Shape Dependence of Silver-Nanoparticle-Mediated Synthesis of Gold Nanoclusters with Small Molecules as Capping Ligands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of AgNPs
2.2.1. Synthesis of Quasi-Spherical AgNPs
2.2.2. Synthesis of Spherical AgNP
2.2.3. Synthesis of Silver Nanoplates (AgNPts)
2.2.4. Synthesis of Triangular Nanoplates (T-AgNPts)
2.3. Synthesis of Au NCs
2.4. Fluorescence Spectroscopy
2.5. TEM Imaging of AgNPs and Au NCs
2.6. UV-Visible Spectroscopy
2.7. Quantum Yields
3. Results
3.1. Characterization of Silver Nanoparticles
3.2. Synthesis of Gold Nanoclusters Mediated by Silver Nanoparticles
3.3. Characterization of Gold Nanoclusters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, H.; Shao, Z.-S.; Song, Z.; Wang, Y.-B.; Wang, H.-S. Development of gold nanoclusters: From preparation to applications in the field of biomedicine. J. Mater. Chem. C 2020, 8, 14312–14333. [Google Scholar]
- Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015, 87, 216–229. [Google Scholar]
- Li, G.; Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Liang, A.; Liu, Q.; Wen, G.; Jiang, Z. The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC Trends Anal. Chem. 2012, 37, 32–47. [Google Scholar]
- Berends, A.C.; de Mello Donega, C. Ultrathin one-and two-dimensional colloidal semiconductor nanocrystals: Pushing quantum confinement to the limit. J. Phys. Chem. Lett. 2017, 8, 4077–4090. [Google Scholar] [PubMed] [Green Version]
- Qu, X.; Li, Y.; Li, L.; Wang, Y.; Liang, J.; Liang, J. Fluorescent gold nanoclusters: Synthesis and recent biological application. J. Nanomater. 2015, 2015, 4. [Google Scholar]
- Pichugina, D.Y.A.; Kuz, N.E.; Shestakov, A.F. Ligand-protected gold clusters: The structure, synthesis and applications. Russ. Chem. Rev. 2015, 84, 1114. [Google Scholar]
- Rao, T.U.B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 2010, 49, 3925–3929. [Google Scholar]
- Duan, H.; Nie, S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129, 2412–2413. [Google Scholar]
- Zheng, J.; Dickson, R.M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc. 2002, 124, 13982–13983. [Google Scholar] [CrossRef]
- Jao, Y.-C.; Chen, M.-K.; Lin, S.-Y. Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. Chem. Commun. 2010, 46, 2626–2628. [Google Scholar]
- Xie, J.; Zheng, Y.; Ying, J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef]
- Liu, C.L.; Wu, H.T.; Hsiao, Y.H.; Lai, C.W.; Shih, C.W.; Peng, Y.K.; Tang, K.C.; Chang, H.W.; Chien, Y.C.; Hsiao, J.K. Insulin-directed synthesis of fluorescent gold nanoclusters: Preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. 2011, 50, 7056–7060. [Google Scholar]
- Wu, X.; Xu, H.; Luo, F.; Wang, J.; Zhao, L.; Zhou, X.; Yang, Y.; Cai, H.; Sun, P.; Zhou, H. Sizes and ligands tuned gold nanocluster acting as a new type of monoamine oxidase B inhibitor. Biosens. Bioelectron. 2021, 189, 113377. [Google Scholar]
- Siddiqui, M.F.; Jeon, S.; Kim, M.-M. Rapid and sensitive detection of melanin using glutathione conjugated gold nanocluster based fluorescence quenching assay. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119086. [Google Scholar]
- Zhang, Q.; Wang, J.; Meng, Z.; Ling, R.; Ren, H.; Qin, W.; Wu, Z.; Shao, N. Glutathione disulfide as a reducing, capping, and mass-separating agent for the synthesis and enrichment of gold nanoclusters. Nanomaterials 2021, 11, 2258. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Al-mashriqi, H.S.; Salah, A.; Zhai, H. Glutathione capped gold nanoclusters-based fluorescence probe for highly sensitive and selective detection of transferrin in serum. Microchem. J. 2022, 175, 107163. [Google Scholar]
- Chen, Y.-S.; Kamat, P.V. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J. Am. Chem. Soc. 2014, 136, 6075–6082. [Google Scholar]
- Zhang, C.; Zhou, Z.; Qian, Q.; Gao, G.; Li, C.; Feng, L.; Wang, Q.; Cui, D. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J. Mater. Chem. B 2013, 1, 5045–5053. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Tseng, T.-H.; Chen, B.-R.; Wu, Y.-R.; Huang, C.-L.; Chen, J.-C. Silver Nanoparticle-Mediated Synthesis of Fluorescent Thiolated Gold Nanoclusters. Nanomaterials 2021, 11, 2835. [Google Scholar] [CrossRef]
- Xie, Z.X.; Tzeng, W.C.; Huang, C.L. One-pot synthesis of icosahedral silver nanoparticles by using a photoassisted tartrate reduction method under UV light with a wavelength of 310 nm. ChemPhysChem 2016, 17, 2551–2557. [Google Scholar] [PubMed]
- Huang, C.-C.; Chen, H.-J.; Leong, Q.L.; Lai, W.K.; Hsu, C.-Y.; Chen, J.-C.; Huang, C.-L. Synthesis of silver nanoplates with a narrow LSPR band for chemical sensing through a plasmon-mediated process using photochemical seeds. Materialia 2022, 21, 101279. [Google Scholar]
Capping Ligands | QS-AgNPs | T-AgNPts | AgNPts | S-AgNPs |
---|---|---|---|---|
DTTox | good | fair | good | fair |
DTT | good | fair | good | fair |
GSSG | good | good | good | good |
QS-AgNPs | AgNPts | |||
---|---|---|---|---|
Capping Ligands | Excited Wavelength | Emission Wavelength | Excited Wavelength | Emission Wavelength |
GSSG | 354 nm | 623 nm | 354 nm | 623 nm |
DTT | 354 nm | 640 nm | 354 nm | 643 nm |
DTTox | 360 nm | 676 nm | 357 nm | 668 nm |
Capping Ligands | DTT | DTT | GSSG | GSSG | GSSG | GSSG |
---|---|---|---|---|---|---|
AgNPs | QS-AgNP | AgNPt | QS-AgNP | T-AgNPt | S-AgNP | AgNPt |
QY(%) | 7.2 | 5.4 | 6.8 | 6.3 | 7.3 | 7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-Y.; Wu, Y.-R.; Tseng, T.-H.; Su, J.-H.; Wang, Y.-S.; Jen, F.-Y.; Chen, B.-R.; Huang, C.-L.; Chen, J.-C. Shape Dependence of Silver-Nanoparticle-Mediated Synthesis of Gold Nanoclusters with Small Molecules as Capping Ligands. Nanomaterials 2023, 13, 2338. https://doi.org/10.3390/nano13162338
Chang C-Y, Wu Y-R, Tseng T-H, Su J-H, Wang Y-S, Jen F-Y, Chen B-R, Huang C-L, Chen J-C. Shape Dependence of Silver-Nanoparticle-Mediated Synthesis of Gold Nanoclusters with Small Molecules as Capping Ligands. Nanomaterials. 2023; 13(16):2338. https://doi.org/10.3390/nano13162338
Chicago/Turabian StyleChang, Cheng-Yeh, Yi-Ru Wu, Tzu-Hsien Tseng, Jun-Hao Su, Yu-Shan Wang, Fang-Yi Jen, Bo-Ru Chen, Cheng-Liang Huang, and Jui-Chang Chen. 2023. "Shape Dependence of Silver-Nanoparticle-Mediated Synthesis of Gold Nanoclusters with Small Molecules as Capping Ligands" Nanomaterials 13, no. 16: 2338. https://doi.org/10.3390/nano13162338
APA StyleChang, C. -Y., Wu, Y. -R., Tseng, T. -H., Su, J. -H., Wang, Y. -S., Jen, F. -Y., Chen, B. -R., Huang, C. -L., & Chen, J. -C. (2023). Shape Dependence of Silver-Nanoparticle-Mediated Synthesis of Gold Nanoclusters with Small Molecules as Capping Ligands. Nanomaterials, 13(16), 2338. https://doi.org/10.3390/nano13162338