A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin
Abstract
:1. Introduction
2. Experimental Section
2.1. AuNpA Fabrication Based on Nanoimprint Lithography (NIL)
2.2. AuNhA Fabrication Based on Nanosphere Lithography (NSL)
2.3. Plasmonic and Electrochemical Dual-Signal Measurement Set-up and Data Acquisition
2.4. Preparation of the Aptasensor
2.5. Atomic Force Microscopy Measurements
2.6. Finite-Difference Time-Domain Simulations
3. Results and Discussion
3.1. Periodicity Optimization by FDTD Simulation
3.2. AuNhA Characterization
3.3. Different Hole Depths (HDs) Simulated with FDTD
3.4. AuNpA Characterization
3.5. Performance of Aptasensors for HSA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural Basis of the Drug-binding Specificity of Human Serum Albumin. J. Mol. Biol. 2005, 353, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Cieplak, M.; Szwabinska, K.; Sosnowska, M.; Chandra, B.K.C.; Borowicz, P.; Noworyta, K.; D’Souza, F.; Kutner, W. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens. Bioelectron. 2015, 74, 960–966. [Google Scholar] [CrossRef]
- Anguizola, J.; Matsuda, R.; Barnaby, O.S.; Hoy, K.; Wa, C.; DeBolt, E.; Koke, M.; Hage, D.S. Review: Glycation of human serum albumin. Clin. Chim. Acta 2013, 425, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.F.; Yang, Y.S.; Jiang, A.Q.; Zhu, H.L. Detection Methods and Research Progress of Human Serum Albumin. Crit. Rev. Anal. Chem. 2022, 52, 72–92. [Google Scholar] [CrossRef]
- Ma, X.T.; He, X.W.; Li, W.Y.; Zhang, Y.K. Epitope molecularly imprinted polymer coated quartz crystal microbalance sensor for the determination of human serum albumin. Sens. Actuators B Chem. 2017, 246, 879–886. [Google Scholar] [CrossRef]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. TrAC Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Seok Kim, Y.; Ahmad Raston, N.H.; Bock Gu, M. Aptamer-based nanobiosensors. Biosens. Bioelectron. 2016, 76, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ji, H.; Sun, H.; Ding, C.; Ren, J.; Qu, X. Label-free ratiometric electrochemical detection of the mutated apolipoprotein E gene associated with Alzheimer’s disease. Chem. Commun. 2016, 52, 12080–12083. [Google Scholar] [CrossRef]
- Lertvachirapaiboon, C.; Baba, A.; Ekgasit, S.; Shinbo, K.; Kato, K.; Kaneko, F. Transmission surface plasmon resonance techniques and their potential biosensor applications. Biosens. Bioelectron. 2018, 99, 399–415. [Google Scholar] [CrossRef]
- Lee, S.H.; Bantz, K.C.; Lindquist, N.C.; Oh, S.H.; Haynes, C.L. Self-Assembled Plasmonic Nanohole Arrays. Langmuir 2009, 25, 13685–13693. [Google Scholar] [CrossRef]
- Abbas, A.; Linman, M.J.; Cheng, Q. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 2011, 26, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Ekşioğlu, Y.; Cetin, A.E.; Petráček, J. Optical Response of Plasmonic Nanohole Arrays: Comparison of Square and Hexagonal Lattices. Plasmonics 2016, 11, 851–856. [Google Scholar] [CrossRef]
- Calderón, J.; Álvarez, J.; Martinez-Pastor, J.; Hill, D. Bowtie plasmonic nanoantenna arrays for polarimetric optical biosensing. In Proceedings of the Frontiers in Biological Detection: From Nanosensors to Systems VI, SPIE, San Francisco, CA, USA, 1–2 February 2014; Volume 8933, pp. 84–92. [Google Scholar]
- Chang, J.; Lv, W.; Li, Q.; Li, H.; Li, F. One-Step Synthesis of Methylene Blue-Encapsulated Zeolitic Imidazolate Framework for Dual-Signal Fluorescent and Homogeneous Electrochemical Biosensing. Anal. Chem. 2020, 92, 8959–8964. [Google Scholar] [CrossRef]
- Lenyk, B.; Figueroa-Miranda, G.; Pavlushko, I.; Lo, Y.; Tanner, J.A.; Offenhäusser, A.; Mayer, D. Dual-Transducer Malaria Aptasensor Combining Electrochemical Impedance and Surface Plasmon Polariton Detection on Gold Nanohole Arrays. ChemElectroChem 2020, 7, 4594–4600. [Google Scholar] [CrossRef]
- Zhu, R.; Proempers, M.; Offenhaeusser, A.; Mayer, D. Non-fully gold nanohole array fabricated by nanoimprint lithography. In Proceedings of the Mikro-Nano-Integration, 9. GMM-Workshop, Aachen, Germany, 21–22 November 2022; pp. 1–4. [Google Scholar]
- Aydinoglu, F.; Saffih, F.; Dey, R.K.; Cui, B. Chromium oxide as a hard mask material better than metallic chromium. J. Vac. Sci. Technol. B 2017, 35, 06GB01. [Google Scholar] [CrossRef]
- Green, T.A. Gold etching for microfabrication. Gold Bull. 2014, 47, 205–216. [Google Scholar] [CrossRef]
- Robinson, C.; Justice, J.; Petäjä, J.; Karppinen, M.; Corbett, B.; O’Riordan, A.; Lovera, P. Nanoimprint Lithography–Based Fabrication of Plasmonic Array of Elliptical Nanoholes for Dual-Wavelength, Dual-Polarisation Refractive Index Sensing. Plasmonics 2019, 14, 951–959. [Google Scholar] [CrossRef]
- Schops, V.; Lenyk, B.; Huhn, T.; Boneberg, J.; Scheer, E.; Offenhausser, A.; Mayer, D. Facile, non-destructive characterization of 2d photonic crystals using UV-vis-spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 4340–4346. [Google Scholar] [CrossRef]
- Lenyk, B.; Schops, V.; Boneberg, J.; Kabdulov, M.; Huhn, T.; Scheer, E.; Offenhausser, A.; Mayer, D. Surface Plasmon-Enhanced Switching Kinetics of Molecular Photochromic Films on Gold Nanohole Arrays. Nano Lett. 2020, 20, 5243–5250. [Google Scholar] [CrossRef] [PubMed]
- Hondrich, T.J.J.; Lenyk, B.; Shokoohimehr, P.; Kireev, D.; Maybeck, V.; Mayer, D.; Offenhausser, A. MEA Recordings and Cell-Substrate Investigations with Plasmonic and Transparent, Tunable Holey Gold. ACS Appl. Mater. Interfaces 2019, 11, 46451–46461. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, M.; Okumura, Y.; Amino, T.; Miyachi, Y.; Ogino, C.; Kondo, A. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorganic Med. Chem. Lett. 2017, 27, 954–957. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Figueroa-Miranda, G.; Chen, S.; Neis, M.; Hu, Z.; Zhu, R.; Li, Y.; Prömpers, M.; Offenhäusser, A.; Mayer, D. Flexible multielectrode arrays based electrochemical aptasensor for glycated human serum albumin detection. Sens. Actuators B Chem. 2023, 386, 133730. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, J.; Lin, Y.; Shi, S.; Di, C.; Zhang, S.; Sun, M.; Shi, Y.; Zhang, Y. Enhanced Optical Transmission through a Hybrid Bull’s Eye Structure Integrated with a Silicon Hemisphere. Nanomaterials 2023, 13, 1935. [Google Scholar] [CrossRef]
- Du, B.; Ruan, Y.; Yang, D.; Jia, P.; Gao, S.; Wang, Y.; Wang, P.; Ebendorff-Heidepriem, H. Freestanding metal nanohole array for high-performance applications. Photonics Res. 2020, 8, 1749. [Google Scholar] [CrossRef]
- Ghaemi, H.F.; Thio, T.; Grupp, D.E.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779–6782. [Google Scholar] [CrossRef]
- Mauriz, E.; Lechuga, L.M. Plasmonic Biosensors for Single-Molecule Biomedical Analysis. Biosensors 2021, 11, 123. [Google Scholar] [CrossRef]
- Zhan, C.; Liu, B.W.; Tian, Z.Q.; Ren, B. Determining the Interfacial Refractive Index via Ultrasensitive Plasmonic Sensors. J. Am. Chem. Soc. 2020, 142, 10905–10909. [Google Scholar] [CrossRef]
- Prasad, A.; Choi, J.; Jia, Z.; Park, S.; Gartia, M.R. Nanohole array plasmonic biosensors: Emerging point-of-care applications. Biosens. Bioelectron. 2019, 130, 185–203. [Google Scholar] [CrossRef]
- Cetin, A.E.; Etezadi, D.; Galarreta, B.C.; Busson, M.P.; Eksioglu, Y.; Altug, H. Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing. ACS Photonics 2015, 2, 1167–1174. [Google Scholar] [CrossRef]
- Monteiro, J.P.; Carneiro, L.B.; Rahman, M.M.; Brolo, A.G.; Santos, M.J.L.; Ferreira, J.; Girotto, E.M. Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sens. Actuators B Chem. 2013, 178, 366–370. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Li, S.; Ding, F.; Li, N.; Meng, S.; Li, R.; Qi, J.; Liu, Q.; Liu, G.L. Plasmonic nano-arrays for ultrasensitive bio-sensing. Nanophotonics 2018, 7, 1517–1531. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, F.; Gao, R.; Jao, C.Y.; Ma, C.; Li, J.; Li, X.; Guan, B.O.; Cetin, A.E.; Chen, K. Rayleigh anomaly-enabled mode hybridization in gold nanohole arrays by scalable colloidal lithography for highly-sensitive biosensing. Nanophotonics 2022, 11, 507–517. [Google Scholar] [CrossRef]
- Zaman, M.A.; Hesselink, L. Plasmonic Response of Nano-C-apertures: Polarization Dependent Field Enhancement and Circuit Model. Plasmonics 2023, 18, 155–164. [Google Scholar] [CrossRef]
- Veselinovic, J.; AlMashtoub, S.; Nagella, S.; Seker, E. Interplay of Effective Surface Area, Mass Transport, and Electrochemical Features in Nanoporous Nucleic Acid Sensors. Anal. Chem. 2020, 92, 10751–10758. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Offenhäusser, A.; Mayer, D. A highly sensitive amperometric aptamer biosensor for adenosine triphosphate detection on a 64 channel gold multielectrode array. Phys. Status Solidi (A) 2020, 217, 1900925. [Google Scholar] [CrossRef]
- Schröper, F.; Brüggemann, D.; Mourzina, Y.; Wolfrum, B.; Offenhäusser, A.; Mayer, D. Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization. Electrochim. Acta 2008, 53, 6265–6272. [Google Scholar] [CrossRef]
- Hohertz, D.; Romanuik, S.F.; Gray, B.L.; Kavanagh, K.L. Recycling gold nanohole arrays. J. Vac. Sci. Technol. A 2014, 32, 031403. [Google Scholar] [CrossRef]
- Yahya, I.; Hassan, M.A.; Maidin, N.N.M.; Mohamed, M.A. Swcnt network-fet device for human serum albumin detection. Sensors 2022, 22, 8212. [Google Scholar] [CrossRef]
- Xiao, W.; Li, Y.; Xiong, Y.; Chen, Z.; Li, H. Fluorescence turn-on detection of human serum albumin based on the assembly of gold nanoclusters and bromocresol green. Anal. Bioanal. Chem. 2023, 415, 3363–3374. [Google Scholar] [CrossRef] [PubMed]
- Gui, W.; Chen, X.; Ma, Q. A novel detection method of human serum albumin based on cuinzns quantum dots-Co2+ sensing system. Anal. Bioanal. Chem. 2017, 409, 3871–3876. [Google Scholar] [CrossRef] [PubMed]
- Jalalvand, A.R.; Ghobadi, S.; Akbari, V.; Goicoechea, H.C.; Faramarzi, E.; Mahmoudi, M. Mathematical modeling of interactions of cabergoline with human serum albumin for biosensing of human serum albumin. Sens. Bio-Sens. Res. 2019, 25, 100297. [Google Scholar] [CrossRef]
- Naghdi, T.; Golmohammadi, H.; Vosough, M.; Atashi, M.; Saeedi, I.; Maghsoudi, M.T. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit. Anal. Chim. Acta 2019, 1070, 104–111. [Google Scholar] [CrossRef] [PubMed]
Periodicity (Lattice Constant) (nm) | Sensitivity (nm/RIU) | Transmittance (%) (RI = 1.0/1.33) | FWHM (nm) (RI = 1.0/1.33) | Figure of Merit (RI = 1.33) |
---|---|---|---|---|
400 | 205.79 | 44.2/66.7 | 253/313 | 0.66 |
500 | 279.36 | 35.2/72.6 | 94.4/376 | 0.74 |
600 | 411.15 | 36.3/32.9 | 164.9/34.7 | 11.85 |
700 | 587.58 | 35.4/30.4 | 278.3/56.0 | 10.49 |
800 | 672.36 | 33.9/29.0 | 261.4/73.0 | 9.21 |
Hole Depth (nm) | Sensitivity (nm/RIU) | Transmittance (%) (RI = 1.0/1.33) | FWHM (nm) (RI = 1.0/1.33) | Figure of Merit (RI = 1.33) |
---|---|---|---|---|
100 | 451.82 | 20.9/22.9 | 161.0/71.5 | 6.32 |
90 | 474.90 | 19.4/21.9 | 113.2/95.1 | 4.99 |
80 | 478.23 | 11.7/12.8 | 79.8/71.1 | 6.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Figueroa-Miranda, G.; Zhou, L.; Hu, Z.; Lenyk, B.; Ingebrandt, S.; Offenhäusser, A.; Mayer, D. A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin. Nanomaterials 2023, 13, 2374. https://doi.org/10.3390/nano13162374
Zhu R, Figueroa-Miranda G, Zhou L, Hu Z, Lenyk B, Ingebrandt S, Offenhäusser A, Mayer D. A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin. Nanomaterials. 2023; 13(16):2374. https://doi.org/10.3390/nano13162374
Chicago/Turabian StyleZhu, Ruifeng, Gabriela Figueroa-Miranda, Lei Zhou, Ziheng Hu, Bohdan Lenyk, Sven Ingebrandt, Andreas Offenhäusser, and Dirk Mayer. 2023. "A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin" Nanomaterials 13, no. 16: 2374. https://doi.org/10.3390/nano13162374
APA StyleZhu, R., Figueroa-Miranda, G., Zhou, L., Hu, Z., Lenyk, B., Ingebrandt, S., Offenhäusser, A., & Mayer, D. (2023). A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin. Nanomaterials, 13(16), 2374. https://doi.org/10.3390/nano13162374