Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results
Abstract
:1. Introduction
2. Magnetic Hyperthermia with Cubic/Spheric MNPs—Temperature Model
2.1. Ferrofluid Injection
2.2. The Space-Time Distribution of MNPs within Concentric Abnormal (Tumoral)—Normal (Healthy) Tissues
2.3. Bioheat Transfer within Tumoral–Healthy Regions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carrey, J.; Mehdaoui, B.; Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 2011, 109, 083921. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, 167. [Google Scholar] [CrossRef]
- Tang, Y.; Flesch, R.C.C.; Jin, T. Numerical investigation of temperature field in magnetic hyperthermia considering mass transfer and diffusion in interstitial tissue. J. Phys. D Appl. Phys. 2017, 51, 035401. [Google Scholar] [CrossRef]
- Astefanoaei, I.; Stancu, A. Thermo-fluid porosity-related effects in the magnetic hyperthermia. Eur. Phys. J. Plus 2021, 136, 1216. [Google Scholar] [CrossRef]
- Abu-Bakr, A.F.; Zubarev, A.Y. On the theory of magnetic hyperthermia: Clusterization of nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 2171. [Google Scholar] [CrossRef] [PubMed]
- Astefanoaei, I.; Stancu, A. Optimal control of the hyperthermic thermal damage within intravascular tumoral regions. J. Magn. Magn. Mater. 2021, 537, 168221–168230. [Google Scholar] [CrossRef]
- Hergt, R.; Dutz, S.; Muller, R.; Zeisberger, M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 2006, 18, S2929. [Google Scholar] [CrossRef]
- Wang, W.; Tang, B.; Ju, B.; Zhang, S. Size-controlled synthesis of water-dispersible superparamagnetic Fe3O4 nanoclusters and their magnetic responsiveness. RSC Adv. 2015, 5, 75292–75299. [Google Scholar] [CrossRef]
- Gavilán, H.; Simeonidis, K.; Myrovali, E.; Mazarío, E.; Chubykalo, O.; Chantrell, R.; Balcells, L.; Angelakeris, M.; Morales, M.P.; Serantes, D. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. Nanoscale 2021, 13, 15631–15646. [Google Scholar] [CrossRef] [PubMed]
- Nemati, Z.; Das, R.; Alonso, J.; Clements, E.; Phan, M.H.; Srikanth, H. Iron oxide nanospheres and nanocubes for magnetic hyperthermia therapy: A comparative study. J. Electron. Mater. 2017, 46, 3764–3769. [Google Scholar] [CrossRef]
- Singh, M.; Ma, R.; Zhu, L. 2019 Theoretical Evaluation of Temperature Elevation, Thermal Damage, Tumor Porosity Enhancement and Magnetic Nanoparticle Migration in tumor during local heating. In Proceedings of the Sumer Biomechanics, Bioingineering and Biotransport, Seven Springs, PA, USA, 25–28 June 2019. [Google Scholar]
- Lahonian, M.; Golneshan, A. A 2011 Numerical study of temperature using lattice Boltzmann method. IEEE Trans. Nanobiosci. 2011, 10, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.D.; Flesch, R.C.C. Effect of mass transfer and diffusion of nanofluid on the thermal ablation of malignant cells during magnetic hyperthermia. Appl. Math. Model. 2020, 83, 122–135. [Google Scholar] [CrossRef]
- Astefanoaei, I.; Gimaev, R.; Zverev, V.; Stancu, A. Modelling of working parameters of Gd and FeRh nanoparticles for magnetic hyperthermia. Mater. Res. Express 2019, 6, 125089. [Google Scholar] [CrossRef]
- Astefanoaei, I.; Stancu, A. Advanced thermo-mechanical analysis in the magnetic hyperthemia. J. Appl. Phys. 2017, 122, 164701–164712. [Google Scholar]
- El-Kareh, A.W.; Braunstein, S.L.; Secomb, T.W. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys. J. 1993, 64, 1638–1646. [Google Scholar]
- COMSOL Multiphysics, Reference Manual, version 4.4; COMSOL: Grenoble, France, 2013.
- Moghadam, M.C.; Deyranlou, A.; Sharifi, A.; Niazmand, H. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism. Microvasc. Res. 2015, 101, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Sefidgar, M.; Soltani, M.; Raahemifar, K.; Sadeghi, M.; Bazmara, H.; Bazargan, M.; Naeenian, M.M. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc. Res. 2015, 99, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.D.; Jin, T.; Flesch, R.C.C. Numerical temperature analysis of magnetic hyperthermia considering nanoparticle clustering and blood vessels. IEEE Trans. Magn. 2017, 53, 5400106. [Google Scholar] [CrossRef]
- Salloum, M.; Ma, R.; Zhu, L. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int. J. Hyperth. 2008, 7, 24. [Google Scholar]
- Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci. Mater. Int. 2016, 26, 440–448. [Google Scholar] [CrossRef]
Vascular Characteristics | Abnormal Region (i = 1) | Normal Region (i = 2) |
---|---|---|
LP (cm ) hidraulic conductivity | 2.8 × 10−7 | 0.36 × 10−7 |
LPV SLV−1 () lymphatic coefficient | - | 5 × 10−5 |
Pb (mmHg) static blood pressure | 15.6 | 15.6 |
πb (mmHg) plasma protein pressure | - | - |
πi (mmHg) the interstitial pressure | 15 | 10 |
σ | 0.82 | 0.91 |
SVV−1 () | ||
PL | - | 0 |
Characteristics | Magnetite | Abnormal Region | Normal Region | Blood |
---|---|---|---|---|
Mass densities | 5180 | 1160 | 1060 | 1000 |
Specific heat capacities (J/Kg K) | 670 | 3600 | 3600 | 4180 |
Thermal conductivities (W/mK) | 40 | 0.4692 | 0.512 | - |
Metabolic heat (W/m3) | - | 5790 | 700 | - |
Blood perfusion rate (1/s) | - | 0.0064 | 0.0064 | - |
Frequency range f(kHz) | 100–650 | - | - | - |
Magnetic field amplitude H(kA/m) | 0–15 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astefanoaei, I.; Gimaev, R.; Zverev, V.; Tishin, A.; Stancu, A. Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results. Nanomaterials 2023, 13, 2383. https://doi.org/10.3390/nano13162383
Astefanoaei I, Gimaev R, Zverev V, Tishin A, Stancu A. Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results. Nanomaterials. 2023; 13(16):2383. https://doi.org/10.3390/nano13162383
Chicago/Turabian StyleAstefanoaei, Iordana, Radel Gimaev, Vladimir Zverev, Alexander Tishin, and Alexandru Stancu. 2023. "Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results" Nanomaterials 13, no. 16: 2383. https://doi.org/10.3390/nano13162383
APA StyleAstefanoaei, I., Gimaev, R., Zverev, V., Tishin, A., & Stancu, A. (2023). Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results. Nanomaterials, 13(16), 2383. https://doi.org/10.3390/nano13162383