Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Microemulsions by Surfactant Titration
2.3. Construction of Ternary and Pseudo-Ternary Phase Diagrams
2.4. Physical Property Measurements
2.5. Extraction of Tricyclic Antidepressants (TCAs) into Microemulsions
2.6. Determination of Residual Concentrations of TCAs in Water after Extraction
3. Results and Discussion
3.1. Ternary Phase Diagrams of Prepared Microemulsion Systems
3.1.1. Changes in Phase Diagrams with the Homology of the Alkyl Part Cx (x = 1–6) of Alkyl Acetates (Cx + C2) Used as Oil Component of W/O/Brij 30 Microemulsion Systems
3.1.2. Changes in Phase Diagrams with the Homology of the Acyl Part Cy (y = 1–4) of Ethyl Carboxylates (Cx + C2) Used as Oil Component of W/O/Brij 30 Microemulsion Systems
3.2. Effect of Co-Surfactant, Salinity, and pH on the Phase Transitions of the Microemulsion Systems
3.2.1. Effect of Addition of Different Amounts of Isopropanol as a Co-Surfactant
3.2.2. Effect of Salinity (NaCl Content) of the Water Component
3.2.3. Effect of the pH of Water
3.3. Characterization of a Selection of Microemulsions
3.3.1. Densities of Microemulsions
3.3.2. Refractive Indices of Microemulsions
3.3.3. Electrical Conductivities of Microemulsions
3.3.4. Viscosities of Microemulsions
3.3.5. Micellar Particle Sizes and Polydispersity Indices (PDIs)
3.4. Application of Ester-Based Microemulsions for the Extraction of Tricyclic Antidepressant Drugs from Aqueous Media
3.4.1. Comparison of Extraction Efficiencies into Winsor II Microemulsions Using Seven Different Homologous Ester Oils
3.4.2. Determination of Extraction Yields and Distribution Coefficients into PRAC-Based Microemulsions for Different Initial Loadings of Water with TCAs at pH 6
3.4.3. Determination of Extraction Yields into PRAC-Based Microemulsions from Aqueous Solutions of TCAs at pH 9 and at High Ionic Strength
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salager, J.-L.; Antón, R.; Bullón, J.; Forgiarini, A.; Marquez, R. How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products. Cosmetics 2020, 7, 57. [Google Scholar] [CrossRef]
- Tadros, T.F. Future developments in cosmetic formulations. Int. J. Cosmet. Sci. 1992, 14, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Scomoroscenco, C.; Teodorescu, M.; Raducan, A.; Stan, M.; Voicu, S.N.; Trica, B.; Ninciuleanu, C.M.; Nistor, C.L.; Mihaescu, C.I.; Petcu, C.; et al. Novel Gel Microemulsion as Topical Drug Delivery System for Curcumin in Dermatocosmetics. Pharmaceutics 2021, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Date, A.A.; Nagarsenker, M.S. Parenteral microemulsions: An overview. Int. J. Pharm. 2008, 355, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Phongpradist, R.; Jiaranaikulwanitch, J.; Thongkorn, K.; Lekawanvijit, S.; Sirilun, S.; Chittasupho, C.; Poomanee, W. KLVFF Conjugated Curcumin Microemulsion-Based Hydrogel for Transnasal Route: Formulation Development, Optimization, Physicochemical Characterization, and Ex Vivo Evaluation. Gels 2023, 9, 610. [Google Scholar] [CrossRef]
- Nikolaev, B.; Yakovleva, L.; Fedorov, V.; Li, H.; Gao, H.; Shevtsov, M. Nano- and Microemulsions in Biomedicine: From Theory to Practice. Pharmaceutics 2023, 15, 1989. [Google Scholar] [CrossRef]
- Ciuca, M.D.; Racovita, R.C. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int. J. Mol. Sci. 2023, 24, 8874. [Google Scholar] [CrossRef]
- Elek, N.; Hoffman, R.; Raviv, U.; Resh, R.; Ishaaya, I.; Magdassi, S. Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloids Surf. Physicochem. Eng. Asp. 2010, 372, 66–72. [Google Scholar] [CrossRef]
- Song, R.; Shen, G.; Liu, Y.; Tang, F.; Chen, Q.; Sun, P. Preparation and characterization of an oil-in-water microemulsion of thiamethoxam and acetamiprid without organic solvent for unmanned aerial vehicle spraying. Colloids Surf. Physicochem. Eng. Asp. 2020, 607, 125485. [Google Scholar] [CrossRef]
- Flanagan, J.; Singh, H. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 2006, 46, 221–237. [Google Scholar] [CrossRef]
- Abbasi, S.; Radi, M. Food grade microemulsion systems: Canola oil/lecithin:n-propanol/water. Food Chem. 2016, 194, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Garti, N.; Aserin, A. Micelles and microemulsions as food ingredient and nutraceutical delivery systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Garti, N., McClements, D.J., Eds.; Woodhead Publishing: Philadelphia, PA, USA, 2012; pp. 211–251. [Google Scholar]
- Tafur, N.; Munuzuri, A.P.; Soto, A. Improvement of a Surfactant Blend for Enhanced Oil Recovery in Carbonate Reservoirs by Means of an Ionic Liquid. Int. J. Mol. Sci. 2022, 24, 726. [Google Scholar] [CrossRef]
- Shakeel, M.; Samanova, A.; Pourafshary, P.; Hashmet, M.R. Optimization of Low Salinity Water/Surfactant Flooding Design for Oil-Wet Carbonate Reservoirs by Introducing a Negative Salinity Gradient. Energies 2022, 15, 9400. [Google Scholar] [CrossRef]
- Shibaev, A.V.; Aleshina, A.L.; Arkharova, N.A.; Orekhov, A.S.; Kuklin, A.I.; Philippova, O.E. Disruption of Cationic/Anionic Viscoelastic Surfactant Micellar Networks by Hydrocarbon as a Basis of Enhanced Fracturing Fluids Clean-Up. Nanomaterials 2020, 10, 2353. [Google Scholar] [CrossRef]
- Schwab, W.; Fattore, R.S.; Pryde, E.H. Diesel Fuel-Aqueous Ethanol Microemulsions. J. Dispers. Sci. Technol. 2007, 3, 45–60. [Google Scholar] [CrossRef]
- Ziejewski, M.; Kaufman, K.R.; Schwab, A.W.; Pryde, E.H. Diesel Engine Evaluation of a Nonionic Sunflower Oil-Aqueous Ethanol Microemulsion. J. Am. Oil Chem. Soc. 1984, 61, 1620–1626. [Google Scholar] [CrossRef]
- Hejazifar, M.; Earle, M.; Seddon, K.R.; Weber, S.; Zirbs, R.; Bica, K. Ionic Liquid-Based Microemulsions in Catalysis. J. Org. Chem. 2016, 81, 12332–12339. [Google Scholar] [CrossRef] [Green Version]
- Rusling, J.F.; Zhou, D.-L. Electrochemical catalysis in microemulsions. Dynamics and organic synthesis. J. Electroanal. Chem. 1997, 439, 89–96. [Google Scholar] [CrossRef]
- De Maron, J.; Mafessanti, R.; Gramazio, P.; Orfei, E.; Fasolini, A.; Basile, F. H2 Production by Methane Oxy-Reforming: Effect of Catalyst Pretreatment on the Properties and Activity of Rh-Ce0.5Zr0.5O2 Synthetized by Microemulsion. Nanomaterials 2023, 13, 53. [Google Scholar] [CrossRef]
- Michalik, A.; Napruszewska, B.D.; Duraczynska, D.; Walczyk, A.; Serwicka, E.M. Composites of Montmorillonite and Titania Nanoparticles Prepared by Inverse Microemulsion Method: Physico-Chemical Characterization. Nanomaterials 2023, 13, 686. [Google Scholar] [CrossRef]
- Althobaiti, F.; Abu Ali, O.A.; Kamal, I.; Alfaifi, M.Y.; Shati, A.A.; Fayad, E.; Elbehairi, S.E.I.; Elshaarawy, R.F.M.; El-Fattah, W.A. New Ionic Liquid Microemulsion-Mediated Synthesis of Silver Nanoparticles for Skin Bacterial Infection Treatments. Antibiotics 2023, 12, 247. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Nawaz, M.; Ullah, H.; Uddin, I.; Shad, S.; Eldin, E.; Alshgari, R.A.; Bahajjaj, A.A.A.; Arifeen, W.U.; Javed, M.S. Synthesis and Characterization of Ni Nanoparticles via the Microemulsion Technique and Its Applications for Energy Storage Devices. Materials 2022, 16, 325. [Google Scholar] [CrossRef] [PubMed]
- Margulis-Goshen, K.; Magdassi, S. Organic nanoparticles from microemulsions: Formation and applications. Curr. Opin. Colloid Interface Sci. 2012, 17, 290–296. [Google Scholar] [CrossRef]
- Salvador, M.; Gutierrez, G.; Noriega, S.; Moyano, A.; Blanco-Lopez, M.C.; Matos, M. Microemulsion Synthesis of Superparamagnetic Nanoparticles for Bioapplications. Int. J. Mol. Sci. 2021, 22, 427. [Google Scholar] [CrossRef]
- Moran, D.; Gutierrez, G.; Mendoza, R.; Rayner, M.; Blanco-Lopez, C.; Matos, M. Synthesis of controlled-size starch nanoparticles and superparamagnetic starch nanocomposites by microemulsion method. Carbohydr. Polym. 2023, 299, 120223. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Olteanu, N.L.; Andrei, E.A.; Meghea, A.; Petcu, A.R.; Mihaly, M. Fluid structures used for wastewaters treatment with complex load. Sep. Purif. Technol. 2018, 197, 1–7. [Google Scholar] [CrossRef]
- Cadar, D.; Olteanu, N.L.; Rogozea, E.A.; Petcu, A.R.; Meghea, A.; Mihaly, M. Recovery of targeted hydrophilic compounds from simulated wastewaters using nonionic microemulsion systems. Process Saf. Environ. Prot. 2017, 109, 648–658. [Google Scholar] [CrossRef]
- Vasile, A.; Milăşan, A.R.; Andrei, A.E.; Turcu, R.N.; Drăgoescu, M.F.; Axinte, S.; Mihaly, M. An integrated value chain to iron-containing mine tailings capitalization by a combined process of magnetic separation, microwave digestion and microemulsion—Assisted extraction. Process Saf. Environ. Prot. 2021, 154, 118–130. [Google Scholar] [CrossRef]
- Petcu, A.R.; Lazar, C.A.; Rogozea, E.A.; Olteanu, N.L.; Meghea, A.; Mihaly, M. Nonionic microemulsion systems applied for removal of ionic dyes mixtures from textile industry wastewaters. Sep. Purif. Technol. 2016, 158, 155–159. [Google Scholar] [CrossRef]
- Petcu, A.R.; Meghea, A.; Rogozea, E.A.; Olteanu, N.L.; Lazar, C.A.; Cadar, D.; Crisciu, A.V.; Mihaly, M. No Catalyst Dye Photodegradation in a Microemulsion Template. ACS Sustain. Chem. Eng. 2017, 5, 5273–5283. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, Y.; Zhang, H.; Liu, Y. Investigation on gelation nucleation kinetics of waxy crude oil emulsions by their thermal behavior. J. Pet. Sci. Eng. 2019, 181, 106230. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Gan, Y.; Han, X.; Liu, W.; Xin, H. Micromechanism of partially hydrolyzed polyacrylamide molecule agglomeration morphology and its impact on the stability of crude oil−water interfacial film. J. Pet. Sci. Eng. 2022, 214, 110492. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food Hydrocoll. 2012, 29, 326–334. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Gutiérrez-Muro, S.; Guzmán, E.; Lucia, A.; Ortega, F.; Rubio, R.G. Oil-In-Water Microemulsions for Thymol Solubilization. Colloids Interfaces 2019, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- Ramalho, Í.M.d.M.; Bezerra, G.S.; Ostrosky, E.A.; Ferrari, M.; Oliveira, V.d.S.; Wanderley Neto, A.d.O.; Quintans, J.d.S.S.; Passos, F.R.S.; Heimfarth, L.; Quintans-Júnior, L.J.; et al. Chrysin-Loaded Microemulsion: Formulation Design, Evaluation and Antihyperalgesic Activity in Mice. Appl. Sci. 2022, 12, 477. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.F.; Wei, Z.F.; Jiang, J.J.; Peng, J.Q.; He, Q.T.; Xu, W.Y.; Liu, H.M. Microemulsion of Cinnamon Essential Oil Formulated with Tea Polyphenols, Gallic Acid, and Tween 80: Antimicrobial Properties, Stability and Mechanism of Action. Microorganisms 2022, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Olteanu, N.L.; Petcu, A.R.; Meghea, A.; Mihaly, M. Efficient Recovery of Metals from Aqueous Media by Two Phase Microemulsion System. U.P.B. Sci. Bull. Ser. B Chem. Mater. Sci. 2017, 79, 13–24. [Google Scholar]
- Fleancu, M.C.; Olteanu, N.L.; Rogozea, A.E.; Crisciu, A.V.; Pincovschi, I.; Mihaly, M. Physical–chemical parameters promoting phase changes in non-ionic environmental-friendly microemulsions. Fluid Phase Equilibria 2013, 337, 18–25. [Google Scholar] [CrossRef]
- Moldoveanu, M.; Rau, I.; Fleancu, M.C.; Mihaly, M. Size Effect at Nanometric Scale Based on Spectral Measurements on Water in Oil Microemulsions. U.P.B. Sci. Bull. Ser. B Chem. Mater. Sci. 2011, 73, 41–54. [Google Scholar]
- Ceglie, A.; Das, K.P.; Lindman, B. Effect of Oil on the Microscopic Structure in Four-Component Cosurfactant Microemulsions. J. Colloid Interface Sci. 1987, 115, 115–120. [Google Scholar] [CrossRef]
- Balcan, M.; Mihăilescu, F.-C.; Anghel, D.-F.; Văcăreşteanu, I.-C.; Aricov, L.; Vasilescu, E.-L. Microemulsion systems containing diesel and colza oil as alternative fuels: Phase studies, interfacial tension and solubilization. Fuel 2014, 117, 251–258. [Google Scholar] [CrossRef]
- Sagisaka, M.; Koike, D.; Yoda, S.; Takebayashi, Y.; Furuya, T.; Yoshizawa, A.; Sakai, H.; Abe, M.; Otake, K. Optimum Tail Length of Fluorinated Double-Tail Anionic Surfactant for Water/Supercritical CO2 Microemulsion Formation. Langmui 2007, 23, 8784–8788. [Google Scholar] [CrossRef]
- Amiri-Rigi, A.; Abbasi, S. Extraction of lycopene using a lecithin-based olive oil microemulsion. Food Chem. 2019, 272, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Rogozea, E.A.; Olteanu, N.L.; Crisciu, A.V.; Petcu, A.R.; Mihaly, M. Highly homogeneous nanostructured templates based on environmental friendly microemulsion for nanomaterials processing. Mater. Lett. 2014, 132, 346–348. [Google Scholar] [CrossRef]
- Wang, W.; Wei, H.; Du, Z.; Tai, X.; Wang, G. Formation and Characterization of Fully Dilutable Microemulsion with Fatty Acid Methyl Esters as Oil Phase. ACS Sustain. Chem. Eng. 2015, 3, 443–450. [Google Scholar] [CrossRef]
- Jada, A.; Lang, J.; Zana, R. Ternary Water in Oil Microemulsions Made of Cationic Surfactants, Water, and Aromatic Solvents. 1. Water solubility studies. J. Phys. Chem. 1990, 94, 381–387. [Google Scholar] [CrossRef]
- Mirgorodskaya, A.B.; Yackevich, E.I.; Zakharova, L.Y.; Konovalov, A.I. Oil-in-water microemulsions based on cationic surfactants with a hydroxyalkyl fragment in the head group. Chem. Phys. Lett. 2013, 567, 18–22. [Google Scholar] [CrossRef]
- Phaodee, P.; Sabatini, D.A. Anionic and Cationic Surfactant Synergism: Minimizing Precipitation, Microemulsion Formation, and Enhanced Solubilization and Surface Modification. J. Surfactants Deterg. 2021, 24, 551–562. [Google Scholar] [CrossRef]
- Mihaly, M.; Comanescu, A.F.; Rogozea, E.A.; Meghea, A. Nonionic Microemulsion Extraction of Ni (II) from Wastewater. Mol. Cryst. Liq. Cryst. 2010, 523, 63–72. [Google Scholar] [CrossRef]
- Basheer, H.S.; Noordin, M.I.; Ghareeb, M.M. Characterization of Microemulsions Prepared using Isopropyl Palmitate with various Surfactants and Cosurfactants. Trop. J. Pharm. Res. 2013, 12, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Wormuth, K.R.; Kaler, E.W. Amines as Microemulsion Cosurfactants. J. Phys. Chem. 1987, 91, 611–617. [Google Scholar] [CrossRef]
- Berthod, A.; De Carvalho, M. Oil-in-Water Microemulsions as Mobile Phases in Liquid Chromatography. Anal. Chem. 1992, 64, 2267–2272. [Google Scholar] [CrossRef]
- Watarai, H. Microemulsions in Separation Sciences. J. Chromatogr. A 1997, 170, 93–102. [Google Scholar] [CrossRef]
- Cadar, D.; Olteanu, N.L.; Andrei, E.A.; Petcu, A.R.; Marin, C.A.; Meghea, A.; Mihaly, M. Synergism of thiocyanate ions and microinterfacial surface as driving forces for heavy multi-metals extraction. Arab. J. Chem. 2018, 11, 501–512. [Google Scholar] [CrossRef]
- Predeanu, G.; Slăvescu, V.; Bălănescu, M.; Dorina Mihalache, R.; Mihaly, M.; Marin, A.C.; Meghea, A.; Valentim, B.; Guedes, A.; Abagiu, A.T.; et al. Coal bottom ash processing for capitalization according to circular economy concept. Miner. Eng. 2021, 170, 107055. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Tijani, J.O.; Fatoba, O.O.; Babajide, O.O.; Petrik, L.F. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review. Environ. Chem. Lett. 2015, 14, 27–49. [Google Scholar] [CrossRef]
- Racovita, R.C.; Crisciu, A.V.; Sima, S.; Secuianu, C. A Convenient Hybrid Method for Obtaining Liquid–Liquid Equilibrium Data in Ternary Systems. J. Chem. Eng. Data 2020, 65, 3384–3392. [Google Scholar] [CrossRef]
- Racovita, R.C.; Jetter, R. Identification of Polyketides in the Cuticular Waxes of Triticum aestivum cv. Bethlehem. Lipids 2016, 51, 1407–1420. [Google Scholar] [CrossRef]
- Racovita, R.C.; Jetter, R. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem. PLoS ONE 2016, 11, e0165827. [Google Scholar] [CrossRef] [Green Version]
- Racovita, R.C.; Jetter, R. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides. Phytochemistry 2016, 130, 252–261. [Google Scholar] [CrossRef]
- Racovita, R.C.; Peng, C.; Awakawa, T.; Abe, I.; Jetter, R. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves. Phytochemistry 2015, 113, 183–194. [Google Scholar] [CrossRef]
- Racovita, R.C.; Secuianu, C.; Ciuca, M.D.; Israel-Roming, F. Effects of Smoking Temperature, Smoking Time, and Type of Wood Sawdust on Polycyclic Aromatic Hydrocarbon Accumulation Levels in Directly Smoked Pork Sausages. J. Agric. Food Chem. 2020, 68, 9530–9536. [Google Scholar] [CrossRef]
- Racovita, R.C.; Secuianu, C.; Israel-Roming, F. Quantification and risk assessment of carcinogenic polycyclic aromatic hydrocarbons in retail smoked fish and smoked cheeses. Food Control 2021, 121, 107586. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Celante, D.; Brondani, L.N.; Trojahn, D.O.; da Silva, C.; de Castilhos, F. Synthesis of methyl esters and triacetin from macaw oil (Acrocomia aculeata) and methyl acetate over γ-alumina. Ind. Crop. Prod. 2018, 124, 84–90. [Google Scholar] [CrossRef]
- Bright, R.; Dale, D.J.; Dunn, P.J.; Hussain, F.; Kang, Y.; Mason, C.; Mitchell, J.C.; Snowden, M.J. Identification of New Catalysts to Promote Imidazolide Couplings and Optimisation of Reaction Conditions Using Kinetic Modelling. Org. Process Res. Dev. 2004, 8, 1054–1058. [Google Scholar] [CrossRef]
- Shim, H.; Sah, H. Assessment of Residual Solvent and Drug in PLGA Microspheres by Derivative Thermogravimetry. Pharmaceutics 2020, 12, 626. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Yang, S.; Yamamoto, K.; Ohara, K.; Phuc, N.H.H.; Watanabe, T.; Uchiyama, T.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.; et al. Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis. Solid State Ion. 2021, 361, 115568. [Google Scholar] [CrossRef]
- Torres-Luna, C.; Hu, N.; Koolivand, A.; Fan, X.; Zhu, Y.; Domszy, R.; Yang, J.; Yang, A.; Wang, N.S. Effect of a Cationic Surfactant on Microemulsion Globules and Drug Release from Hydrogel Contact Lenses. Pharmaceutics 2019, 11, 262. [Google Scholar] [CrossRef] [Green Version]
- Warisnoicharoen, W.; Lansley, A.B.; Lawrence, M.J. Nonionic oil-in-water microemulsions: The effect of oil type on phase behaviour. Int. J. Pharm. 2000, 198, 7–27. [Google Scholar] [CrossRef]
- Feng, J.-L.; Wang, Z.-W.; Zhang, J.; Wang, Z.-N.; Liu, F. Study on food-grade vitamin E microemulsions based on nonionic emulsifiers. Colloids Surf. Physicochem. Eng. Asp. 2009, 339, 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Yokoyama, W.; Xu, S.; Zhu, S.; Ma, J.; Zhong, F. Formation and stability of W/O microemulsion formed by food grade ingredients and its oral delivery of insulin in mice. J. Funct. Foods 2017, 30, 134–141. [Google Scholar] [CrossRef]
- Bennet, K.E.; Hatfield, J.C.; Davis, H.T.; Mocosko, C.W.; Scriven, L.E. Viscosity and conductivity of microemulsions. In Microemulsions; Robb, I.D., Ed.; Springer: New York, NY, USA, 1982; pp. 65–84. [Google Scholar]
- Mehta, S.K.; Bala, K. Tween-based microemulsions: A percolation view. Fluid Phase Equilib. 2000, 172, 197–209. [Google Scholar] [CrossRef]
- Hermansky, C.; Mackay, R.A. Light Scattering Measurements in Nonionic Microemulsions. J. Colloid Interface Sci. 1980, 73, 324–331. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, J.; Zheng, M.; Zheng, Y.; Xu, X.; Liu, Y.; Wang, X. Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application. Food Chem. 2016, 204, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.E.; Guo, Q.; Singh, V.; Behrens, S.H. Particle charging and charge screening in nonpolar dispersions with nonionic surfactants. Langmuir 2010, 26, 16941–16948. [Google Scholar] [CrossRef] [PubMed]
- Strubbe, F.; Verschueren, A.R.; Schlangen, L.J.; Beunis, F.; Neyts, K. Generation current of charged micelles in nonaqueous liquids: Measurements and simulations. J. Colloid Interface Sci. 2006, 300, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Svirskis, D.; Alany, R.G.; Zargar-Shoshtari, S.; Wu, Z. In-Situ phase transition from microemulsion to liquid crystal with the potential of prolonged parenteral drug delivery. Int. J. Pharm. 2012, 431, 130–137. [Google Scholar] [CrossRef]
- Eicke, H.-F. Aggregation in surfactant solutions: Formation and properties of micelles and microemulsions. Pure Appl. Chem. 1980, 52, 1349–1357. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef] [Green Version]
- Brenner, M.H.; Bhugra, D. Acceleration of Anxiety, Depression, and Suicide: Secondary Effects of Economic Disruption Related to COVID-19. Front. Psychiatry 2020, 11, 592467. [Google Scholar] [CrossRef] [PubMed]
- Thoresen, S.; Blix, I.; Wentzel-Larsen, T.; Birkeland, M.S. Trusting Others During a Pandemic: Investigating Potential Changes in Generalized Trust and Its Relationship With Pandemic-Related Experiences and Worry. Front. Psychol. 2021, 12, 698519. [Google Scholar] [CrossRef]
- Turner, R.J.; Hagoort, K.; Meijer, R.J.; Coenen, F.; Scheepers, F.E. Bayesian network analysis of antidepressant treatment trajectories. Sci. Rep. 2023, 13, 8428. [Google Scholar] [CrossRef]
- Gould, S.L.; Winter, M.J.; Norton, W.H.J.; Tyler, C.R. The potential for adverse effects in fish exposed to antidepressants in the aquatic environment. Environ. Sci. Technol. 2021, 55, 16299–16312. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Zhang, L.; Lei, J.; Zong, L.; Li, J.; Wu, Z.; Wang, Z. Overview of Emerging Contaminants and Associated Human Health Effects. BioMed Res. Int. 2015, 2015, 404796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blessel, K.W.; Rudy, B.C.; Senkowski, B.Z. Amitriptyline Hydrochloride. In Analytical Profiles of Drug Substances; Academic Press: Cambridge, MA, USA, 1974; pp. 127–148. [Google Scholar]
- Kender, D.N.; Schiesswohl, R.E. Imipramine Hydrochloride. In Analytical Profiles of Drug Substances; Academic Press: Cambridge, MA, USA, 1985; pp. 37–75. [Google Scholar]
- Galeano-Diaz, T.; Acedo-Valenzuela, M.I.; Mora-Diez, N.; Silva-Rodriguez, A. Response surface methodology in the development of a stacking-sensitive capillary electrophoresis method for the analysis of tricyclic antidepressants in human serum. Electrophoresis 2005, 26, 3518–3527. [Google Scholar] [CrossRef] [PubMed]
- Hyde, A.M.; Zultanski, S.L.; Waldman, J.H.; Zhong, Y.-L.; Shevlin, M.; Peng, F. General Principles and Strategies for Salting-Out Informed by the Hofmeister Series. Org. Process Res. Dev. 2017, 21, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, P.G.; Lopes, A.M.; Hasmann, F.A.; Jozala, A.F.; Penna, T.C.V.; Magalhaes, P.O.; Rangel-Yagui, C.O.; Pessoa Jr, A. Liquid–liquid extraction of biomolecules: An overview and update of the main techniques. J. Chem. Technol. Biotechnol. 2008, 83, 143–157. [Google Scholar] [CrossRef]
- Speroni, F.; Szerman, N.; Vaudagna, S.R. High hydrostatic pressure processing of beef patties: Effects of pressure level and sodium tripolyphosphate and sodium chloride concentrations on thermal and aggregative properties of proteins. Innov. Food Sci. Emerg. Technol. 2014, 23, 10–17. [Google Scholar] [CrossRef]
Ester Cx + C2 (x = 1–6) Incorporated in the Microemulsion | % Area of Domain Found under the Winsor II Curve | % Area of Winsor II Microemulsion Domain | % Area of Winsor IV Microemulsion Domain |
---|---|---|---|
MEAC (x = 1) | 12.97 | 11.46 | 52.48 |
ETAC (x = 2) | 17.87 | 12.52 | 42.26 |
PRAC (x = 3) | 15.44 | 10.84 | 47.10 |
BUAC (x = 4) | 21.65 | 23.93 | 44.46 |
PEAC (x = 5) | 18.46 | 17.70 | 26.06 |
HEAC (x = 6) | 24.71 | 12.60 | 26.07 |
Ester C2 + Cy (y = 1–4) Incorporated in the Microemulsion | % Area of Domain Found under the Winsor II Curve | % Area of Winsor II Microemulsion Domain | % Area of Winsor IV Microemulsion Domain |
---|---|---|---|
ETFO (y = 1) | 17.73 | 6.62 | 47.75 |
ETAC (y = 2) | 17.87 | 12.52 | 42.26 |
ETPR (y = 3) | 14.81 | 10.12 | 44.63 |
ETBU (y = 4) | 34.65 | 6.70 | 25.63 |
H2O/C3-ol Volumetric Ratio R | % Area of Domain Found under the Winsor II Curve | % Area of Winsor II Microemulsion Domain | % Area of Winsor IV Microemulsion Domain |
---|---|---|---|
R = 2 | 22.79 | 4.93 | 33.48 |
R = 3 | 16.13 | 14.32 | 32.87 |
R = 4 | 19.98 | 22.16 | 38.67 |
Without C3-ol | 15.44 | 10.84 | 47.10 |
H2O/C3-ol Volumetric Ratio R | % Area of Domain Found under the Winsor II Curve | % Area of Winsor II Microemulsion Domain | % Area of Winsor IV Microemulsion Domain |
---|---|---|---|
R = 2 | 17.02 | 20.28 | 36.97 |
R = 3 | 27.68 | 22.63 | 33.88 |
R = 4 | 12.88 | 39.48 | 29.45 |
Without C3-ol | 14.81 | 10.12 | 44.63 |
Particle Diameter, nm | PDI | Particle Diameter, nm | PDI | Particle Diameter, nm | PDI | Particle Diameter, nm | PDI | |
---|---|---|---|---|---|---|---|---|
Without C3-ol | R = 2 | R = 3 | R = 4 | |||||
19.0 | gel | 74.66 ± 1.52 | 0.20 ± 0.05 | 54.30 ± 0.37 | 0.14 ± 0.04 | 44.45 ± 1.66 | 0.13 ± 0.03 | |
5.7 | 85.17 ± 8.70 | 0.57 ± 0.05 | 32.89 ± 0.18 | 0.11 ± 0.01 | 26.25 ± 0.37 | 0.16 ± 0.02 | 37.82 ± 1.03 | 0.20 ± 0.04 |
3.0 | 63.31 ± 0.88 | 0.17 ± 0.08 | 22.03 ± 0.08 | 0.23 ± 0.03 | 20.86 ± 0.13 | 0.21 ± 0.01 | 34.05 ± 1.24 | 0.22 ± 0.02 |
1.9 | 47.40 ± 3.67 | 0.19 ± 0.01 | 21.12 ± 1.32 | 0.30 ± 0.04 | 33.65 ± 1.88 | 0.21 ± 0.04 | 24.83 ± 0.86 | 0.24 ± 0.03 |
Ester | W/µE Ratio | AMI 20 mg/L | DOX 20 mg/L | IMI 20 mg/L | CLO 20 mg/L | ||||
---|---|---|---|---|---|---|---|---|---|
η (%) | KD | η (%) | KD | η (%) | KD | η (%) | KD | ||
ETAC | 4.8 | 67.2 | 9.9 | 35.5 | 3.3 | 77.1 | 14.0 | 82.5 | 28.3 |
PRAC | 2.7 | 95.5 | 63.8 | 94.4 | 39.3 | 97.4 | 60.9 | 98.4 | 87.8 |
BUAC | 2.7 | 90.6 | 25.7 | 71.1 | 6.6 | 85.0 | 15.1 | 97.2 | 92.3 |
PEAC | 1.9 | 95.6 | 41.2 | 65.2 | 4.3 | 91.0 | 19.0 | 95.2 | 45.8 |
HEAC | 0.7 | 99.0 | 67.1 | 97.7 | 30.2 | 98.5 | 43.6 | 99.5 | 166.9 |
ETPR | 3.4 | 84.0 | 18.2 | 62.7 | 5.7 | 79.7 | 13.4 | 91.2 | 35.2 |
ETBU | 0.8 | 98.7 | 59.7 | 96.3 | 23.8 | 98.4 | 40.6 | 99.3 | 132.5 |
TCA | Initial Concentration in Water, mg/L | Extraction Yield η, % |
---|---|---|
AMI | 5 | 99.3 |
10 | 98.4 | |
20 | 95.5 | |
30 | 98.0 | |
40 | 93.4 | |
60 | 93.5 | |
80 | 92.4 | |
100 | 91.5 | |
DOX | 5 | 97.9 |
10 | 96.5 | |
20 | 94.4 | |
30 | 94.9 | |
40 | 90.5 | |
60 | 91.8 | |
80 | 90.1 | |
100 | 89.7 | |
IMI | 5 | 98.7 |
10 | 98.8 | |
20 | 97.4 | |
30 | 98.3 | |
40 | 93.7 | |
60 | 92.3 | |
80 | 90.9 | |
100 | 88.0 | |
CLO | 5 | 98.6 |
10 | 98.2 | |
20 | 98.4 | |
30 | 97.1 | |
40 | 97.1 | |
60 | 97.4 | |
80 | 96.5 | |
100 | 96.6 |
TCA | logKD | KD |
---|---|---|
AMI | 1.812 | 64.8 |
DOX | 1.598 | 39.6 |
IMI | 1.794 | 62.2 |
CLO | 1.943 | 87.6 |
TCA and Concentration | η (%) aq. NaCl 0.5 M | η (%) aq. pH 9 |
---|---|---|
AMI 100 mg/L | 99.06 | 99.95 |
DOX 100 mg/L | 98.88 | 99.97 |
IMI 100 mg/L | 99.80 | 99.96 |
CLO 100 mg/L | 93.61 | 99.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racovita, R.C.; Ciuca, M.D.; Catana, D.; Comanescu, C.; Ciocirlan, O. Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media. Nanomaterials 2023, 13, 2311. https://doi.org/10.3390/nano13162311
Racovita RC, Ciuca MD, Catana D, Comanescu C, Ciocirlan O. Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media. Nanomaterials. 2023; 13(16):2311. https://doi.org/10.3390/nano13162311
Chicago/Turabian StyleRacovita, Radu C., Maria D. Ciuca, Daniela Catana, Cezar Comanescu, and Oana Ciocirlan. 2023. "Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media" Nanomaterials 13, no. 16: 2311. https://doi.org/10.3390/nano13162311
APA StyleRacovita, R. C., Ciuca, M. D., Catana, D., Comanescu, C., & Ciocirlan, O. (2023). Microemulsions of Nonionic Surfactant with Water and Various Homologous Esters: Preparation, Phase Transitions, Physical Property Measurements, and Application for Extraction of Tricyclic Antidepressant Drugs from Aqueous Media. Nanomaterials, 13(16), 2311. https://doi.org/10.3390/nano13162311