Microwave-Assisted Synthesis of Pd Nanoparticles into Wood Block (Pd@wood) as Efficient Catalyst for 4-Nitrophenol and Cr(VI) Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. Pretreatment of Wood Blocks
2.4. Preparation of Pd@wood Catalyst
2.5. General Procedure for Reduction of 4-Nitrophenol
2.6. General Procedure for Reduction of Cr (VI)
3. Results and Discussion
3.1. Structural Characterization of Catalyst
3.2. Study of Catalytic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem. 2010, 12, 83–109. [Google Scholar] [CrossRef]
- Chernyshev, V.M.; Ananikov, V.P. Nickel and palladium catalysis: Stronger demand than ever. ACS Catal. 2022, 12, 1180–1200. [Google Scholar] [CrossRef]
- Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.M.; Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 2011, 40, 5181–5203. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.M.; McKinney, D.L.; Sigmund, W.M. Enhanced nanocatalysts. Mater. Sci. Eng. R Rep. 2012, 73, 1–13. [Google Scholar] [CrossRef]
- Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4(iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem. 2016, 18, 3184–3209. [Google Scholar] [CrossRef]
- Gawande, M.B.; Bonifácio, V.D.B.; Varma, R.S.; Nogueira, I.D.; Bundaleski, N.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. Magnetically recyclable magnetite–ceria (Nanocat-Fe-Ce) nanocatalyst—Applications in multicomponent reactions under benign conditions. Green Chem. 2013, 15, 1226–1231. [Google Scholar] [CrossRef]
- Pentsak, E.O.; Dzhemileva, L.U.; D’yakonov, V.A.; Shaydullin, R.R.; Galushko, A.S.; Egorova, K.S.; Ananikov, V.P. Comparative assessment of heterogeneous and homogeneous Suzuki-Miyaura catalytic reactions using bio-Profiles and bio-Factors. J. Organomet. Chem. 2022, 965, 122319. [Google Scholar] [CrossRef]
- Yin, Z.; Lin, L.; Ma, D. Construction of Pd-based nanocatalysts for fuel cells: Opportunities and challenges. Catal. Sci. Technol. 2014, 4, 4116–4128. [Google Scholar] [CrossRef]
- Lee, S.J.; Yu, Y.; Jung, H.J.; Naik, S.S.; Yeon, S.; Choi, M.Y. Efficient recovery of palladium nanoparticles from industrial wastewater and their catalytic activity toward reduction of 4-nitrophenol. Chemosphere 2021, 262, 128358. [Google Scholar] [CrossRef]
- Galushko, A.S.; Boiko, D.A.; Pentsak, E.O.; Eremin, D.B.; Ananikov, V.P. Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. J. Am. Chem. Soc. 2023, 145, 9092–9103. [Google Scholar] [CrossRef]
- Monyoncho, E.A.; Ntais, S.; Brazeau, N.; Wu, J.-J.; Sun, C.-L.; Baranova, E.A. Role of the Metal-Oxide Support in the Catalytic Activity of Pd Nanoparticles for Ethanol Electrooxidation in Alkaline Media. ChemElectroChem 2016, 3, 218–227. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Shokouhimehr, M.; Varma, R.S. Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coord. Chem. Rev. 2019, 397, 54–75. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, Z.; Liu, J.; Deng, Y.; Zhang, D.; Du, P.; Zhang, S.; Lu, X. Novel Fe-Mn-O nanosheets/wood carbon hybrid with tunable surface properties as a superior catalyst for Fenton-like oxidation. Appl. Catal. B Environ. 2019, 259, 118058. [Google Scholar] [CrossRef]
- Song, M.; Tao, X.; Wu, Y.; Qing, Y.; Tian, C.; Xu, H.; Lu, X. Boosting oxygen evolution activity of NiFe layered double hydroxide through interface engineering assisted with naturally-hierarchical wood. Chem. Eng. J. 2021, 421, 129751. [Google Scholar] [CrossRef]
- Zhang, Z.; Terrasson, V.; Guenin, E. Lignin Nanoparticles and Their Nanocomposites. Nanomaterials 2021, 11, 1336. [Google Scholar] [CrossRef]
- Dong, Y.; Bi, J.; Zhang, S.; Zhu, D.; Meng, D.; Ming, S.; Qin, K.; Liu, Q.; Guo, L.; Li, T. Palladium supported on N-Heterocyclic carbene functionalized hydroxyethyl cellulose as a novel and efficient catalyst for the Suzuki reaction in aqueous media. Appl. Surf. Sci. 2020, 531, 147392. [Google Scholar] [CrossRef]
- Marulasiddeshwara, M.B.; Kumar, P.R. Synthesis of Pd(0) nanocatalyst using lignin in water for the Mizoroki-Heck reaction under solvent-free conditions. Int. J. Biol. Macromol. 2016, 83, 326–334. [Google Scholar] [CrossRef]
- Shahriari, M.; Sedigh, M.A.; Mahdavian, Y.; Mahdigholizad, S.; Pirhayati, M.; Karmakar, B.; Veisi, H. In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer. Int. J. Biol. Macromol. 2021, 172, 55–65. [Google Scholar] [CrossRef]
- Tao, X.; Xu, H.; Luo, S.; Wu, Y.; Tian, C.; Lu, X.; Qing, Y. Construction of N-doped carbon nanotube encapsulated active nanoparticles in hierarchically porous carbonized wood frameworks to boost the oxygen evolution reaction. Appl. Catal. B Environ. 2020, 279, 119367. [Google Scholar] [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Wood modification with alkoxysilanes. Wood Sci. Technol. 2004, 38, 555–566. [Google Scholar] [CrossRef]
- Weinstock, I.A.; Atalla, R.H.; Reiner, R.S.; Moen, M.A.; Hammel, K.E.; Houtman, C.J.; Hill, C.L.; Harrup, M.K. A new environmentally benign technology for transforming wood pulp into paper. Engineering polyoxometalates as catalysts for multiple processes. J. Mol. Catal. A Chem. 1997, 116, 59–84. [Google Scholar] [CrossRef]
- Dong, B.H.; Hinestroza, J.P. Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and in situ synthesis. ACS Appl. Mater. Interfaces 2009, 1, 797–803. [Google Scholar] [CrossRef]
- Lin, X.; Wu, M.; Wu, D.; Kuga, S.; Endo, T.; Huang, Y. Platinum nanoparticles using wood nanomaterials: Eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction. Green Chem. 2011, 13, 283–287. [Google Scholar] [CrossRef]
- Negui, M.; Zhang, Z.; Foucher, C.; Guénin, E.; Richel, A.; Jeux, V.; Terrasson, V. Wood-Sourced Polymers as Support for Catalysis by Group 10 Transition Metals. Processes 2022, 10, 345. [Google Scholar] [CrossRef]
- Agarwal, U.P. Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 2006, 224, 1141–1153. [Google Scholar] [CrossRef]
- Yin, Y.; Berglund, L.; Salmén, L.J.B. Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 2011, 12, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Benaissi, K.; Johnson, L.; Walsh, D.A.; Thielemans, W.J.G.C. Synthesis of platinum nanoparticles using cellulosic reducing agents. Green Chem. 2010, 12, 220–222. [Google Scholar] [CrossRef]
- Iben Ayad, A.; Belda Marín, C.; Colaco, E.; Lefevre, C.; Méthivier, C.; Ould Driss, A.; Landoulsi, J.; Guénin, E. “Water soluble” palladium nanoparticle engineering for C–C coupling, reduction and cyclization catalysis. Green Chem. 2019, 21, 6646–6657. [Google Scholar] [CrossRef]
- Dandapat, A.; Jana, D.; De, G. Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Appl. Catal. A Gen. 2011, 396, 34–39. [Google Scholar] [CrossRef]
- Besserer, A.; Obame, S.N.; Safou-Tchima, R.; Saker, S.; Ziegler-Devin, I.; Brosse, N. Biorefining of Aucoumea klaineana wood: Impact of steam explosion on the composition and ultrastructure the cell wall. Ind. Crops Prod. 2022, 177, 114432. [Google Scholar] [CrossRef]
- Gáspár, M.; Kálmán, G.; Réczey, K. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem. 2007, 42, 1135–1139. [Google Scholar] [CrossRef]
- Rahimi, S. Physical Properties and Drying Behavior of Hydrothermally Treated Yellow-Poplar; Libraries at West Virginia University: Morgantown, WV, USA, 2017. [Google Scholar] [CrossRef]
- Salehian, P.; Karimi, K.; Zilouei, H.; Jeihanipour, A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel 2013, 106, 484–489. [Google Scholar] [CrossRef]
- Ali, M.R.; Abdullah, U.H.; Ashaari, Z.; Hamid, N.H.; Hua, L.S. Hydrothermal Modification of Wood: A Review. Polymers 2021, 13, 2612. [Google Scholar] [CrossRef] [PubMed]
- EN 350:2016; Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials. European Committee for Standardization: Newark, DE, USA, 2016.
- Farooq, M.; Shujah, S.; Tahir, K.; Nazir, S.; Ullah Khan, A.; Almarhoon, Z.M.; Jevtovic, V.; Al-Shehri, H.S.; Tasleem Hussain, S.; Ullah, A. Ultra efficient 4-Nitrophenol reduction, dye degradation and Cr(VI) adsorption in the presence of phytochemical synthesized Ag/ZnO nanocomposite: A view towards sustainable chemistry. Inorg. Chem. Commun. 2022, 136, 109189. [Google Scholar] [CrossRef]
- Grzeschik, R.; Schäfer, D.; Holtum, T.; Küpper, S.; Hoffmann, A.; Schlücker, S. On the Overlooked Critical Role of the pH Value on the Kinetics of the 4-Nitrophenol NaBH4-Reduction Catalyzed by Noble-Metal Nanoparticles (Pt, Pd, and Au). J. Phys. Chem. C 2020, 124, 2939–2944. [Google Scholar] [CrossRef]
- Deka, P.; Deka, R.C.; Bharali, P. In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J. Chem. 2014, 38, 1789–1793. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, H.; Chu, J.; Ma, J.; Fan, Y.; Wang, Z.; Ni, Y. Lignin-Directed Control of Silver Nanoparticles with Tunable Size in Porous Lignocellulose Hydrogels and Their Application in Catalytic Reduction. ACS Sustain. Chem. Eng. 2020, 8, 12655–12663. [Google Scholar] [CrossRef]
- Xiao, W.-Z.; Xiao, L.-P.; Yang, Y.-Q.; Xu, Q.; He, W.-Q.; Zhang, J.; Wang, R.-Y.; Zhao, X.; Zhai, S.-R.; Sun, R.-C. Fully exposed silver nanoparticles stabilized on pH-responsive lignin-reactors for enhanced 4-nitrophenol reduction. J. Environ. Chem. Eng. 2022, 10, 107945. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Montes-Garcia, V.; Rodal-Cedeira, S.; Winckelmans, N.; Perez-Juste, I.; Wu, H.; Bals, S.; Perez-Juste, J.; Pastoriza-Santos, I. Highly porous palladium nanodendrites: Wet-chemical synthesis, electron tomography and catalytic activity. Dalton Trans. 2019, 48, 3758–3767. [Google Scholar] [CrossRef]
- Ye, W.; Chen, Y.; Zhou, F.; Wang, C.; Li, Y. Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. J. Mater. Chem. 2012, 22, 18327–18334. [Google Scholar] [CrossRef]
- Lv, J.-J.; Wang, A.-J.; Ma, X.; Xiang, R.-Y.; Chen, J.-R.; Feng, J.-J. One-pot synthesis of porous Pt–Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 290–296. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, H.; Wang, S.; Shen, M.; Guo, R.; Cao, X.; Zhu, M.; Shi, X. Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl. Mater. Interfaces 2012, 4, 3054–3061. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, G.; Sui, W.; Parvez, A.M.; Dai, L.; Si, C. Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Ind. Crops Prod. 2020, 145, 112164. [Google Scholar] [CrossRef]
- Li, D.-N.; Shao, F.-Q.; Feng, J.-J.; Wei, J.; Zhang, Q.-L.; Wang, A.-J. Uniform Pt@Pd nanocrystals supported on N-doped reduced graphene oxide as catalysts for effective reduction of highly toxic chromium(VI). Mater. Chem. Phys. 2018, 205, 64–71. [Google Scholar] [CrossRef]
- Liang, M.; Su, R.; Qi, W.; Zhang, Y.; Huang, R.; Yu, Y.; Wang, L.; He, Z. Reduction of Hexavalent Chromium Using Recyclable Pt/Pd Nanoparticles Immobilized on Procyanidin-Grafted Eggshell Membrane. Ind. Eng. Chem. Res. 2014, 53, 13635–13643. [Google Scholar] [CrossRef]
- Xu, T.; Xue, J.; Zhang, X.; He, G.; Chen, H. Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature. Appl. Surf. Sci. 2017, 402, 294–300. [Google Scholar] [CrossRef]
- Liu, L.; Xue, J.; Shan, X.; He, G.; Wang, X.; Chen, H. In-situ preparation of three-dimensional Ni@graphene-Cu composites for ultrafast reduction of Cr(VI) at room temperature. Catal. Commun. 2016, 75, 13–17. [Google Scholar] [CrossRef]
- Bhowmik, K.; Mukherjee, A.; Mishra, M.K.; De, G. Stable Ni nanoparticle-reduced graphene oxide composites for the reduction of highly toxic aqueous Cr(VI) at room temperature. Langmuir 2014, 30, 3209–3216. [Google Scholar] [CrossRef]
Catalyst | Catalyst Mass (mg) | NaBH4 Concentration (mM) | kapp (s−1) | knorm (g−1 s−1 M−1) | Ref. |
---|---|---|---|---|---|
Pd@wood | Pd (0.164) | 282 | 4.41 × 10−3 | 95.4 | This work |
Ag@lignin | Ag (16.2) | 500 | 2.30 × 10−2 | 2.8 | [40] |
PdND1 | Pd (0.04) | 77 | 3.95 × 10−3 | 1274.4 | [41] |
Cu NPs | Cu (12.5) | 9.9 | 1.58 × 10−3 | 12.7 | [38] |
Ag-lignin/LCG1 | --- | 10.0 | 2.19 × 10−3 | --- | [39] |
Pt black | Pt (0.05) | 203 | 0.70 × 10−3 | 69.0 | [43] |
Au@citrate | Au (0.05) | 165 | 0.30 × 10−3 | 27.6 | [43] |
Ag dendrites | Ag (1.0) | 36.4 | 2.51 × 10−3 | 68.9 | [42] |
Catalyst | Temperature (°C) | Time (min) | Rate Constant (k/min−1) | Rate Constant (k/s−1) | TOF (min−1) | Ref. |
---|---|---|---|---|---|---|
Pd@wood | 50 | 8 | 0.452 | 7.53 × 10−3 | 2.03 | This work |
Pd-γ-Al2O3 | 50 | 40 | 0.085 | 1.42 × 10−3 | 1.03 | [29] |
Pd@Pro-ESM | 45 | 26 | 0.133 | 2.22 × 10−3 | 2.6 × 10−4 | [47] |
Co-RGO10 | 25 | 9 | 0.474 | 7.90 × 10−3 | 4.9 × 10−2 | [48] |
Ni@GE-Cu0.75 | 25 | 15 | 0.344 | 5.73 × 10−3 | 2.4 × 10−2 | [49] |
Ni-RGO10 | 25 | 4 | 0.309 | 5.15 × 10−3 | 1.4 × 10−2 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Besserer, A.; Rose, C.; Brosse, N.; Terrasson, V.; Guénin, E. Microwave-Assisted Synthesis of Pd Nanoparticles into Wood Block (Pd@wood) as Efficient Catalyst for 4-Nitrophenol and Cr(VI) Reduction. Nanomaterials 2023, 13, 2491. https://doi.org/10.3390/nano13172491
Zhang Z, Besserer A, Rose C, Brosse N, Terrasson V, Guénin E. Microwave-Assisted Synthesis of Pd Nanoparticles into Wood Block (Pd@wood) as Efficient Catalyst for 4-Nitrophenol and Cr(VI) Reduction. Nanomaterials. 2023; 13(17):2491. https://doi.org/10.3390/nano13172491
Chicago/Turabian StyleZhang, Zhao, Arnaud Besserer, Christophe Rose, Nicolas Brosse, Vincent Terrasson, and Erwann Guénin. 2023. "Microwave-Assisted Synthesis of Pd Nanoparticles into Wood Block (Pd@wood) as Efficient Catalyst for 4-Nitrophenol and Cr(VI) Reduction" Nanomaterials 13, no. 17: 2491. https://doi.org/10.3390/nano13172491
APA StyleZhang, Z., Besserer, A., Rose, C., Brosse, N., Terrasson, V., & Guénin, E. (2023). Microwave-Assisted Synthesis of Pd Nanoparticles into Wood Block (Pd@wood) as Efficient Catalyst for 4-Nitrophenol and Cr(VI) Reduction. Nanomaterials, 13(17), 2491. https://doi.org/10.3390/nano13172491