Hyper-Crosslinked Porous Organic Nanomaterials: Structure-Oriented Design and Catalytic Applications
Abstract
:1. Introduction
2. Synthesis Methods for Hyper-Crosslinked Polymer Nanomaterials
2.1. From Small Molecules
2.1.1. Self-Crosslinking Strategy without Additional Crosslinker
2.1.2. External Crosslinker Strategy
2.2. From Macromolecules
3. Structure-Oriented Design of Hyper-Crosslinked Polymer Nanomaterials
3.1. Design Methods for Pore Size Modulation and Distribution
3.2. Design Strategies for Morphological Tailoring
4. The Effects of Pore Size Modulation and Shape Tailoring of HCPs on Catalysis
5. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, T.; Zhang, W.; Li, B.; Huang, W.; Lin, C.; Wu, Y.; Chen, S.; Ma, H. Adsorptive Separation of Aromatic Compounds from Alkanes by π–π Interactions in a Carbazole-Based Conjugated Microporous Polymer. ACS Appl. Mater. Interfaces 2020, 12, 56385–56392. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chem. Rev. 2017, 117, 1515–1563. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF Nanosheets for Electrochemical Energy Storage and Conversion. Chem. Soc. Rev. 2020, 49, 3565–3604. [Google Scholar] [CrossRef]
- Aydin, S.; Altintas, C.; Keskin, S. High-Throughput Screening of COF Membranes and COF/Polymer MMMs for Helium Separation and Hydrogen Purification. ACS Appl. Mater. Interfaces 2022, 14, 21738–21749. [Google Scholar] [CrossRef]
- Talekar, S.; Kim, Y.; Wee, Y.; Kim, J. De Novo Synthesis of Enzyme-Embedded Covalent Organic Frameworks (COFs) Using Deep Eutectic Solvent: Pushing the COF Limits. Chem. Eng. J. 2023, 456, 141058. [Google Scholar] [CrossRef]
- Wang, K.; Huang, L.; Razzaque, S.; Jin, S.; Tan, B. Fabrication of Hollow Microporous Carbon Spheres from Hyper-Crosslinked Microporous Polymers. Small 2016, 12, 3134–3142. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.S.; Ozdemir, J.; Khosropour, A.R.; Beyzavi, H. Sulfur-Decorated Hyper-Cross-Linked Coal Tar: A Microporous Organic Polymer for Efficient and Expeditious Mercury Removal. ACS Appl. Mater. Interfaces 2020, 12, 44117–44124. [Google Scholar] [CrossRef]
- Sang, Y.; Huang, J. Benzimidazole-Based Hyper-Cross-Linked Poly(Ionic Liquid)s for Efficient CO2 Capture and Conversion. Chem. Eng. J. 2020, 385, 123973. [Google Scholar] [CrossRef]
- Valverde-Gonzalez, A.; Iglesias, M.; Maya, E.M. Metal Catalysis with Knitting Aryl Polymers: Design, Catalytic Applications, and Future Trends. Chem. Mater. 2021, 33, 6616–6639. [Google Scholar] [CrossRef]
- Ren, S.-B.; Ma, W.; Zhang, C.; Chen, L.; Wang, K.; Li, R.-R.; Shen, M.; Han, D.-M.; Chen, Y.; Jiang, J.-X. Exploiting Polythiophenyl-Triazine-Based Conjugated Microporous Polymer with Superior Lithium-Storage Performance. ChemSusChem 2020, 13, 2295–2302. [Google Scholar] [CrossRef]
- Lee, J.-S.M.; Cooper, A.I. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171–2214. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Longo, M.; Fuoco, A.; Esposito, E.; Monteleone, M.; Comesaña Gándara, B.; Carolus Jansen, J.; McKeown, N.B. Dibenzomethanopentacene-Based Polymers of Intrinsic Microporosity for Use in Gas-Separation Membranes. Angew. Chem. Int. Ed. 2023, 62, e202215250. [Google Scholar] [CrossRef] [PubMed]
- Marken, F.; Carta, M.; McKeown, N.B. Polymers of Intrinsic Microporosity in the Design of Electrochemical Multicomponent and Multiphase Interfaces. Anal. Chem. 2021, 93, 1213–1220. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.-M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach. Angew. Chem. Int. Ed. 2017, 56, 14149–14153. [Google Scholar] [CrossRef]
- Huang, W.; He, Q.; Hu, Y.; Li, Y. Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angew. Chem. Int. Ed. 2019, 58, 8676–8680. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yang, Y.; Zhu, G. Molecularly Imprinted Porous Aromatic Frameworks for Molecular Recognition. ACS Cent. Sci. 2020, 6, 1082–1094. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, G. Porous Aromatic Frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, G. Porous Aromatic Frameworks as a Platform for Multifunctional Applications. ACS Cent. Sci. 2019, 5, 409–418. [Google Scholar] [CrossRef]
- Davankov, V.; Rogozhin, S.; Tsyurupa, M. New Approach to Preparation of UniformLy Crosslinked Macroreticular Polystyrene Structures. Vysokomol. Soedin. Seriya B 1973, 15, 463–465. [Google Scholar]
- Vinodh, R.; Gopi, C.V.V.M.; Kummara, V.G.R.; Atchudan, R.; Ahamad, T.; Sambasivam, S.; Yi, M.; Obaidat, I.M.; Kim, H.-J. A Review on Porous Carbon Electrode Material Derived from Hypercross-Linked Polymers for Supercapacitor Applications. J. Energy Storage 2020, 32, 101831. [Google Scholar] [CrossRef]
- Huang, J.; Turner, S.R. Hypercrosslinked Polymers: A Review. Polym. Rev. 2018, 58, 1–41. [Google Scholar] [CrossRef]
- Barkan-Öztürk, H.; Menner, A.; Bismarck, A.; Woodward, R.T. Simultaneous Hypercrosslinking and Functionalization of PolyHIPEs for Use as Coarse Powder Catalyst Supports. Chem. Eng. Sci. 2022, 264, 118151. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Zheng, Q.; Zou, L.-M.; Gu, Q.; Tu, T.; You, S.-L. Hyper-Crosslinked Porous Chiral Phosphoric Acids: Robust Solid Organocatalysts for Asymmetric Dearomatization Reactions. ACS Catal. 2022, 12, 4545–4553. [Google Scholar] [CrossRef]
- Sang, K.; Wang, Y.; Wang, Y.; Liu, L.; Mei, D.; Zhang, C.; Zhang, S.; Ma, F.; Dong, H. Hypercrosslinked Phenylalaninol for Efficient Uranium Adsorption from Water. Sep. Purif. Technol. 2023, 305, 122292. [Google Scholar] [CrossRef]
- Xue, Y.-Q.; Zhang, H.; Han, Z.-Y.; He, H. Electrochemical Impedimetric Aptasensors Based on Hyper-Cross-Linked Porous Organic Frameworks for the Determination of Kanamycin. J. Mater. Chem. C 2021, 9, 12566–12572. [Google Scholar] [CrossRef]
- Suo, X.; Xia, L.; Yang, Q.; Zhang, Z.; Bao, Z.; Ren, Q.; Yang, Y.; Xing, H. Synthesis of Anion-Functionalized Mesoporous Poly(Ionic Liquid)s via a Microphase Separation-Hypercrosslinking Strategy: Highly Efficient Adsorbents for Bioactive Molecules. J. Mater. Chem. A 2017, 5, 14114–14123. [Google Scholar] [CrossRef]
- Razzaque, S.; Guo, L.; Weng, J.; Su, L.; Tan, B. Facile Fabrication of Hypercrosslinked Microporous Polymer Nanospheres for Effective Inhibition of Triple Negative Breast Cancer Cells Proliferation. J. Colloid Interface Sci. 2022, 620, 94–106. [Google Scholar] [CrossRef]
- Razzaque, S.; Cheng, Y.; Hussain, I.; Tan, B. Synthesis of Surface Functionalized Hollow Microporous Organic Capsules for Doxorubicin Delivery to Cancer Cells. Polym. Chem. 2020, 11, 2110–2118. [Google Scholar] [CrossRef]
- Shang, Q.; Cheng, Y.; Gong, Z.; Yan, Y.; Han, B.; Liao, G.; Wang, D. Constructing Novel Hyper-Crosslinked Conjugated Polymers through Molecular Expansion for Enhanced Gas Adsorption Performance. J. Hazard. Mater. 2022, 426, 127850. [Google Scholar] [CrossRef]
- Lin, X.; Xie, G.; Liu, S.; Martinez, M.R.; Wang, Z.; Lou, H.; Fu, R.; Wu, D.; Matyjaszewski, K. Fabrication of Porous Nanonetwork-Structured Carbons from Well-Defined Cylindrical Molecular Bottlebrushes. ACS Appl. Mater. Interfaces 2019, 11, 18763–18769. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Cui, Y.; Liu, S.; Chen, Z.; Huang, W.; Li, C.; Liu, R.; Fu, R.; Wu, D. A Robust All-Organic Protective Layer towards Ultrahigh-Rate and Large-Capacity Li Metal Anodes. Nat. Nanotechnol. 2022, 17, 613–621. [Google Scholar] [CrossRef]
- Mu, P.; Ma, W.; Zhao, Y.; Zhang, C.; Ren, S.; Wang, F.; Yan, C.; Chen, Y.; Zeng, J.H.; Jiang, J.-X. Facile Preparation of MnO/Nitrogen-Doped Porous Carbon Nanotubes Composites and Their Application in Energy Storage. J. Power Sources 2019, 426, 33–39. [Google Scholar] [CrossRef]
- Liao, Q.; Kim, E.J.; Tang, Y.; Xu, H.; Yu, D.-G.; Song, W.; Kim, B.J. Rational Design of Hyper-Crosslinked Polymers for Biomedical Applications. J. Polym. Sci. 2023. [Google Scholar] [CrossRef]
- Masoumi, H.; Ghaemi, A.; Gilani, H.G. Evaluation of Hyper-Cross-Linked Polymers Performances in the Removal of Hazardous Heavy Metal Ions: A Review. Sep. Purif. Technol. 2021, 260, 118221. [Google Scholar] [CrossRef]
- Waheed, A.; Baig, N.; Ullah, N.; Falath, W. Removal of Hazardous Dyes, Toxic Metal Ions and Organic Pollutants from Wastewater by Using Porous Hyper-Cross-Linked Polymeric Materials: A Review of Recent Advances. J. Environ. Manag. 2021, 287, 112360. [Google Scholar] [CrossRef]
- Li, C.; Che, W.; Liu, S.-Y.; Liao, G. Hypercrosslinked Microporous Polystyrene: From Synthesis to Properties to Applications. Mater. Today Chem. 2023, 29, 101392. [Google Scholar] [CrossRef]
- Cao, Q.; Chen, Q.; Han, B. Recent Advance in Organic Porous Polycarbazoles: Preparation and Properties. Acta Chim. Sin. 2015, 73, 541. [Google Scholar] [CrossRef]
- Huang, Y.; Ruan, G.; Ruan, Y.; Zhang, W.; Li, X.; Du, F.; Hu, C.; Li, J. Hypercrosslinked Porous Polymers Hybridized with Graphene Oxide for Water Treatment: Dye Adsorption and Degradation. RSC Adv. 2018, 8, 13417–13422. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Liu, J.; Tan, Z.; Cao, Y.; Li, X.; Rao, Z. Highly Efficient Thermal Energy Storage Using a Hybrid Hypercrosslinked Polymer. Angew. Chem. Int. Ed. 2021, 60, 13978–13987. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Porous Polymer Catalysts with Hierarchical Structures. Chem. Soc. Rev. 2015, 44, 6018–6034. [Google Scholar] [CrossRef]
- Song, W.; Zhang, M.; Liu, M.; Huang, Y.; Yu, D. Recent Advances in Nanofabrication of the Morphology-Controlled Hypercrosslinked Polymers. Mater. Highlights 2021, 2, 58–67. [Google Scholar] [CrossRef]
- Germain, J.; Fréchet, J.M.J.; Svec, F. Hypercrosslinked Polyanilines with Nanoporous Structure and High Surface Area: Potential Adsorbents for Hydrogen Storage. J. Mater. Chem. 2007, 17, 4989–4997. [Google Scholar] [CrossRef]
- Chen, D.; Gu, S.; Fu, Y.; Zhu, Y.; Liu, C.; Li, G.; Yu, G.; Pan, C. Tunable Porosity of Nanoporous Organic Polymers with Hierarchical Pores for Enhanced CO2 Capture. Polym. Chem. 2016, 7, 3416–3422. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Chen, Q.; Sui, Z.-Y.; Pan, L.; Yu, J.; Han, B.-H. Preparation and Adsorption Performance of Cross-Linked Porous Polycarbazoles. J. Mater. Chem. A 2014, 2, 16181–16189. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. Hypercrosslinked Porous Polymer Materials: Design, Synthesis, and Applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef]
- Wang, Y.; Gan, Y.; Huang, J. Hyper-Cross-Linked Phenolic Hydroxyl Polymers with Hierarchical Porosity and Their Efficient Adsorption Performance. Ind. Eng. Chem. Res. 2020, 59, 11275–11283. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, Z.-A.; Mahurin, S.M.; Jiang, X.; Chai, S.-H.; Lu, H.; Nelson, K.; Dai, S. Hypercrosslinked Phenolic Polymers with Well-Developed Mesoporous Frameworks. Angew. Chem. Int. Ed. 2015, 54, 4582–4586. [Google Scholar] [CrossRef]
- Guo, D.; Fu, Y.; Bu, F.; Liang, H.; Duan, L.; Zhao, Z.; Wang, C.; El-Toni, A.M.; Li, W.; Zhao, D. Monodisperse Ultrahigh Nitrogen-Containing Mesoporous Carbon Nanospheres from Melamine-Formaldehyde Resin. Small Methods 2021, 5, 2001137. [Google Scholar] [CrossRef]
- Pan, L.; Chen, Q.; Zhu, J.-H.; Yu, J.-G.; He, Y.-J.; Han, B.-H. Hypercrosslinked Porous Polycarbazoles via One-Step Oxidative Coupling Reaction and Friedel–Crafts Alkylation. Polym. Chem. 2015, 6, 2478–2487. [Google Scholar] [CrossRef]
- Zhang, R.-R.; Yin, Q.; Liang, H.-P.; Chen, Q.; Luo, W.-H.; Han, B.-H. Hypercrosslinked Porous Polycarbazoles from Carbazolyl-Bearing Aldehydes or Ketones. Polymer 2018, 143, 87–95. [Google Scholar] [CrossRef]
- Cai, K.; Liu, P.; Zhao, T.; Su, K.; Yang, Y.; Tao, D.-J. Construction of Hyper-Crosslinked Ionic Polymers with High Surface Areas for Effective CO2 Capture and Conversion. Microporous Mesoporous Mater. 2022, 343, 112135. [Google Scholar] [CrossRef]
- Varyambath, A.; Song, W.L.; Singh, S.; Kim, J.S.; Kim, I. Tunable Construction of Biphenyl-Based Porous Polymeric Nanostructures and Their Synergistically Enhanced Performance in Pollutant Adsorption and Energy Storage. Microporous Mesoporous Mater. 2021, 312, 110800. [Google Scholar] [CrossRef]
- Guo, C.; Chen, G.; Wang, N.; Wang, S.; Gao, Y.; Dong, J.; Lu, Q.; Gao, F. Construction of Multifunctional Histidine-Based Hypercrosslinked Hierarchical Porous Ionic Polymers for Efficient CO2 Capture and Conversion. Sep. Purif. Technol. 2023, 312, 123375. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y.; Liu, Y.; Chen, L.; Feng, B.; Jin, X.; Zhou, Y.; Huang, T.; Xiao, M.; Huang, F.; et al. Conferring Poly(Ionic Liquid)s with High Surface Areas for Enhanced Catalytic Activity. ACS Sustain. Chem. Eng. 2021, 9, 2115–2128. [Google Scholar] [CrossRef]
- Teng, D.; Jin, P.; Yang, S.; Guo, W.; Zhao, Z.; Zhou, G.; Li, P.; Cao, Y. Investigation on Regulating Porous Polymers with Suitable Porosities and/or N-Doping for Enhanced CO2 Capture. Ind. Eng. Chem. Res. 2023, 62, 8602–8610. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, X. Multi-Functional Hypercrosslinked Polystyrene as High-Performance Adsorbents for Artificial Liver Blood Purification. Front. Chem. 2022, 9, 789814. [Google Scholar] [CrossRef]
- Castaldo, R.; Iuliano, M.; Cocca, M.; Ambrogi, V.; Gentile, G.; Sarno, M. A New Route for Low Pressure and Temperature CWAO: A PtRu/MoS2_Hyper-Crosslinked Nanocomposite. Nanomaterials 2019, 9, 1477. [Google Scholar] [CrossRef]
- Macintyre, F.S.; Sherrington, D.C.; Tetley, L. Synthesis of Ultrahigh Surface Area Monodisperse Porous Polymer Nanospheres. Macromolecules 2006, 39, 5381–5384. [Google Scholar] [CrossRef]
- Levin, D.; Saem, S.; Osorio, D.A.; Cerf, A.; Cranston, E.D.; Moran-Mirabal, J.M. Green Templating of Ultraporous Cross-Linked Cellulose Nanocrystal Microparticles. Chem. Mater. 2018, 30, 8040–8051. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Y.; Guo, W.; Li, S.; Mai, W.; Wang, H.; Fu, R.; Wu, D. Fabrication of Silver Yolk@Porous Janus Polymer Shell Nanospheres for Synergistic Catalysis. Chin. J. Polym. Sci. 2020, 38, 847–852. [Google Scholar] [CrossRef]
- He, Z.; Zhou, M.; Wang, T.; Xu, Y.; Yu, W.; Shi, B.; Huang, K. Hyper-Cross-Linking Mediated Self-Assembly Strategy to Synthesize Hollow Microporous Organic Nanospheres. ACS Appl. Mater. Interfaces 2017, 9, 35209–35217. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yao, Y.; Yu, H.; Shi, B.; Gao, S.; Zhang, L.; Miller, A.L.; Fang, J.-C.; Wang, X.; Huang, K. Nanoparticle-Encapsulated Hollow Porous Polymeric Nanosphere Frameworks as Highly Active and Tunable Size-Selective Catalysts. ACS Macro Lett. 2019, 8, 1263–1267. [Google Scholar] [CrossRef] [PubMed]
- Guerritore, M.; Castaldo, R.; Silvestri, B.; Avolio, R.; Cocca, M.; Errico, M.E.; Avella, M.; Gentile, G.; Ambrogi, V. Hyper-Crosslinked Polymer Nanocomposites Containing Mesoporous Silica Nanoparticles with Enhanced Adsorption Towards Polar Dyes. Polymers 2020, 12, 1388. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Miao, Z.; Bao, C.; Xu, X.; Zhang, Q. Assembly of Silica Nanoparticles Based on Stimuli-Responsive Covalent Bonding between Glycopolymers and Poly(Phenylboronic Acid)s. Eur. Polym. J. 2020, 135, 109888. [Google Scholar] [CrossRef]
- Sai, H.; Tan, K.W.; Hur, K.; Asenath-Smith, E.; Hovden, R.; Jiang, Y.; Riccio, M.; Muller, D.A.; Elser, V.; Estroff, L.A.; et al. Hierarchical Porous Polymer Scaffolds from Block Copolymers. Science 2013, 341, 530–534. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Cheng, L.; Feng, D.; Wu, Z.; Chen, Z.; Wan, Y.; Stein, A.; et al. A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic−Organic Self-Assembly. Chem. Mater. 2006, 18, 4447–4464. [Google Scholar] [CrossRef]
- Huang, X.; Kim, S.; Heo, M.S.; Kim, J.E.; Suh, H.; Kim, I. Easy Synthesis of Hierarchical Carbon Spheres with Superior Capacitive Performance in Supercapacitors. Langmuir 2013, 29, 12266–12274. [Google Scholar] [CrossRef]
- Giri, A.; Biswas, S.; Hussain, M.W.; Dutta, T.K.; Patra, A. Nanostructured Hypercrosslinked Porous Organic Polymers: Morphological Evolution and Rapid Separation of Polar Organic Micropollutants. ACS Appl. Mater. Interfaces 2022, 14, 7369–7381. [Google Scholar] [CrossRef]
- Ding, L.; Gao, H.; Xie, F.; Li, W.; Bai, H.; Li, L. Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors. Macromolecules 2017, 50, 956–962. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wang, Y.; Sang, K.; Zhang, C.; Satoh, T. An L-Proline-Modified Chiral Porous Hyper-Crosslinked l-Phenylalanine Dipeptide—Increased Reaction Rate and Selectivity in Asymmetric Catalysis. Polym. Chem. 2023, 14, 1124–1134. [Google Scholar] [CrossRef]
- Ouyang, H.; Song, K.; Du, J.; Zhan, Z.; Tan, B. Creating Chemisorption Sites for Enhanced CO2 Chemical Conversion Activity through Amine Modification of Metalloporphyrin-Based Hypercrosslinked Polymers. Chem. Eng. J. 2022, 431, 134326. [Google Scholar] [CrossRef]
- Meng, B.; Li, H.; Mahurin, S.M.; Liu, H.; Dai, S. Hyper-Crosslinked Cyclodextrin Porous Polymer: An Efficient CO2 Capturing Material with Tunable Porosity. RSC Adv. 2016, 6, 110307–110311. [Google Scholar] [CrossRef]
- Mane, S.; Gao, Z.-Y.; Li, Y.-X.; Liu, X.-Q.; Sun, L.-B. Rational Fabrication of Polyethylenimine-Linked Microbeads for Selective CO2 Capture. Ind. Eng. Chem. Res. 2018, 57, 250–258. [Google Scholar] [CrossRef]
- Xu, S.; Weng, Z.; Tan, J.; Guo, J.; Wang, C. Hierarchically Structured Porous Organic Polymer Microspheres with Built-in Fe3O4 Supraparticles: Construction of Dual-Level Pores for Pt-Catalyzed Enantioselective Hydrogenation. Polym. Chem. 2015, 6, 2892–2899. [Google Scholar] [CrossRef]
- Sekerová, L.; Lhotka, M.; Vyskočilová, E.; Faukner, T.; Slováková, E.; Brus, J.; Červený, L.; Sedláček, J. Hyper-Cross-Linked Polyacetylene-Type Microporous Networks Decorated with Terminal Ethynyl Groups as Heterogeneous Acid Catalysts for Acetalization and Esterification Reactions. Chem. Eur. J. 2018, 24, 14742–14749. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, Q.; Ding, L.; Di, T.; Zhao, T.; Li, T.; Li, L. Atom-Economical Preparation of Polybismaleimide-Based Microporous Organic Polymers. Green Chem. 2019, 21, 2326–2333. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, L.; He, Z.; Zhong, A.; Wang, T.; Xu, Y.; Zhou, M.; Huang, K. Functionalized Microporous Organic Nanotube Networks as a New Platform for Highly Efficient Heterogeneous Catalysis. Polym. Chem. 2016, 7, 4975–4982. [Google Scholar] [CrossRef]
- Wu, D.; Hui, C.M.; Dong, H.; Pietrasik, J.; Ryu, H.J.; Li, Z.; Zhong, M.; He, H.; Kim, E.K.; Jaroniec, M.; et al. Nanoporous Polystyrene and Carbon Materials with Core–Shell Nanosphere-Interconnected Network Structure. Macromolecules 2011, 44, 5846–5849. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, J.; Xu, F.; Zhu, F.; Wu, D.; Ouyang, G. Powdery Polymer and Carbon Aerogels with High Surface Areas for High-Performance Solid Phase Microextraction Coatings. Nanoscale 2017, 9, 5545–5550. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. A Novel Self-Templating Strategy for Facile Fabrication of Monodisperse Polymeric Microporous Capsules with a Tunable Hollow Structure. Polym. Chem. 2021, 12, 2689–2694. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, Y.; Razzaque, S.; Cao, Z.; Ren, S.; Tan, B. Smart Synthesis of Hollow Microporous Organic Capsules with a Polyaniline Modified Shell. Macromol. Rapid Commun. 2022, 43, 2100836. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, Y.; Varyambath, A.; Kim, J.S.; Kim, I. Sulfonic Acid Modified Hollow Polymer Nanospheres with Tunable Wall-Thickness for Improving Biodiesel Synthesis Efficiency. Green Chem. 2020, 22, 3572–3583. [Google Scholar] [CrossRef]
- Choi, S.J.; Choi, E.H.; Song, C.; Ko, Y.-J.; Lee, S.M.; Kim, H.J.; Jang, H.-Y.; Son, S.U. Hyper-Cross-Linked Polymer on the Hollow Conjugated Microporous Polymer Platform: A Heterogeneous Catalytic System for Poly(Caprolactone) Synthesis. ACS Macro Lett. 2019, 8, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, T.; He, Z.; Zhou, M.; Yu, W.; Shi, B.; Huang, K. Preparation of Multifunctional Hollow Microporous Organic Nanospheres via a One-Pot Hyper-Cross-Linking Mediated Self-Assembly Strategy. Polym. Chem. 2018, 9, 4017–4024. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Shan, W.; Zhang, W.; Sun, J.; Zhang, L.; Jin, Y.; Shao, B. Magnetic Amino-Rich Hyper-Crosslinked Polymers for Fat-Rich Foodstuffs Pretreatment in Nontargeted Analysis of Chemical Hazards. Food Chem. 2023, 425, 136467. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, T.; He, Z.; Zhou, M.; Yu, W.; Shi, B.; Huang, K. Honeycomb-like Bicontinuous P-Doped Porous Polymers from Hyper-Cross-Linking of Diblock Copolymers for Heterogeneous Catalysis. Macromolecules 2017, 50, 9626–9635. [Google Scholar] [CrossRef]
- Huang, K.; Rzayev, J. Well-Defined Organic Nanotubes from Multicomponent Bottlebrush Copolymers. J. Am. Chem. Soc. 2009, 131, 6880–6885. [Google Scholar] [CrossRef]
- Meng, G.; Gao, S.; Liu, Y.; Zhang, L.; Song, C.; Huang, K. Amino- and Sulfo-Bifunctionalized Hyper-Crosslinked Organic Nanotube Frameworks as Efficient Catalysts for One-Pot Cascade Reactions. New J. Chem. 2019, 43, 2269–2273. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, M.; Xiong, L.; He, Z.; Wang, T.; Xu, Y.; Huang, K. Amine-Functionalized Microporous Organic Nanotube Frameworks Supported Pt and Pd Catalysts for Selective Oxidation of Alcohol and Heck Reactions. J. Phys. Chem. C 2017, 121, 12771–12779. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, W.; Feng, L.; Fan, Y.; Liang, J.; Wang, X.; Zhang, X. Greenery-Inspired Nanoengineering of Bamboo-like Hierarchical Porous Nanotubes with Spatially Organized Bifunctionalities for Synergistic Photothermal Catalytic CO2 Fixation. J. Mater. Chem. A 2022, 10, 12418–12428. [Google Scholar] [CrossRef]
- Liao, X.; Wang, Z.; Li, Z.; Kong, L.; Tang, W.; Qin, Z.; Lin, J. Tailoring Hypercrosslinked Ionic Polymers with High Ionic Density for Rapid Conversion of CO2 into Cyclic Carbonates at Low Pressure. Chem. Eng. J. 2023, 471, 144455. [Google Scholar] [CrossRef]
- Liao, X.; Xiang, X.; Wang, Z.; Ma, R.; Kong, L.; Gao, X.; He, J.; Hou, W.; Peng, C.; Lin, J. A Novel Crosslinker for Synthesizing Hypercrosslinked Ionic Polymers Containing Activating Groups as Efficient Catalysts for the CO2 Cycloaddition Reaction. Sustain. Energy Fuels 2022, 6, 2846–2857. [Google Scholar] [CrossRef]
- Chae, S.K.; Cho, K.; Lee, S.M.; Kim, H.J.; Ko, Y.-J.; Son, S.U. AB2 Polymerization on Hollow Microporous Organic Polymers: Engineering of Solid Acid Catalysts for the Synthesis of Soluble Cellulose Derivatives. Polym. Chem. 2020, 11, 789–794. [Google Scholar] [CrossRef]
- Xu, X.; Sui, Y.; Huang, W.; Chen, W.; Li, X.; Li, Y.; Wang, G.; Ye, H.; Zhong, H. Upgraded Heterogenization of Homogeneous Catalytic Systems by Hollow Porous Organic Frameworks with Hierarchical Porous Shell for Efficient Carbon Dioxide Conversion. Asian J. Org. Chem. 2022, 11, e202100727. [Google Scholar] [CrossRef]
- Chen, B.; Ding, T.; Deng, X.; Wang, X.; Zhang, D.; Ma, S.; Zhang, Y.; Ni, B.; Gao, G. Honeycomb-Structured Solid Acid Catalysts Fabricated via the Swelling-Induced Self-Assembly of Acidic Poly(Ionic Liquid)s for Highly Efficient Hydrolysis Reactions. Chin. J. Catal. 2021, 42, 297–309. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Xiong, L.; He, Z.; Wang, T.; Xu, Y.; Huang, K. Fe-Porphyrin Functionalized Microporous Organic Nanotube Networks and Their Application for the Catalytic Olefination of Aldehydes and Carbene Insertion into N–H Bonds. Polym. Chem. 2017, 8, 3721–3730. [Google Scholar] [CrossRef]
- Shi, Z.; Ying, Z.; Yang, L.; Meng, X.; Wu, L.; Yu, L.; Huang, S.; Xiong, L. Sulfoxidation inside a Hypercrosslinked Microporous Network Nanotube Catalyst. New J. Chem. 2020, 44, 1542–1547. [Google Scholar] [CrossRef]
- Yang, H.; Gao, S.; Liu, J.; Wu, W.; Luo, Y.; Mo, G.; Huang, K. Ultrafine Gold Nanoparticles Anchored on Pyridine-Inner-Functionalized Hollow Porous Organic Nanospheres for Highly Efficient Heterogeneous Catalysis. Macromol. Chem. Phys. 2023, 224, 2300012. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Y.; Varyambath, A.; Kim, I. Guided Assembly of Well-Defined Hierarchical Nanoporous Polymers by Lewis Acid–Base Interactions. ACS Nano 2019, 13, 11753–11769. [Google Scholar] [CrossRef]
- Man, Y.; Li, S.; Diao, Q.; Lee, Y.-I.; Liu, H.-G. PS-b-PAA/Cu Two-Dimensional Nanoflowers Fabricated at the Liquid/Liquid Interface: A Highly Active and Robust Heterogeneous Catalyst. Colloids Surf. Physicochem. Eng. Asp. 2019, 570, 377–385. [Google Scholar] [CrossRef]
- Song, K.; Jiang, Y.; Zou, Z. Effect of Vesicle Structure on Catalytic Activity of Suzuki-Miyaura Cross-Coupling Reaction: Impact of Framework and Morphology. ChemistrySelect 2020, 5, 11438–11445. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Mei, Y.; Xu, Y.; Huang, K. Hyper-Crosslinked Porous Organic Nanomaterials: Structure-Oriented Design and Catalytic Applications. Nanomaterials 2023, 13, 2514. https://doi.org/10.3390/nano13182514
Luo Y, Mei Y, Xu Y, Huang K. Hyper-Crosslinked Porous Organic Nanomaterials: Structure-Oriented Design and Catalytic Applications. Nanomaterials. 2023; 13(18):2514. https://doi.org/10.3390/nano13182514
Chicago/Turabian StyleLuo, Yiqian, Yixuan Mei, Yang Xu, and Kun Huang. 2023. "Hyper-Crosslinked Porous Organic Nanomaterials: Structure-Oriented Design and Catalytic Applications" Nanomaterials 13, no. 18: 2514. https://doi.org/10.3390/nano13182514
APA StyleLuo, Y., Mei, Y., Xu, Y., & Huang, K. (2023). Hyper-Crosslinked Porous Organic Nanomaterials: Structure-Oriented Design and Catalytic Applications. Nanomaterials, 13(18), 2514. https://doi.org/10.3390/nano13182514