exchange on e-waste derived adsorbent resin. Adsorption 2022, 28, 185–196. [Google Scholar] [CrossRef]
- Yadav, S.K.; Dhakate, S.R.; Pratap Singh, B. Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Bioresour. Technol. 2022, 344, 126231. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Pagano, R.; Bosco, G.; Pal, S.; Ingrosso, C.; Valli, L.; Giancane, G. SiO2 based nanocomposite for simultaneous magnetic removal and discrimination of small pollutants in water. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 633, 127905. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Zhu, G.; Chen, C.; Hantoko, D.; Yan, M. COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption. J. Water Process Eng. 2022, 45, 102462. [Google Scholar] [CrossRef]
- Luo, Q.; He, L.; Wang, X.; Huang, H.; Wang, X.; Sang, S.; Huang, X. Cyclodextrin derivatives used for the separation of boron and the removal of organic pollutants. Sci. Total Environ. 2020, 749, 141487. [Google Scholar] [CrossRef]
- Ali, M.E.; Hoque, M.E.; Safdar Hossain, S.K.; Biswas, M.C. Nano adsorbents for wastewater treatment: Next generation biotechnological solution. Int. J. Environ. Sci. Technol. 2020, 17, 4095–4132. [Google Scholar] [CrossRef]
- Lai, C.; Wang, Z.; Qin, L.; Fu, Y.; Li, B.; Zhang, M.; Liu, S.; Li, L.; Yi, H.; Liu, X.; et al. Metal-organic frameworks as burgeoning materials for the capture and sensing of indoor VOCs and radon gases. Coord. Chem. Rev. 2021, 427, 213565. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, G.; Yi, J.; Cheng, M.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Zhou, C.; Xue, W.; et al. Progress and challenges of metal-organic frameworks-based materials for SR-AOPs applications in water treatment. Chemosphere 2021, 263, 127672. [Google Scholar] [CrossRef]
- Babazadeh, M.; Hosseinzadeh-Khanmiri, R.; Abolhasani, J.; Ghorbani-Kalhor, E.; Hassanpour, A. Solid phase extraction of heavy metal ions from agricultural samples with the aid of a novel functionalized magnetic metal–organic framework. RSC Adv. 2015, 5, 19884–19892. [Google Scholar] [CrossRef]
- Cui, C.; Li, G.; Tang, Z. Metal-organic framework nanosheets and their composites for heterogeneous thermal catalysis: Recent progresses and challenges. Chinese Chem. Lett. 2021, 32, 3307–3321. [Google Scholar] [CrossRef]
- Taghavi, R.; Rostamnia, S.; Farajzadeh, M.; Karimi-Maleh, H.; Wang, J.; Kim, D.; Jang, H.W.; Luque, R.; Varma, R.S.; Shokouhimehr, M. Magnetite metal-organic frameworks: Applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorg. Chem. 2022, 61, 15747–15783. [Google Scholar] [CrossRef] [PubMed]
- Al-Wafi, R.; Ahmed, M.K.; Mansour, S.F. Tuning the synthetic conditions of graphene oxide/magnetite/ hydroxyapatite/cellulose acetate nanofibrous membranes for removing Cr(VI), Se(IV) and methylene blue from aqueous solutions. J. Water Process Eng. 2020, 38, 101543. [Google Scholar] [CrossRef]
- Wang, R.; Deng, L.; Fan, X.; Li, K.; Lu, H.; Li, W. Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose–magnesium hydroxide. Int. J. Biol. Macromol. 2021, 189, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Saad, D.R.; Alismaeel, Z.T.; Abbar, A.H. Cobalt removal from simulated wastewaters using a novel flow-by fixed bed bio-electrochemical reactor. Chem. Eng. Process. 2020, 156, 108097. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.M.S.; Chaturvedi, C.P.; Shabnam, A.K.; Subrahmanyam, A.A.; Mondal, G.; Gupta, R.; Malyan, D.K.; Kumar, S.K.; Khan, S.S.; et al. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Qiu, D.; Zhang, M. Molecular level study of cadmium adsorption on dithiocarbamate modified chitosan. Environ. Pollut. 2021, 271, 116322. [Google Scholar] [CrossRef]
- Shayegan, H.; Ali, G.A.M.; Safarifard, V. Recent progress in the removal of heavy metal ions from water using metal-organic frameworks. ChemistrySelect 2020, 5, 124–146. [Google Scholar] [CrossRef] [Green Version]
- Shamim, M.A.; Zia, H.; Zeeshan, M.; Khan, M.Y.; Shahid, M. Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. J. Environ. Chem. Eng. 2022, 10, 106991. [Google Scholar] [CrossRef]
- Wang, R.F.; Deng, L.G.; Li, K.; Fan, X.J.; Li, W.; Lu, H.Q. Fabrication and characterization of sugarcane bagasse–calcium carbonate composite for the efficient removal of crystal violet dye from wastewater. Ceram. Int. 2020, 46, 27484–27492. [Google Scholar] [CrossRef]
- Han, L.; Zhang, P.; Li, L.; Lu, S.; Su, B.; An, X.; Lei, Z. Nitrogen-containing carbon nano-onions-like and graphene-like materials derived from biomass and the adsorption and visible photocatalytic performance. Appl. Surf. Sci. 2021, 543, 148752. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Tajahmadi, S.; Bahi, A.; Molavi, H.; Rezakazemi, M.; Ko, F.; Aminabhavi, T.M.; Arjmand, M. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Chemosphere 2021, 264, 128466. [Google Scholar] [CrossRef] [PubMed]
- Shayegan, H.; Ali, G.M.A.; Safarifard, V. Amide-functionalized metal-organic framework for high efficiency and fast removal of Pb(II) from aqueous solution. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3170–3178. [Google Scholar] [CrossRef]
- Abdelmoaty, A.S.; El-Wakeel, S.T.; Fathy, N.; Hanna, A.A. High Performance of UiO-66 metal-organic framework modified with melamine for uptaking of lead and cadmium from aqueous solutions. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2557–2567. [Google Scholar] [CrossRef]
- Subramaniyam, V.; Thangadurai, T.D.; Lee, Y.I. Zirconium based metal-organic framework for the adsorption of Cu (II) ions in real water samples. Clean. Eng. Technol. 2022, 9, 100526. [Google Scholar] [CrossRef]
- Mohan, B.; Kumar, S.; Virender, K.; Kumar, A.; Modi, K.; Jiao, K.; Chen, T. Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal. Sep. Purif. Technol. 2022, 297, 121471. [Google Scholar] [CrossRef]
- Akha, N.Z.; Salehi, S.; Anbia, M. Removal of arsenic by metal organic framework/ chitosan/carbon nanocomposites: Modeling, optimization, and adsorption studies. Int. J. Biol. Macromol. 2022, 208, 794–808. [Google Scholar] [CrossRef]
- Wang, H.; Yu, T.; Li, Y.; Liu, L.; Gao, C.; Ding, J. Self-sustained bioelectrical reduction system assisted iron–manganese doped metal-organic framework membrane for the treatment of electroplating wastewater. J. Clean. Prod. 2022, 331, 129972. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, J.; Chen, H.; Bang, K.-T.; Pan, D.; Kim, Y. Thiol-functionalized Zr metal-organic frameworks for efficient removal of Fe3+ from water. Cell Rep. Phys. Sci. 2022, 3, 100783. [Google Scholar] [CrossRef]
- Ricco, R.; Konstas, K.; Styles, M.J.; Richardson, J.J.; Babarao, R.; Suzuki, K.; Scopece, P.; Falcaro, P. Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water. J. Mater. Chem. A 2015, 3, 19822–19831. [Google Scholar] [CrossRef]
- Yin, N.; Wang, K.; Xia, Y.; Li, Z. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II). Desalination 2018, 430, 120–127. [Google Scholar] [CrossRef]
- Abdel-Magied, A.F.; Abdelhamid, H.N.; Ashour, R.M.; Fu, L.; Dowaidar, M.; Xia, W.; Forsberg, K. Magnetic metal-organic frameworks for efficient removal of cadmium(II), and lead(II) from aqueous solution. J. Environ. Chem. Eng. 2022, 10, 107467. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; An, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.; Huang, B. A water-stable triazine-based metal-organic framework as an efficient adsorbent of Pb(II) ions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 315–322. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, Z.; Li, C.; Wu, C. Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. J. Mol. Liq. 2016, 221, 43–50. [Google Scholar] [CrossRef]
- Zheng, Y.; Rao, F.; Zhang, M.; Li, J.; Huang, W. Efficient, selective, and reusable metal–organic framework-based adsorbent for the removal of Pb(II) and Cr(VI) heavy-metal pollutants from wastewater. Clean. Eng. Technol. 2021, 5, 100344. [Google Scholar] [CrossRef]
- Ragheb, E.; Shamsipur, M.; Jalali, F.; Mousavi, F. Modified magnetic-metal organic framework as a green and efficient adsorbent for removal of heavy metals. J. Environ. Chem. Eng. 2022, 10, 107297. [Google Scholar] [CrossRef]
- Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; et al. “Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord. Chem. Rev. 2018, 359, 1–31. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Xie, T.; Liu, Y.; Shen, Q.; Yang, J.; Cao, L.; Yang, J. Highly efficient Hg2+ removal via a competitive strategy using a Co-based metal organic framework ZIF-67. J. Environ. Sci. 2022, 119, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, S.; Du, J.; Tang, J.; Zhou, Q. Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue. RSC Adv. 2019, 9, 9410–9420. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zheng, M.; Xue, W.; Huang, H.; Zhang, G. Synergistic disulfide sites of tetrathiafulvalene-based metal–organic framework for highly efficient and selective mercury capture. Sep. Purif. Technol. 2022, 287, 120577. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, J.; Zhang, S.; Alsaedi, A.; Hayat, T.; Li, J.; Song, Y. Efficient removal of metal contaminants by EDTA modified MOF from aqueous solutions. J. Colloid Interface Sci. 2019, 555, 403–412. [Google Scholar] [CrossRef]
- Tian, J.; Shi, C.; Xiao, C.; Jiang, F.; Yuan, D.; Chen, Q.; Hong, M. Introduction of flexibility into a Metal-Organic Framework to promote Hg(II) capture through adaptive deformation. Inorg. Chem. 2020, 59, 18264–18275. [Google Scholar] [CrossRef] [PubMed]
- Seyfi Hasankola, Z.; Rahimi, R.; Shayegan, H.; Moradi, E.; Safarifard, V. Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework. Inorg. Chim. Acta 2020, 501, 119264. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Wang, Y.; Yuan, F.; Jia, S.; Sun, H.; Zhang, X. Water-stable metal organic framework-199@polyaniline with high-performance removal of copper II. Environ. Sci. Pollut. Res. 2022, 29, 44883–44892. [Google Scholar] [CrossRef]
- Wei, N.; Zheng, X.; Ou, H.; Yu, P.; Li, Q.; Feng, S. Fabrication of an amine-modified ZIF-8@GO membrane for high-efficiency adsorption of copper ions. New J. Chem. 2019, 43, 5603–5610. [Google Scholar] [CrossRef]
- Li, D.; Tian, X.; Wang, Z.; Guan, Z.; Li, X.; Qiao, H.; Ke, H.; Luo, L.; Wei, Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383, 123127. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y.; et al. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Taghizadeh, M.; Taghizadeh, A.; Abdi, J.; Hayati, B.; Shekarchi, A.A. Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Appl. Surf. Sci. 2019, 480, 288–299. [Google Scholar] [CrossRef]
- Yu, C.X.; Wang, K.Z.; Li, X.J.; Liu, D.; Ma, L.F.; Liu, L.L. Highly efficient and facile removal of Pb2+ from water by using a negatively charged azoxy-functionalized metal-organic framework. Cryst. Growth Des. 2020, 20, 5251–5260. [Google Scholar] [CrossRef]
- Beyan, S.M.; Ambio, T.A.; Sundramurthy, V.P.; Gomadurai, C.; Getahun, A.A. Adsorption phenomenon for removal of Pb(II) via teff straw based activated carbon prepared by microwave-assisted pyrolysis: Process modelling, statistical optimization, isotherm, kinetics, and thermodynamic studies. Int. J. Environ. Anal. Chem. 2022, 102, 1–22. [Google Scholar] [CrossRef]
- Rind, I.K.; Memon, N.; Khuhawar, M.Y.; Lanjwani, M.F. Thermally activated mango peels hydrochar for fixed-bed continuous flow decontamination of Pb(II) ions from aqueous solution. Int. J. Environ. Sci. Technol. 2021, 19, 2835–2850. [Google Scholar] [CrossRef]
- Abdel Salam, E.T.; Abou El-Nour, K.M.; Awad, A.A.; Orabi, A.S. Carbon nanotubes modified with 5,7-dinitro-8-quinolinol as potentially applicable tool for efficient removal of industrial wastewater pollutants. Arab. J. Chem. 2020, 13, 109–119. [Google Scholar] [CrossRef]
- Azam, M.G.; Kabir, M.H.; Shaikh, M.A.A.; Ahmed, S.; Mahmud, M.; Yasmin, S. A rapid and efficient adsorptive removal of lead from water using graphene oxide prepared from waste dry cell battery. J. Water Process Eng. 2022, 46, 102597. [Google Scholar] [CrossRef]
- Park, J.H.; Eom, J.H.; Lee, S.L.; Hwang, S.W.; Kim, S.H.; Kang, S.W.; Yun, J.J.; Cho, J.S.; Lee, Y.H.; Seo, D.C. Exploration of the potential capacity of fly ash and bottom ash derived from wood pellet-based thermal power plant for heavy metal removal. Sci. Total Environ. 2020, 740, 140205. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, X.; Wang, Y.; Song, X.; Fang, D.; Ge, S. The sorption of single- and multi-heavy metals in aqueous solution using enhanced nano-hydroxyapatite assisted with ultrasonic. J. Environ. Chem. Eng. 2021, 9, 105240. [Google Scholar] [CrossRef]
- Wei, W.; Han, X.; Zhang, M.; Zhang, Y.; Zhang, Y.; Zheng, C. Macromolecular humic acid modified nano-hydroxyapatite for simultaneous removal of Cu(II) and methylene blue from aqueous solution: Experimental design and adsorption study. Int. J. Biol. Macromol. 2020, 150, 849–860. [Google Scholar] [CrossRef]
- Jia, H.; Qian, H.; Qu, W.; Zheng, L.; Feng, W.; Ren, W. Fluoride occurrence and human health risk in drinking water wells from Southern Edge of Chinese Loess Plateau. Int. J. Environ. Res. Public Health 2019, 16, 1683. [Google Scholar] [CrossRef] [Green Version]
- Rizzu, M.; Tanda, A.; Cappai, C.; Roggero, P.P.; Seddaiu, G. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review. Sci. Total Environ. 2021, 787, 147650. [Google Scholar] [CrossRef]
- Husejnovic, M.S.; Turkic, A.; Halilcevic, A.; Hadzic, N.; Mahmutbegovic, H. Deterministic and probabilistic human health risk assessment for fluorides in drinking groundwater from Lukavac, Bosnia and Herzegovina. Environ. Anal. Health Toxicol. 2022, 37, e2022016. [Google Scholar] [CrossRef]
- Aggeborn, L.; Ohman, M. The Effects of fluoride in drinking water. J. Polit. Econ. 2021, 129, 465–491. [Google Scholar] [CrossRef]
- Štepec, D.; Ponikvar-Svet, M. Fluoride in human health and nutrition. Acta Chim. Slov. 2019, 66, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liu, F. Indoor air quality and health: Empirical evidence from fluoride pollution in China. China Econ. Rev. 2020, 63, 101282. [Google Scholar] [CrossRef]
- Song, J.; Yang, W.; Han, X.; Jiang, S.; Zhang, C.; Pan, W.; Jian, S.; Hu, J. Performance of rod-shaped Ce Metal-organic frameworks for defluoridation. Molecules 2023, 28, 3492. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Song, J.; Han, X.; Wen, Q.; Yang, W.; Pan, W.; Jian, S.; Jiang, S. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: A kinetics, thermodynamics and mechanisms study. Sep. Purif. Technol. 2023, 314, 123562. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, W.; Shi, F.; Liu, Y.; Chen, Y.; Duan, G.; Zhang, C.; Hu, J.; Jian, S. Enhanced fluoride remediation from aqueous solution by La-modified ZIF-8 hybrids. Colloids Surf. A 2023, 672, 131726. [Google Scholar] [CrossRef]
- Pai, S.; Kini, M.S.; Selvaraj, R. A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environ. Sci. Pollut. Res. 2019, 28, 11835–11849. [Google Scholar] [CrossRef]
- Yusuf, M. Synthetic dyes: A threat to the environment and water ecosystem. In Textiles and Clothing; Wiley: Hoboken, NJ, USA, 2019; pp. 11–26. [Google Scholar] [CrossRef]
- Firoozi, M.; Rafiee, Z.; Dashtian, K. New MOF/COF hybrid as a robust adsorbent for simultaneous removal of Auramine O and Rhodamine B dyes. ACS Omega 2020, 5, 9420–9428. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Duan, C.; Zhang, Y.; Lu, W.; Wang, W.; Ni, Y. Corncob-supported Ag NPs@ZIF-8 nanohybrids as multifunction biosorbents for wastewater remediation: Robust adsorption, catalysis and antibacterial activity. Compos. Sci. Technol. 2020, 200, 108384. [Google Scholar] [CrossRef]
- Taha, A.A.; Huang, L.; Ramakrishna, S.; Liu, Y. MOF [NH2-MIL-101(Fe)] as a powerful and reusable Fenton-like catalyst. J. Water Process Eng. 2020, 33, 101004. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Oveisi, M.; Taghizadeh, A.; Taghizadeh, M. Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal. Carbohydr. Polym. 2020, 227, 115364. [Google Scholar] [CrossRef]
- Mohd, S.; Wani, A.A.; Khan, M.K. ZnO/POA functionalized metal-organic framework ZIF-8 nanomaterial for dye removal. Clean. Chem. Eng. 2022, 3, 100047. [Google Scholar] [CrossRef]
- Molavi, H.; Neshastehgar, M.; Shojaei, A.; Ghashghaeinejad, H. Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite. Chemosphere 2020, 247, 125882. [Google Scholar] [CrossRef]
- Xie, X.; Huang, X.; Lin, W.; Lin, W.; Chen, Y.; Lang, X.; Wang, Y.; Gao, L.; Zhu, H.; Chen, J. Selective adsorption of cationic dyes for stable metal-organic framework ZJU-48. ACS Omega 2020, 5, 13595–13600. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.L.; Liu, C.G.; Fu, Y.; Ye, F. A cationic metal-organic framework for dye adsorption and separation based on column-chromatography. J. Mol. Liq. 2020, 300, 112311. [Google Scholar] [CrossRef]
- Gao, L.; Gao, T.; Zhang, Y.; Hu, T. A bifunctional 3D porous Zn-MOF: Fluorescence recognition of Fe3+ and adsorption of congo red/methyl orange dyes in aqueous medium. Dye. Pigment. 2022, 197, 109945. [Google Scholar] [CrossRef]
- Koppula, S.; Manabolu Surya, S.B.; Katari, N.K.; Dhami, P.S.; Sivasankaran Nair, R.K. Mesoporous MOF composite for efficient removal of uranium, methyl orange, methylene blue, and Congo red dyes from aqueous solutions. Appl. Organomet. Chem. 2022, 36, e6554. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Kazemi, Z.; Pourahmad Nodehi, A. Synthesis and characterization of boehmite/metal-organic framework of type AlO(OH)/MOF-74(Zn) for photocatalytic degradation of Congo red dye. J. Chin. Chem. Soc. 2022, 69, 939–949. [Google Scholar] [CrossRef]
- Mahreni, M.; Ramadhan, R.R.; Pramadhana, M.F.; Permatasari, A.P.; Kurniawati, D.; Kusuma, H.S. Synthesis of Metal Organic Framework (MOF) based Ca-Alginate for adsorption of malachite green dye. Polym. Bull. 2022, 79, 11301–11315. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Niazi, Z.; Heidari, K.; Afarinandeh, A.; Samadi Kazemi, M.; Haghighat, G.A.; Vasseghian, Y.; Rezania, S.; Barghi, A. Nickel and iron-based metal-organic frameworks for removal of organic and inorganic model contaminants. Environ. Res. 2022, 212, 113164. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, X.; Wang, J.; Wang, L.; Zhu, B.; Xu, C.; Cui, G.; Zhang, D.; Fan, Y. Two novel Zn (II)-based metal–organic frameworks for rapidly selective adsorption and efficient photocatalytic degradation of hazardous aromatic dyes in aqueous phase. Adv. Powder Technol. 2022, 33, 103665. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, W.; Huang, Y.Q.; Wang, Q.; Yang, J.M. Superior adsorptive removal of azo dyes from aqueous solution by a Ni(II)-doped metal–organic framework. Colloids Surf. A Physicochem. Eng. Asp. 2021, 619, 126549. [Google Scholar] [CrossRef]
- Abd El Salam, H.M.; Zaki, T. Removal of hazardous cationic organic dyes from water using nickel-based metal-organic frameworks. Inorg. Chim. Acta 2018, 471, 203–210. [Google Scholar] [CrossRef]
- Pattappan, D.; Vargheese, S.; Kavya, K.V.; Kumar, R.T.R.; Haldorai, Y. Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light. Chemosphere 2022, 286, 131726. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.A.L.; Vo, T.K.; Nguyen, D.T.; Huynh, H.K.; Pham, Q.T.S.; Nguyen, V.C. Facile synthesis of bismuth terephthalate metal–organic frameworks and their visible-light-driven photocatalytic activities toward Rhodamine B dye. Green Chem. Lett. Rev. 2022, 15, 572–581. [Google Scholar] [CrossRef]
- Feng, X.; Chen, H.; Jiang, F. In-situ ethylenediamine-assisted synthesis of a magnetic iron-based metal-organic framework MIL-53(Fe) for visible light photocatalysis. J. Colloid Interface Sci. 2017, 494, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Araya, T.; Jia, M.; Yang, J.; Zhao, P.; Cai, K.; Ma, W.; Huang, Y. Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance. Appl. Catal. B Environ. 2017, 203, 768–777. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Yue, X.; Guo, W.; Li, X.; Zhou, H.; Wang, R. Core-shell Fe3O4@MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7. Environ. Sci. Pollut. Res. 2016, 23, 15218–15226. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J. Mol. Catal. A Chem. 2015, 400, 81–89. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Qin, L.; Lai, C.; Wang, Z.; Zhou, M.; Xiao, L.; Liu, S.; Zhang, M. Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. Chemosphere 2021, 285, 131432. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zou, B.; Gao, W.; Liu, Q.; Wang, Z.; Guo, Y.; Wang, X.; Liu, Y. Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 446, 1–7. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Wong, Y.M.; Yek, P.N.Y.; Ma, N.L.; Lee, C.L.; Chase, H.A. Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J. Clean. Prod. 2017, 162, 1376–1387. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Li, H.; Zheng, H.; Du, Q. Equilibrium, kinetic and thermodynamic studies on methylene blue adsorption by konjac glucomannan/activated carbon aerogel. J. Polym. Environ. 2019, 27, 1342–1351. [Google Scholar] [CrossRef]
- Prabhu, S.M.; Khan, A.; Farzana, M.H.; Hwang, G.C.; Lee, W.; Lee, G. Synthesis and characterization of graphene oxide-doped nano- hydroxyapatite and its adsorption performance of toxic diazo dyes from aqueous solution. J. Mol. Liq. 2018, 269, 746–754. [Google Scholar] [CrossRef]
- Tanhaei, B.; Ayati, A.; Sillanpaa, M. Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: Kinetic, thermodynamic and isothermal studies. Int. J. Biol. Macromol. 2019, 121, 1126–1134. [Google Scholar] [CrossRef]
- Abd-Elhamid, A.I.; Kamoun, E.A.; El-Shanshory, A.A.; Soliman, H.M.A.; Aly, H.F. Evaluation of graphene oxide-activated carbon as effective composite adsorbent toward the removal of cationic dyes: Composite preparation, characterization and adsorption parameters. J. Mol. Liq. 2019, 279, 530–539. [Google Scholar] [CrossRef]
- Monahan, C.; Nag, R.; Morris, D.; Cummins, E. Antibiotic residues in the aquatic environment—Current perspective and risk considerations. J. Environ. Sci. Health Part A 2021, 56, 733–751. [Google Scholar] [CrossRef]
- Hooriabad Saboor, F.; Nasirpour, N.; Shahsavari, S.; Kazemian, H. The Effectiveness of MOFs for the Removal of Pharmaceuticals from Aquatic Environments: A Review Focused on Antibiotics Removal. Chem. Asian J. 2022, 17, e202101105. [Google Scholar] [CrossRef]
- Stylianou, M.; Christou, A.; Michael, C.; Apagiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Adsorption and removal of seven antibiotic compounds present in water with the use of biochar derived from the pyrolysis of organic waste feedstocks. J. Environ. Chem. Eng. 2021, 9, 105868. [Google Scholar] [CrossRef]
- Song, P.; Yang, Z.; Zeng, G.; Yang, X.; Xu, H.; Wang, L.; Ahmad, K. Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review. Chem. Eng. J. 2017, 317, 707–725. [Google Scholar] [CrossRef]
- Mondal, S.K.; Saha, A.K.; Sinha, A. Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. J. Clean. Prod. 2018, 171, 1203–1214. [Google Scholar] [CrossRef]
- Qin, K.; Zhao, Q.; Yu, H.; Xia, X.; Li, J.; He, S.; Wei, L.; An, T. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. Environ. Res. 2021, 199, 111360. [Google Scholar] [CrossRef]
- Jung, K.W.; Kim, J.H.; Choi, J.W. Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochlo. Compos. Part B Eng. 2020, 187, 107867. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Dai, W.; Wei, Y.; Wang, Y.; Zhang, Y.; Zhi, L.; Huang, H.; Gao, Z. A metal-organic framework with large 1-D channels and rich –OH sites for high-efficiency chloramphenicol removal from water. J. Colloid Interface Sci. 2018, 526, 28–34. [Google Scholar] [CrossRef]
- Yao, B.; Liu, Y.; Zou, D. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles. Chemosphere 2019, 226, 298–306. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, F.; Lv, Q.; Zhang, Y.; Li, X.; Li, J. Simultaneous removal of tetracycline and norfloxacin from water by iron-trimesic metal-organic frameworks. J. Environ. Chem. Eng. 2022, 10, 107403. [Google Scholar] [CrossRef]
- Xia, J.; Gao, Y.; Yu, G. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. J. Colloid Interface Sci. 2021, 590, 495–505. [Google Scholar] [CrossRef]
- Chen, M.M.; Niu, H.Y.; Niu, C.G.; Guo, H.; Liang, S.; Yang, Y.Y. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation. J. Hazard. Mater. 2022, 424, 127196. [Google Scholar] [CrossRef]
- Kim, N.; Cha, B.; Yea, Y.; Njaramba, L.K.; Vigneshwaran, S.; Elanchezhiyan, S.S.; Park, C.M. Effective sequestration of tetracycline and ciprofloxacin from aqueous solutions by Al-based metal organic framework and reduced graphene oxide immobilized alginate biosorbents. Chem. Eng. J. 2022, 450, 138068. [Google Scholar] [CrossRef]
- Chaturvedi, G.; Kaur, A.; Umar, A.; Khan, M.A.; Algarni, H.; Kansal, S.K. Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron-based MOFs, MIL-100(Fe). J. Solid State Chem. 2020, 281, 121029. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, H.; Zhao, X.; Qu, Y.; Liu, D. Synergistic effect of electrostatic and coordination interactions for adsorption removal of cephalexin from water using a zirconium-based metal-organic framework. J. Colloid Interface Sci. 2020, 580, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Li, X.; Li, X.; Chen, J.; Liu, Y.; Zhao, G.; Zhu, G. Surface imprinted polymer on a metal-organic framework for rapid and highly selective adsorption of sulfamethoxazole in environmental samples. J. Hazard. Mater. 2022, 423, 127087. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Wang, D.; Wang, X.; Hu, X.; Gao, F.; Su, Z. Efficient cobalt-based metal-organic framework derived magnetic Co@C-600 Nanoreactor for peroxymonosulfate activation and oxytetracycline degradation. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 648, 129234. [Google Scholar] [CrossRef]
- Yang, L.X.; Yang, J.C.E.; Fu, M.L. Magnetic CoFe2O4 nanocrystals derived from MIL-101 (Fe/Co) for peroxymonosulfate activation toward degradation of chloramphenicol. Chemosphere 2021, 272, 129567. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W.; Cai, W. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin. Sci. Total Environ. 2019, 696, 133962. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Guo, Q. CdSe QDs@ Fe-based metal organic framework composites for improved photocatalytic RhB degradation under visible light. Microporous Mesoporous Mater. 2021, 324, 111291. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, S.; Wu, P.; Wang, D.; Lu, S.; Wang, S.; Gong, F.; Wei, X.Q.; Ye, X.; Ding, P. Recent advances in performance improvement of metal-organic frameworks to remove antibiotics: Mechanism and evaluation. Sci. Total Environ. 2022, 811, 152351. [Google Scholar] [CrossRef]
- Kalhorizadeh, T.; Dahrazma, B.; Zarghami, R.; Mirzababaei, S.; Kirillov, A.M.; Abazari, R. Quick removal of metronidazole from aqueous solutions using metal–organic frameworks. New J. Chem. 2022, 46, 9440–9450. [Google Scholar] [CrossRef]
- Tang, J.; Zong, L.; Mu, B.; Kang, Y.; Wang, A. Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal. Korean J. Chem. Eng. 2018, 35, 1650–1661. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Ngo, H.H.; Guo, W.; Wen, H.; Zhang, D.; Li, C.; Qi, L. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds-based biochar and hydrochar. Sci. Total Environ. 2020, 716, 137015. [Google Scholar] [CrossRef] [PubMed]
- Kadam, A.A.; Sharma, B.; Saratale, G.D.; Saratale, R.G.; Ghodake, G.S.; Mistry, B.M.; Shinde, S.K.; Jee, S.C.; Sung, J.S. Super-magnetization of pectin from orange-peel biomass for sulfamethoxazole adsorption. Cellulose 2020, 27, 3301–3318. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Phuong, V.N.; Van, T.N.; Thi, P.N.; Lan, D.T.; Pham, P.; Cao, H.T. Low-cost hydrogel derived from agro-waste for veterinary antibiotic removal: Optimization, kinetics, and toxicity evaluation. Environ. Technol. Innov. 2020, 20, 101098. [Google Scholar] [CrossRef]
- Shahnaz, T.; Vishnu Priyan, V.; Pandian, S.; Narayanasamy, S. Use of nanocellulose extracted from grass for adsorption abatement of Ciprofloxacin and Diclofenac removal with phyto, and fish toxicity studies. Environ. Pollut. 2021, 268, 115494. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, H.; Song, Q.; Li, N.; Liang, Q.; Su, W.; Liang, M.; Ding, X.; Sun, C.; Lowe, S.; et al. Association between exposure to organophosphorus pesticides and the risk of diabetes among US Adults: Cross-sectional findings from the National Health and Nutrition Examination Survey. Chemosphere 2022, 301, 134471. [Google Scholar] [CrossRef] [PubMed]
- Lebik-Elhadi, H.; Frontistis, Z.; Ait-Amar, H.; Amrani, S.; Mantzavinos, D. Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode: Role of operating parameters and matrix effect. Process Saf. Environ. Prot. 2018, 116, 535–541. [Google Scholar] [CrossRef]
- Zheng, X.; Shen, Z.P.; Shi, L.; Cheng, R.; Yuan, D.H. Photocatalytic membrane reactors (PMRs) in water treatment: Configurations and influencing factors. Catalysts 2017, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Mirsoleimani-Azizi, S.M.; Setoodeh, P.; Samimi, F.; Shadmehr, J.; Hamedi, N.; Rahimpour, M.R. Diazinon removal from aqueous media by mesoporous MIL-101 (Cr) in a continuous fixed-bed system. J. Environ. Chem. Eng. 2018, 6, 4653–4664. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Abdel-Gawad, H.; Silva, C.M.; Rocha, J.; Hegazi, B.; Silva, A.M.S. Kinetic and equilibrium studies on the removal of 14C-ethion residues from wastewater by copper-based metal–organic framework. Int. J. Environ. Sci. Technol. 2018, 15, 2283–2294. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Taha, M.; Abdel-Gawad, H.; Mahdy, F.; Hegazi, B. Zeolitic imidazolate frameworks: Experimental and molecular simulation studies for efficient capture of pesticides from wastewater. J. Environ. Chem. Eng. 2019, 7, 103499. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Qi, Y.; Zhang, Z.; Cong, S.; She, Y.; Cao, X. Synthesis of metal-organic framework @molecularly imprinted polymer adsorbents for solid phase extraction of organophosphorus pesticides from agricultural products. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1188, 123081. [Google Scholar] [CrossRef] [PubMed]
- Ashouri, V.; Adib, K.; Nasrabadi, M.R.; Ghalkhani, M. Preparation of the extruded UiO-66-based metal-organic framework for the diazinon removal from the real samples. J. Mol. Struct. 2021, 1240, 130607. [Google Scholar] [CrossRef]
- Sheikhi, Z.N.; Khajeh, M.; Oveisi, A.R.; Bohlooli, M. Functionalization of an iron-porphyrinic metal–organic framework with Bovine serum albumin for effective removal of organophosphate insecticides. J. Mol. Liq. 2021, 343, 116974. [Google Scholar] [CrossRef]
- Lu, Z.H.; Lv, D.Z.; Zhou, D.D.; Yang, Z.H.; Wang, M.Y.; Abdelhai Senosy, I.; Liu, X.; Chen, M.; Zhuang, L.H. Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate. Sep. Purif. Technol. 2021, 279, 119785. [Google Scholar] [CrossRef]
- Ma, J.; Li, S.; Wu, G.; Arabi, M.; Tan, F.; Guan, Y.; Li, J.; Chen, L. Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments. J. Ind. Eng. Chem. 2020, 90, 178–189. [Google Scholar] [CrossRef]
- Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; Maslukah, L.; Safinatunnajah, N.; Kusumastuti, W. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. Environ. Pollut. 2022, 302, 119061. [Google Scholar] [CrossRef]
- Omar, T.F.T.; Aris, A.Z.; Yusoff, F.M.; Mustafa, S. Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Mar. Pollut. Bull. 2018, 131, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Aris, A.Z.; Mohd Hir, Z.A.; Razak, M.R. Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review. Appl. Mater. Today 2020, 21, 10079. [Google Scholar] [CrossRef]
- Dai, R.; Han, H.; Zhu, Y.; Wang, X.; Wang, Z. Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds. Front. Environ. Sci. Eng. 2022, 16, 40. [Google Scholar] [CrossRef]
- Gutierrez-Serpa, A.; Pasan, J.; Jimenez-Abizanda, A.I.; Kaskel, S.; Senkovska, I.; Pino, V. Thin-film microextraction using the metal-organic framework DUT-52 for determining endocrine disrupting chemicals in cosmetics. Microchem. J. 2022, 181, 107685. [Google Scholar] [CrossRef]
- Samuel, M.S.; Venkatesan Savunthari, K.; Chandrasekar, N.; Balaji, R.; Selvarajan, E. Removal of environmental contaminants of emerging concern using metal–organic framework composite. Environ. Technol. Innov. 2022, 25, 102216. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, S.; Hu, X.; Zhang, K.; Roy, A.; Yu, G. Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks: Comparing DFT calculations with aqueous sorption experiments. Environ. Sci. Technol. 2015, 49, 8657–8665. [Google Scholar] [CrossRef]
- Park, J.M.; Jhung, S.H. A remarkable adsorbent for removal of bisphenol S from water: Aminated metal-organic framework, MIL-101-NH2. Chem. Eng. J. 2020, 396, 125224. [Google Scholar] [CrossRef]
- Sini, K.; Bourgeois, D.; Idouhar, M.; Carboni, M.; Meyer, D. Metal-organic framework sorbents for the removal of perfluorinated compounds in an aqueous environment. New J. Chem. 2018, 42, 17889–17894. [Google Scholar] [CrossRef]
- Chen, D.; Chen, C.; Shen, W.; Quan, H.; Chen, S.; Xie, S.; Luo, X.; Guo, L. MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 2017, 28, 1769–1779. [Google Scholar] [CrossRef]
- Qin, F.X.; Jia, S.Y.; Liu, Y.; Li, H.Y.; Wu, S.H. Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks. Desalin. Water Treat. 2015, 54, 93–102. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, B.; Zhang, H.; Zhao, X. Ag-C3N4/MIL-101(Fe) heterostructure composite for highly efficient BPA degradation with persulfate under visible light irradiation. J. Mater. Chem. A 2018, 6, 23703–23711. [Google Scholar] [CrossRef]
- Liang, R.; Luo, S.; Jing, F.; Shen, L.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B Environ. 2015, 176, 240–248. [Google Scholar] [CrossRef]
- Khabzina, Y.; Dhainaut, J.; Ahlhelm, M.; Richter, H.J.; Reinsch, H.; Stock, N.; Farrusseng, D. Synthesis and shaping scale-up study of functionalized UiO-66 MOF for ammonia air purification filters. Ind. Eng. Chem. Res. 2018, 57, 8200–8208. [Google Scholar] [CrossRef]
- Bae, J.; Choi, J.S.; Hwang, S.; Yun, W.S.; Song, D.; Lee, J.; Jeong, N.C. Multiple coordination exchanges for room-temperature activation of open-metal sites in metal-organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 24743–24752. [Google Scholar] [CrossRef]
- Wu, T.; Shen, L.; Luebbers, M.; Hu, C.; Chen, Q.; Ni, Z.; Masel, R.I. Enhancing the stability of metalorganic frameworks in humid air by incorporating water repellent functional groups. Chem. Commun. 2010, 46, 6120. [Google Scholar] [CrossRef] [Green Version]
- Petit, C.; Bandosz, T.J. Engineering the surface of a new class of adsorbents: Metal-organic framework/graphite oxide composites. J. Colloid Interface Sci. 2015, 447, 139–151. [Google Scholar] [CrossRef]
- Chen, T.H.; Popov, I.; Zenasni, O.; Daugulis, O.; Miljanic, O. Superhydrophobic perfluorinated metal–organic frameworks. Chem. Commun. 2013, 49, 6846–6848. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Serre, C. Toward green production of water-stable metal-organic frameworks based on high-valence metals with low toxicities. ACS Sustain. Chem. Eng. 2019, 7, 11911–11927. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Jang, M.; Park, C.M.; Munoz-Senmache, J.C.; Hernandez-Maldonado, A.J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nano adsorbents: A review. Chem. Eng. J. 2019, 369, 928–946. [Google Scholar] [CrossRef]
- Keskin, S.; Kızılel, S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res. 2011, 50, 1799–1812. [Google Scholar] [CrossRef]
- Valizadeh Harzand, F.; Mousavi Nejad, S.N.; Babapoor, A.; Mousavi, S.M.; Hashemi, S.A.; Gholami, A.; Chiang, W.-H.; Buonomenna, M.G.; Lai, C.W. Recent advances in metal-organic framework (MOF) asymmetric membranes/composites for biomedical applications. Symmetry 2023, 15, 403. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 July 2023).
- Zheng, P.P.; Li, J.; Kros, J.M. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med. Res. Rev. 2018, 38, 325–376. [Google Scholar] [CrossRef] [Green Version]
- Lagopati, N.; Belogiannis, K.; Angelopoulou, A.; Papaspyropoulos, A.; Gorgoulis, V. Non-Canonical functions of the ARF tumor suppressor in development and tumorigenesis. Biomolecules 2021, 11, 86. [Google Scholar] [CrossRef]
- Pantelis, P.; Theocharous, G.; Lagopati, N.; Veroutis, D.; Thanos, D.-F.; Lampoglou, G.-P.; Pippa, N.; Gatou, M.-A.; Tremi, I.; Papaspyropoulos, A.; et al. The dual role of oxidative-stress-induced autophagy in cellular senescence: Comprehension and therapeutic approaches. Antioxidants 2023, 12, 169. [Google Scholar] [CrossRef]
- Barbouti, A.; Lagopati, N.; Veroutis, D.; Goulas, V.; Evangelou, K.; Kanavaros, P.; Gorgoulis, V.G.; Galaris, D. Implication of dietary iron-chelating bioactive compounds in molecular mechanisms of oxidative stress-induced cell ageing. Antioxidants 2021, 10, 491. [Google Scholar] [CrossRef]
- Katifelis, H.; Nikou, M.-P.; Mukha, I.; Vityuk, N.; Lagopati, N.; Piperi, C.; Farooqi, A.A.; Pippa, N.; Efstathopoulos, E.P.; Gazouli, M. Ag/Au bimetallic nanoparticles trigger different cell death pathways and affect damage associated molecular pattern release in human cell lines. Cancers 2022, 14, 1546. [Google Scholar] [CrossRef] [PubMed]
- Gatou, M.-A.; Lagopati, N.; Vagena, I.-A.; Gazouli, M.; Pavlatou, E.A. ZnO nanoparticles from different precursors and their photocatalytic potential for biomedical use. Nanomaterials 2023, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Lagopati, N.; Kotsinas, A.; Veroutis, D.; Evangelou, K.; Papaspyropoulos, A.; Arfanis, M.; Falaras, P.; Kitsiou, P.V.; Pateras, I.; Bergonzini, A.; et al. Biological Effect of silver-modified nanostructured titanium dioxide in cancer. Cancer Genom. Proteom. 2021, 18, 425–439. [Google Scholar] [CrossRef]
- Papadopoulou-Fermeli, N.; Lagopati, N.; Pippa, N.; Sakellis, E.; Boukos, N.; Gorgoulis, V.G.; Gazouli, M.; Pavlatou, E.A. Composite nanoarchitectonics of photoactivated titania-based materials with anticancer properties. Pharmaceutics 2023, 15, 135. [Google Scholar] [CrossRef]
- Maranescu, B.; Visa, A. Applications of metal-organic frameworks as drug delivery systems. Int. J. Mol. Sci. 2022, 23, 4458. [Google Scholar] [CrossRef]
- Ranjbar, M.; Pardakhty, A.; Amanatfard, A.; Asadipour, A. Efficient drug delivery of β-estradiol encapsulated in Zn-metal-organic framework nanostructures by microwave-assisted coprecipitation method. Drug Des. Dev. Ther. 2018, 12, 2635–2643. [Google Scholar] [CrossRef] [Green Version]
- Saeb, M.R.; Rabiee, N.; Mozafari, M.; Verpoort, F.; Voskressensky, L.G.; Luque, R. Metal-organic frameworks (MOFs) for cancer therapy. Materials 2021, 14, 7277. [Google Scholar] [CrossRef]
- Homayoonnia, S.; Zeinali, S. Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sens. Actuators B Chem. 2016, 237, 776–786. [Google Scholar] [CrossRef]
- Lagopati, N.; Valamvanos, T.-F.; Proutsou, V.; Karachalios, K.; Pippa, N.; Gatou, M.-A.; Vagena, I.-A.; Cela, S.; Pavlatou, E.A.; Gazouli, M.; et al. The role of nano-sensors in breath analysis for early and non-invasive disease diagnosis. Chemosensors 2023, 11, 317. [Google Scholar] [CrossRef]
- Qiao, X.; Su, B.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Selective Surface Enhanced Raman Scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure. Adv. Mater. 2018, 30, 1702275. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Y.-M.; Li, Y.-H.; Cai, S.-J.; Yin, X.-B.; He, X.-W.; Zhang, Y.-K. Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal-organic framework. Small 2017, 13, 1603459. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.D.; Chen, H.; Tang, W.; Lee, D.; Xie, J. Gd and Eu co-doped nanoscale metal-organic framework as a T1-T2 dual-modal contrast agent for magnetic resonance imaging. Tomography 2016, 2, 179–187. [Google Scholar] [CrossRef]
- He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; et al. Metal-organic frameworks for advanced drug delivery. Acta Pharmaceut. Sin. B 2021, 11, 2362–2395. [Google Scholar] [CrossRef]
- Meng, X.; Sun, S.; Gong, C.; Yang, J.; Yang, Z.; Zhang, X.; Dong, H. Ag-doped metal–organic frameworks’ heterostructure for sonodynamic therapy of deep-seated cancer and bacterial infection. ACS Nano 2023, 17, 1174–1186. [Google Scholar] [CrossRef]
- Zhao, X.; He, S.; Li, B.; Liu, B.; Shi, Y.; Cong, W.; Gao, F.; Li, J.; Wang, F.; Liu, K.; et al. DUCNP@Mn–MOF/FOE as a highly selective and bioavailable drug delivery system for synergistic combination cancer therapy. Nano Lett. 2023, 23, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Moharramnejad, M.; Ma-lekshah, R.E.; Ehsani, A.; Gharanli, S.; Shahi, M.; Alvan, S.A.; Salariyeh, Z.; Azadani, M.N.; Haribabu, J.; Basmenj, Z.S.; et al. A review of recent developments of metal-organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interface Sci. 2023, 316, 102908. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Yang Sung, S.; Fadeev, M.; Cecconello, A.; Nechushtaib, R.; Willner, I. Tar-geted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles. Nanoscale 2018, 10, 4650–4657. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.G. Role of insulin in health and disease: An update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef]
- Adeel, M.; Canzonieri, V.; Daniele, S.; Vomiero, A.; Rizzolio, F.; Rahman, M.M. 2D metal azolate framework as nanozyme for amperometric detection of glucose at physiological pH and alkaline medium. Mikrochim Acta. 2021, 188, 77. [Google Scholar] [CrossRef]
- Wang, L.; Hou, C.; Yu, H.; Zhang, Q.; Li, Y.; Wang, H. Metal-organic framework-derived nickel/cobalt-based nanohybrids for sensing non-enzymatic glucose. ChemElectroChem 2020, 7, 4446–4452. [Google Scholar] [CrossRef]
- Zhang, C.; Hong, S.; Liu, M.-D.; Yu, W.-Y.; Zhang, M.-K.; Zhang, L.; Zeng, X.; Zhang, X.-Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Control. Release 2020, 320, 159–167. [Google Scholar] [CrossRef]
- Li, S.; Yan, J.; Zhu, Q.; Liu, X.; Li, S.; Wang, S.; Wang, X.; Sheng, J. Biological effects of EGCG@MOF Zn(BTC)4 system improves wound healing in diabetes. Molecules 2022, 27, 5427. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Tang, Y.; Shen, H.; Li, J.; Yi, Z.; Ke, Q.; Xu, H. Copper-based metal-organic framework as a controllable nitric oxide-releasing vehicle for enhanced diabetic wound healing. ACS Appl. Mater. Interfaces 2020, 12, 18319–18331. [Google Scholar] [CrossRef]
- Ardanaz, C.G.; Ramírez, M.J.; Solas, M. Brain metabolic alterations in Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 3785. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, F.; Ji, L.; Wang, C.; Shi, C.; Liu, X.; Yang, H.; Wang, X.; Kong, L. Development of a Tau-targeted drug delivery system using a multifunctional nanoscale metal-organic framework for alzheimer’s disease therapy. ACS Appl. Mater. Interfaces 2020, 12, 44447–44458. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, S.; He, X.; Tang, W.; Wang, J.; Shao, A.; Zhang, J. A combination of glioma in vivo imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles. J. Mater. Chem. B 2019, 7, 7683–7689. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.; Mendecki, L.; Eagleton, A.M.; Durbin, C.G.; Stolz, R.M.; Meng, Z.; Mirica, K.A. Employing conductive metal–organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717–11733. [Google Scholar] [CrossRef]
- Miao, J.; Li, X.; Li, Y.; Dong, X.; Zhao, G.; Fang, J.; Wei, Q.; Cao, W. Dual-signal sandwich electrochemical immunosensor for amyloid β-protein detection based on Cu-Al2O3-g-C3N4-Pd and UiO-66@PANI-MB. Anal. Chim. Acta. 2019, 1089, 48–55. [Google Scholar] [CrossRef]
- Wuttke, S.; Zimpel, A.; Bein, T.; Braig, S.; Stoiber, K.; Vollmar, A.; Müller, D.; Haastert-Talini, K.; Schaeske, J.; Stiesch, M.; et al. Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications. Adv. Healthc. Mater. 2017, 6, 1600818. [Google Scholar] [CrossRef] [Green Version]
- Shafqat, S.S.; Rizwan, M.; Batool, M.; Shafqat, S.R.; Mustafa, G.; Rasheed, T.; Zafar, M.N. Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: A concise review. Chemosphere 2023, 318, 137920. [Google Scholar] [CrossRef]
- Kumar, P.; Anand, B.; Tsang, Y.F.; Kim, K.H.; Khullar, S.; Wang, B. Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environ. Res. 2019, 176, 108488. [Google Scholar] [CrossRef]
- Chen, W.; Wu, C. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans. 2018, 47, 2114–2133. [Google Scholar] [CrossRef]
- Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, 1707365. [Google Scholar] [CrossRef]
- Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 2016, 307, 342. [Google Scholar] [CrossRef]
- Wyszogrodzka, G.; Dorożyński, P.; Gil, B.; Roth, W.J.; Strzempek, M.; Marszałek, B.; Węglarz, W.P.; Menaszek, E.; Strzempek, W.; Kulinowski, P. Iron-based metal-organic frameworks as a theranostic carrier for local tuberculosis therapy. Pharm. Res. 2018, 35, 144. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Y.; Qin, C.; Wang, X.L.; Su, Z.M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 2013, 10, 89–101. [Google Scholar] [CrossRef]
- He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181. [Google Scholar] [CrossRef]
- Teplensky, M.H.; Fantham, M.; Poudel, C.; Hockings, C.; Lu, M.; Guna, A.; Aragones-Anglada, M.; Moghadam, P.Z.; Li, P.; Farha, O.K.; et al. A Highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem 2019, 5, 2926. [Google Scholar] [CrossRef]
- Nam, J.; Son, S.; Park, K.S.; Zou, W.; Shea, L.D.; Moon, J.J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 2019, 4, 398–414. [Google Scholar] [CrossRef]
Type of MOF | Precursor Materials | Solvent Type | Experimental Parameters | Comments | Ref. | |
---|---|---|---|---|---|---|
Organic Ligand | Metal Salt | |||||
ZIF-62 | C3H4N2 | ZnO | SF | G, 30 min | Mixed metal MOFs | [95] |
ZIF-8 | C4H6N2 | ZnO | SF | BL, 720 min | Well-dispersed MOFs | [96] |
ZIF-8 | C4H6N2 | Zn(OH)2 | SF | G, 60 min | Rapid fabrication of MOFs | [97] |
ZIF-8 | C4H6N2 | ZnCO3 | SF | BL, 720 min | MOFs with increased specific surface area | [98] |
ZIF-8/ ZIF-67 | C4H6N2 | Zn(CH3COO)2 2H2O/Co(CH3COO)2 2H2O | SF | BL, 120 min | Water-robust MOFs | [99] |
MOF-74 | C8H6O6 | Mg(NO3)2 6H2O | SF | G, 5 min | MOFs with increased crystallinity and specific surface area | [100] |
MOF-74 | C8H6O6 | ZnO | DMF | G, 70 min | MOFs with high crystallinity and porosity | [101] |
Ni-UiO-66 | C8H6O4 | Ni(NO3)2 6H2O | SF | BL, 10 min | MOFs with enhanced catalytic efficiency in H2 generation reactions | [102] |
Solvothermal Approach | Mechanochemical Approach |
---|---|
Multistage procedure. | One-stage procedure. |
Elevated thermal energy demand. | Room temperature. |
Massive volumes of liquid waste produced. | Negligible production of liquid wastes. |
Large amounts of potentially noxious solvents consumed. | Solvent-free or limited amounts of solvents used. |
Increased costs (multiple steps, solvents, post-waste treatment). | Low cost. |
Basic equipment requirements. | Distinctive mills and grinders requirements. |
Products with enhanced crystallinity. | Potential development of amorphous phases. |
Ease in precise control of the reaction procedure. | Difficulties in precise control of the reaction procedure. |
Development of pure products. | Potential impurities during milling. |
Type of MOF | Precursor Materials | Solvent Type | Comments | Ref. | |
---|---|---|---|---|---|
Organic Ligand | Metal Salt | ||||
ZIF-8 | C4H6N2 | Zn(NO3)2 | CH3OH | MOFs with adjustable particle size | [106] |
ZIF-8 | C4H6N2 | Zn(NO3)2 6H2O | Distilled water | Two-dimensional bimetallic MOFs with flake-like nanosheet shapes | [107] |
MOF-801 | Tetrakis (4-carboxyphenyl) porphyrin | ZrCl4 8H2O | N/A | MOFs with adjustable particle size | [108] |
BZIF-8-B | C4H6N2 | Zn(CH3COO)2 2H2O | Distilled water | Multiphase biomolecular MOFs | [104] |
PCN-224-RT | Tetrakis (4-carboxyphenyl) porphyrin | Zr(OBu)4 | DMF | Robust and functional porphyrinic MOFs for the encapsulation of metallic nanoparticles | [109] |
ZIF-67-NS | C4H6N2 | Co(NO3)2 6H2O | DMF | Ultrathin 2D MOFs with exceptional adsorption efficiency towards As3+ | [103] |
Fe-Co MOF | C8H6O4 | Co(NO3)2 6H2O/FeCl3 6H2O | DMF | Nanosheet-shaped MOFs possessing electrocatalytic attributes | [110] |
NKMOF-8-Br | C5H2N4 | CuI | C2H3N | Isostructural MOFs with 3D porous (ultra μm) network | [111] |
Type of MOF Product | Precursor Materials | Utilized Conditions during Synthesis | Comments | Ref. |
---|---|---|---|---|
MOF nanofibers | PVP, ZIF-8 | 5 kV, 0.35 mL/h | Hierarchical MOF nanofibers with increased porosity | [115] |
MOF nanofibers | PAN, ZIF-8 | 18 kV, 1 mL/h | Robust MOF fibers with exceptional reusability regarding the elimination of various pollutants | [116] |
MOF nanofibers | PAN, ZIF-8 | 20 kV, 0.5 mL/h | MOF fibers with enhanced adsorption efficiency in the elimination of ionic dyes | [117] |
MOF nanofibers | PVA, Ni MOF | 20 kV, 0.1 mL/h | MOF fibers used for CH4 adsorption | [118] |
MOF carbon nanofiber | PAN, ZIF-8 | 25 kV, 0.48 mL/h | Hierarchical MOF nanofibers with increased porosity | [119] |
MOF membranes | PVP, ZIF-8 | 12 kV | ZIF-8 membranes lacking defects | [120] |
Type of MOF Product | Precursor Materials | Utilized Conditions during Synthesis | BET Surface Area (m2/g) | Ref. |
---|---|---|---|---|
Porous carbon | Zn(bdc)(ted)0.5 | 310 °C 60 min N2 | 1270 | [126] |
Porous carbon | MOF-5 | 1000 °C 120 min Ar | 1884 | [127] |
Bimetallic porous N-doped carbon | ZIF-67 | 675 °C 180 min Ar | 244 | [128] |
Bimetallic porous carbon | ZIF-8 | 800 °C 360 min N2 | 1439.5 | [129] |
Hierarchical porous carbon | Zn3(fumarate)3(DMF)2 | 1100 °C 480 min Ar | 1834 | [130] |
N-doped carbon nanotubes | ZIF-8 | 350–900 °C | 1323.5 | [131] |
Carbon composite membrane | MIL-125-NH2 | 800 °C 120 min N2 | 266 | [132] |
N-doped porous carbon | ZIF-8 | 900 °C 120 min N2 | 3077 | [133] |
MOFs’ Synthetic Approach | Benefits | Drawbacks |
---|---|---|
Solvothermal/ hydrothermal |
|
|
Microwave |
|
|
Sonochemical |
|
|
Mechanochemical |
|
|
Ambient temperature stirring |
|
|
Electrospinning |
|
|
Carbonization |
|
|
Electrochemical |
|
|
Type of MOF | Synthetic Approach | Heavy Metals Tested | Adsorption Efficiency (mg/g) | Kinetic Model | Isotherm Model | Reusability | Ref. |
---|---|---|---|---|---|---|---|
Fe3O4-Zr MOF | Coprecipitation | Hg2+, Cd2+ Pb2+ | 431 393 397 | Pseudo-second-order | Langmuir | 3 cycles | [189] |
UiO-66-Cl UiO-66-S | Solvothermal | Fe3+ | 480 | Pseudo-second-order | - | 6 cycles | [182] |
Zr MOF | Solvothermal | Cu2+ | 125 | - | - | - | [178] |
UiO-66-EDA | Michael addition reaction | Pb2+ Cd2+ Cu2+ | 243.9 217.4 208.3 | Pseudo-second-order | Langmuir | 4 cycles | [175] |
ZIF-67 | Facile method | Cu2+ Cr6+ | 200.6 152.1 | - | - | 5 cycles | [40] |
ZIF-67@Fe3O4@ESM composite | Ultrasound-assisted method | Cu2+ | 344.8 | Pseudo-second-order | Langmuir | 5 cycles | [202] |
PCN-221 | Solvothermal | Hg2+ | 233 | Pseudo-second order | Langmuir | 3 cycles | [196] |
[Zn2(oba)2(bpfb)] (DMF)5 (TMU-23) | Solvothermal | Pb2+ | 434.7 | Pseudo-second-order | Langmuir | 3 cycles | [176] |
{[(Zn (ADB)L0.5] 1.5DMF}n | Solvothermal | Pb2+ | 463.5 | Pseudo-second-order | Langmuir | 3 cycles | [203] |
Melamine-modified MOFs | Thermal-promoted method | Pb2+ | 122 | Pseudo-second-order | - | 5 cycles | [184] |
Other adsorbents | |||||||
Eragrostis tef activated carbon | Pyrolysis | Pb2+ | 43 | Pseudo-second-order | - | - | [204] |
Hydrochar | Solvothermal | Pb2+ | 38.3 | Yoon–Nelson | - | - | [205] |
Multi-wall CNTs | - | Cu2+ Zn2+ Fe2+ Pb2+ | 142.8 250 111.1 200 | Pseudo-second order | Langmuir | - | [206] |
GO | Hummer | Pb2+ | 55.8 | Pseudo-second-order | Langmuir | - | [207] |
Fly ash | - | Cd2+ | 124.9 | Pseudo-second-order | Langmuir | - | [208] |
Bottom ash | - | Cd2+ | 23.3 | Pseudo-second-order | Langmuir | - | [209] |
HAp | Ultrasonic | Cu2+ Zn2+ Cd2+ | 272 285 304 | Pseudo-second-order | Freundlich | - | [209] |
HAp-HA | - | Cu2+ | 35.2 | Elovich | Sips | 4 cycles | [210] |
Type of MOF | Synthetic Approach | Organic Dye Tested | Adsorption Efficiency (mg/g) | Kinetic Model | Isotherm Model | Reusability | Ref. |
---|---|---|---|---|---|---|---|
MOF 8 | Sol–gel | Malachite green | 613 | Pseudo-second-order | Langmuir | 3 cycles | [226] |
Ca-Al MOF | Ion exchange | Malachite green | 84.5% (elimination capacity) | Modified pseudo-first-order | - | - | [233] |
Fe MOF | Hydrothermal | Alizarin red | 176.7 | Pseudo-first-order | Langmuir | - | [234] |
Fe MOF | Hydrothermal | Rhodamine B | 90% (elimination capacity) | Pseudo-first-order | - | 4 cycles | [238] |
Bi MOF | - | Rhodamine B | 98% (elimination capacity) | Pseudo-first-order | - | 4 cycles | [239] |
Ni(II)-doped MIL-101(Cr) | Hydrothermal | Congo red/ methyl orange | 1607.4 651.2 | - | - | 4 cycles | [245] |
{[Zn(1,3-BDC)L]•H2O}n | Hydrothermal | Amido black 10B, methyl orange, direct red 80 | 2402.82 (AB), 744 (MO), 1496.34 (DR) | Pseudo-second-order | Langmuir/Sips | 5 cycles | [91] |
ZIF-67@ Fe3O4@ESM | Sonochemical | Basic red 18 | 250.8 | Pseudo-second-order | Langmuir | 5 cycles | [202] |
Ni-MOF-199 | Solvothermal | Methylene blue | 765 | Pseudo-second-order | Langmuir | - | [237] |
Ni-MOF-199 | Solvothermal | Methylene blue | 798 | Pseudo-second-order | Langmuir | - | [237] |
ZIF-67 | - | Active red X-3B | 100% (elimination capacity) | - | - | - | [40] |
ZIF-67@wood composite | Carbonization | Congo red Methylene blue | 1117.03 (CR) 805.08 (MB) | Pseudo-second-order | Langmuir | 20 cycles | [242] |
Other adsorbents | |||||||
Rice husk activated carbon | Carbonization | Rhodamine B | 478.5 | Pseudo-second-order | Langmuir | - | [246] |
Orange peel activated carbon | Microwave pyrolysis | Malachite green | 28.5 | - | - | - | [247] |
Activated carbon aerogel | - | Methylene blue | 416.7 | Pseudo-second-order | Langmuir | 3 cycles | [248] |
GO-HAp | Sonochemical | Congo red/Trypan blue | 48.5 41.0 | Pseudo-second-order | Langmuir | 4 cycles | [249] |
Magnetic xanthate modified chitosan | - | Methylene blue/Safranin O | 197.8 169.8 | Pseudo-second-order | Sips | - | [250] |
GO-activated carbon | Methylene blue/Crystal violet | 147.0 70.0 | Pseudo-second-order | Freundlich Langmuir | 5 cycles | [251] |
Type of MOF | Synthetic Approach | Antibiotics’ Tested | Adsorption Efficiency (mg/g) | Kinetic Model | Isotherm Model | Ref. |
---|---|---|---|---|---|---|
PCN-222 | Solvothermal | Chloramphenicol | 370 | Pseudo-second-order | Langmuir | [259] |
MOF–chitosan composite | Solvothermal | Tetracycline | 495 | Pseudo-second-order | Langmuir | [266] |
Alg@MOF-rGO | - | Tetracycline | 43.8 | Pseudo-second-order | Langmuir | [264] |
Alg@MOF-rGO | - | Ciprofloxacin | 40.8 | Pseudo-second-order | Langmuir | [264] |
UiO-66 | Tetracycline | 145 | Elovich | Sips | [262] | |
NU-1000 | Solvothermal | Tetracycline | 356 | Elovich | Sips | [262] |
MOF-525 | Solvothermal | Tetracycline | 807 | Pseudo-second-order | Sips | [262] |
α-Fe/Fe3C MOF composite | Solvothermal | Tetracycline | 166.7 | Pseudo-second-order | Langmuir | [258] |
Fe MOF | Solvothermal | Tetracycline | 714.3 | - | - | [261] |
Fe MOF | Solvothermal | Norfloxacin | 346.6 | - | - | [261] |
CuCo/C-MOF-71 | Carbonization | Ciprofloxacin | 90% (elimination efficiency) | - | - | [263] |
NH2-MIL-101-Fe | Metronidazole | 90% (elimination efficiency) | Pseudo-second-order | Langmuir | [273] | |
Other adsorbents | ||||||
Biochar | Calcination | Tetracycline | 297.90 | Pseudo-second-order | Langmuir | [274] |
Hydrochar | Hydrothermal carbonization | Sulfamethoxazole | 740.6 | Pseudo-second-order | Langmuir | [275] |
Magnetic orange peel adsorbent | Microwave | Sulfamethoxazole | 120 | Pseudo-second-order | Redlich-Peterson | [276] |
Hydrogel | Carbonization | Ciprofloxacin | 106 | Pseudo-second-order | Langmuir | [277] |
Nanocellulose | Hydrolysis | Diclofenac | 192 | Pseudo-second-order | Halsey | [278] |
Material | Function | Disease/Disorder | Ref. |
---|---|---|---|
Cu3(TMA)2(H2O)3]n in Cu-BTC NPs MOFs | Sensor (VOC detection) | Lung cancer, etc. | [324] |
Nanoscale zirconium–porphyrin metal–organic framework (NPMOF)-based IGTS (ion-gated transistors) | Fluorescent imaging/chemotherapy and photodynamic therapy (PDT) | Cancer | [327] |
Eu, Gd-NMOF@SiO2 NPs | Imaging (MRI) | Cancer | [328] |
Zn MOF | Drug delivery | Cancer | [329] |
Ti-based MOF AgNPs | Sonodynamic therapy (SDT) | Cancer | [330] |
Lanthanide-doped up conversion NPs and Mn MOFs (DUCNPs-MnMOF) | Drug delivery | Cancer | [331] |
Amino-triphenyl dicarboxylate-bridged Zr4+ MOF nanoparticles | Drug delivery | Cancer | [333] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatou, M.-A.; Vagena, I.-A.; Lagopati, N.; Pippa, N.; Gazouli, M.; Pavlatou, E.A. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. Nanomaterials 2023, 13, 2224. https://doi.org/10.3390/nano13152224
Gatou M-A, Vagena I-A, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. Nanomaterials. 2023; 13(15):2224. https://doi.org/10.3390/nano13152224
Chicago/Turabian StyleGatou, Maria-Anna, Ioanna-Aglaia Vagena, Nefeli Lagopati, Natassa Pippa, Maria Gazouli, and Evangelia A. Pavlatou. 2023. "Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review" Nanomaterials 13, no. 15: 2224. https://doi.org/10.3390/nano13152224
APA StyleGatou, M. -A., Vagena, I. -A., Lagopati, N., Pippa, N., Gazouli, M., & Pavlatou, E. A. (2023). Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. Nanomaterials, 13(15), 2224. https://doi.org/10.3390/nano13152224