Characterization and Comparison of WO3/WO3-MoO3 and TiO2/TiO2-ZnO Nanostructures for Photoelectrocatalytic Degradation of the Pesticide Imazalil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanostructures
2.2. Morphological and Crystalline Characterization
2.3. Photoelectrochemical Properties
2.4. Photoelectroatalytic Degradation
3. Results and Discussion
3.1. Morphologycal and Crystallyne Characterization
3.1.1. FE-SEM
3.1.2. EDX
3.1.3. Raman
3.1.4. X-ray Diffraction (XRD)
3.2. Photoelectrochemical Characterization
3.2.1. PEIS Tests
3.2.2. Mott-Schottky Tests
3.2.3. Water Splitting Tests
3.3. Photoelectrocatalytic Degradation of Imazalil
3.3.1. Imazalil Degradation in 0.1 M NaOH (pH = 13)
3.3.2. Effect of pH on Imazalil Degradation
3.3.3. Imazalil Degradation in 0.1 M Na2SO4 (pH = 6.2)
3.3.4. Intermediate Degradation Products and Degradation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Water Quality and Health Strategy 2013–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Rahman, M.F.; Yanful, E.K.; Jasim, S.Y.; Bragg, L.M.; Servos, M.R.; Ndiongue, S.; Borikar, D. Advanced Oxidation Treatment of Drinking Water: Part I. Occurrence and Removal of Pharmaceuticals and Endocrine-Disrupting Compounds from Lake Huron Water. Ozone Sci. Eng. 2010, 32, 217–229. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Removal of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs during Wastewater Treatment and Its Impact on the Quality of Receiving Waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Trellu, C.; Vargas, H.O.; Mousset, E.; Oturan, N.; Oturan, M.A. Electrochemical Technologies for the Treatment of Pesticides. Curr. Opin. Electrochem. 2021, 26, 100677. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Removal of Phenolic Endocrine Disrupting Compounds from Waste Activated Sludge Using UV, H2O2, and UV/H2O2 Oxidation Processes: Effects of Reaction Conditions and Sludge Matrix. Sci. Total Environ. 2014, 493, 307–323. [Google Scholar] [CrossRef] [PubMed]
- Lincho, J.; Zaleska-Medynska, A.; Martins, R.C.; Gomes, J. Nanostructured Photocatalysts for the Abatement of Contaminants by Photocatalysis and Photocatalytic Ozonation: An Overview. Sci. Total Environ. 2022, 837, 155776. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Brillas, E. Applied Photoelectrocatalysis on the Degradation of Organic Pollutants in Wastewaters. J. Photochem. Photobiol. C Photochem. Rev. 2017, 31, 1–35. [Google Scholar] [CrossRef]
- Peleyeju, M.G.; Arotiba, O.A. Recent Trend in Visible-Light Photoelectrocatalytic Systems for Degradation of Organic Contaminants in Water/Wastewater. Environ. Sci. 2018, 4, 1389–1411. [Google Scholar] [CrossRef]
- Zanoni, M.V.B.; Irikura, K.; Perini, J.A.L.; Bessegato, G.G.; Sandoval, M.A.; Salazar, R. Recent Achievements in Photoelectrocatalytic Degradation of Pesticides. Curr. Opin. Electrochem. 2022, 35, 101020. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Sánchez-Tovar, R.; Lucas-Granados, B.; Roselló-Márquez, G.; García-Antón, J. A Simple Method to Fabricate High-Performance Nanostructured WO3 Photocatalysts with Adjusted Morphology in the Presence of Complexing Agents. Mater. Des. 2017, 116, 160–170. [Google Scholar] [CrossRef]
- Becker, J.-P.; Urbain, F.; Smirnov, V.; Rau, U.; Ziegler, J.; Kaiser, B.; Jaegermann, W.; Finger, F. Modeling and Practical Realization of Thin Film Silicon-Based Integrated Solar Water Splitting Devices. Phys. Status Solidi. 2016, 213, 1738–1746. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Wang, Q. Nanostructure-Based WO3 Photoanodes for Photoelectrochemical Water Splitting. Phys. Chem. Chem. Phys. 2012, 14, 7894–7911. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Teng, H.; Zhang, L.; Zhou, J.; Liu, M. Synthesis of Mo-Doped WO3 Nanosheets with Enhanced Visible-Light-Driven Photocatalytic Properties. RSC Adv. 2015, 5, 95394–95400. [Google Scholar] [CrossRef]
- Harris, J.; Silk, R.; Smith, M.; Dong, Y.; Chen, W.-T.; Waterhouse, G.I.N. Hierarchical TiO2 Nanoflower Photocatalysts with Remarkable Activity for Aqueous Methylene Blue Photo-Oxidation. ACS Omega 2020, 5, 18919–18934. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gázquez, P.J.; Muñoz-Portero, M.J.; Blasco-Tamarit, E.; Sánchez-Tovar, R.; Fernández-Domene, R.M.; García-Antón, J. Original Approach to Synthesize TiO2/ZnO Hybrid Nanosponges Used as Photoanodes for Photoelectrochemical Applications. Materials 2021, 14, 6441. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075. [Google Scholar] [CrossRef]
- Gamba, M.; Flores, F.M.; Madejová, J.; Torres Sánchez, R.M. Comparison of Imazalil Removal onto Montmorillonite and Nanomontmorillonite and Adsorption Surface Sites Involved: An Approach for Agricultural Wastewater Treatment. Ind. Eng. Chem. Res. 2015, 54, 1529–1538. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Imazalil. 2005. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/ reregistration/fs_PC-111901_1-Feb-05.pdf (accessed on 27 July 2023).
- Cifre-Herrando, M.; Roselló-Márquez, G.; García-García, D.M.; García-Antón, J. Degradation of Methylparaben Using Optimal WO3 Nanostructures: Influence of the Annealing Conditions and Complexing Agent. Nanomaterials 2022, 12, 4286. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Sánchez-Tovar, R.; Sánchez-González, S.; Garcia-Anton, J. Photoelectrochemical Characterization of Anatase-Rutile Mixed TiO2 Nanosponges. Int. J. Hydrogen Energy 2016, 41, 18380–18388. [Google Scholar] [CrossRef]
- Borràs-Ferrís, J.; Sánchez-Tovar, R.; Blasco-Tamarit, E.; Fernández-Domene, R.M.; Garcia-Anton, J. Effect of Reynolds Number and Lithium Cation Insertion on Titanium Anodization. Electrochim. Acta 2016, 196, 24–32. [Google Scholar] [CrossRef]
- Ou, J.Z.; Rani, R.A.; Balendhran, S.; Zoolfakar, A.S.; Field, M.R.; Zhuiykov, S.; O’Mullane, A.P.; Kalantar-zadeh, K. Anodic Formation of a Thick Three-Dimensional Nanoporous WO3 Film and Its Photocatalytic Property. Electrochem. Commun. 2013, 27, 128–132. [Google Scholar] [CrossRef]
- Wang, C.-K.; Lin, C.-K.; Wu, C.-L.; Wang, S.-C.; Huang, J.-L. Synthesis and Characterization of Electrochromic Plate-like Tungsten Oxide Films by Acidic Treatment of Electrochemical Anodized Tungsten. Electrochim. Acta 2013, 112, 24–31. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Gerand, B.; Figlarz, M. Infrared and Raman Study of WO3 Tungsten Trioxides and WO3, XH2O Tungsten Trioxide Tydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- Prameela, C.; Srinivasarao, K. Characterization of (MoO3)x − (WO3)1−x Composites. Int. J. Appl. Eng. Res. 2015, 10, 9865–9875. [Google Scholar]
- Ta, C.X.M.; Akamoto, C.; Furusho, Y.; Amano, F. A Macroporous-Structured WO3/Mo-Doped BiVO4Photoanode for Vapor-Fed Water Splitting under Visible Light Irradiation. ACS Sustain. Chem. Eng. 2020, 8, 9456–9463. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Wang, K.; Sun, X.; Wang, W. Enhanced Photocatalytic CO2 Reduction to Methane over WO3·0.33H2O via Mo Doping. Appl. Catal. B 2019, 243, 771–779. [Google Scholar] [CrossRef]
- Jittiarporn, P.; Sikong, L.; Kooptarnond, K.; Taweepreda, W.; Stoenescu, S.; Badilescu, S.; Truong, V. Van Electrochromic Properties of MoO3-WO3 Thin Films Prepared by a Sol-Gel Method, in the Presence of a Triblock Copolymer Template. Surf. Coat. Technol. 2017, 327, 66–74. [Google Scholar] [CrossRef]
- Sánchez-Tovar, R.; Blasco-Tamarit, E.; Fernández-Domene, R.M.; Villanueva-Pascual, M.; Garcia-Anton, J. Electrochemical Formation of Novel TiO2-ZnO Hybrid Nanostructures for Photoelectrochemical Water Splitting Applications. Surf. Coat. Technol. 2020, 388, 125605. [Google Scholar] [CrossRef]
- Sánchez-Tovar, R.; Blasco-Tamarit, E.; Fernández-Domene, R.M.; Lucas-Granados, B.; Garcia-Anton, J. Should TiO2 Nanostructures Doped with Li+ Be Used as Photoanodes for Photoelectrochemical Water Splitting Applications? J. Catal. 2017, 349, 41–52. [Google Scholar] [CrossRef]
- Tang, H.; Prasad, K.; Sanjines, R.; Schmid, P.E.; Levy, F. Electrical and Optical Properties of TiO2 Anatase Thin Films. J. Appl. Phys. 1994, 75, 2042–2047. [Google Scholar] [CrossRef]
- Cho, H.-W.; Liao, K.-L.; Yang, J.-S.; Wu, J.-J. Revelation of Rutile Phase by Raman Scattering for Enhanced Photoelectrochemical Performance of Hydrothermally-Grown Anatase TiO2 Film. Appl. Surf. Sci. 2018, 440, 125–132. [Google Scholar] [CrossRef]
- Lethy, K.J.; Beena, D.; Kumar, R.V.; Pillai, V.P.M.; Ganesan, V.; Sathe, V. Structural, Optical and Morphological Studies on Laser Ablated Nanostructured WO3 Thin Films. Appl. Surf. Sci. 2008, 254, 2369–2376. [Google Scholar] [CrossRef]
- Acuña, R.H.; Romero, J.L.; Muñoz, E.M.R.; Francis, E.R.; Cedeño, B.C.; Delgado, F.P. Síntesis Hidrotérmica de Nanoestructuras de Óxido de Tungsteno (WO3) Monoclínico. In Proceedings of the Memorias del XXXIV Encuentro Nacional y III Congreso Internacional de la AMIDIQ, Mazatlán, México, 7–10 May 2013; pp. 7–10. [Google Scholar]
- Upadhyay, S.B.; Mishra, R.K.; Sahay, P.P. Enhanced Acetone Response in Co-Precipitated WO3 Nanostructures upon Indium Doping. Sens. Actuators B Chem. 2015, 209, 368–376. [Google Scholar] [CrossRef]
- Roselló-Márquez, G.; Fernández-Domene, R.M.; García-Antón, J. Organophosphorus Pesticides (Chlorfenvinphos, Phosmet and Fenamiphos) Photoelectrodegradation by Using WO3 Nanostructures as Photoanode. J. Electroanal. Chem. 2021, 894, 115366. [Google Scholar] [CrossRef]
- Ejeromedoghene, O.; Oderinde, O.; Yao, F.; Adewuyi, S.; Fu, G. Intrinsic Structural/Morphological and Photochromic Responses of WO3 Co-Doped MoO3 Nanocomposites Based on Varied Drying Methods. Dry. Technol. 2022, 40, 2321–2334. [Google Scholar] [CrossRef]
- Mateen, S.; Nawaz, R.; Qamar, M.T.; Ali, S.; Iqbal, S.; Aslam, M.; Raheel, M.; Awwad, N.S.; Ibrahium, H.A. Integration of WO3-Doped MoO3 with ZnO Photocatalyst for the Removal of 2-Nitrophenol in Natural Sunlight Illumination. Catalysts 2023, 13, 1262. [Google Scholar] [CrossRef]
- Ewan, B.C.R.; Allen, R.W.K. A Figure of Merit Assessment of the Routes to Hydrogen. Int. J. Hydrogen Energy 2005, 30, 809–819. [Google Scholar] [CrossRef]
- Dediu, V.; Musat, V.; Cernica, I. Nb-TiO2/ZnO Nanostructures for Chemoresistive Alcohol Sensing. Appl. Surf. Sci. 2019, 488, 70–76. [Google Scholar] [CrossRef]
- Leonard, G.L.-M.; Pàez, C.A.; Ramírez, A.E.; Mahy, J.G.; Heinrichs, B. Interactions between Zn2+ or ZnO with TiO2 to Produce an Efficient Photocatalytic, Superhydrophilic and Aesthetic Glass. J. Photochem. Photobiol. A Chem. 2018, 350, 32–43. [Google Scholar] [CrossRef]
- Levinas, R.; Tsyntsaru, N.; Lelis, M.; Cesiulis, H. Synthesis, Electrochemical Impedance Spectroscopy Study and Photoelectrochemical Behaviour of as-Deposited and Annealed WO3 Films. Electrochim. Acta 2017, 225, 29–38. [Google Scholar] [CrossRef]
- Roselló-Márquez, G.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; García-Antón, J. Photoelectrocatalyzed Degradation of Organophosphorus Pesticide Fenamiphos Using WO3 Nanorods as Photoanode. Chemosphere 2020, 246, 125677. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Seo, H. Influence of Molybdenum Doping on the Structural, Optical and Electronic Properties of WO3 for Improved Solar Water Splitting. J. Colloid. Interface Sci. 2018, 509, 440–447. [Google Scholar] [CrossRef]
- Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C.F. Optimization of 1D ZnO@ TiO2 Core–Shell Nanostructures for Enhanced Photoelectrochemical Water Splitting under Solar Light Illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Márquez, G.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; García-Carrión, S.; Lucas-Granados, B.; García-Antón, J. Photoelectrocatalyzed Degradation of a Pesticides Mixture Solution (Chlorfenvinphos and Bromacil) by WO3 Nanosheets. Sci. Total Environ. 2019, 674, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Mei, J.; Li, X.; Sun, Y.; Wu, D.; Gao, Z.; Zhang, Q.; Jiang, K. Heterogeneous Three-Dimensional TiO2/ZnO Nanorod Array for Enhanced Photoelectrochemical Water Splitting Properties. J. Nanoparticle Res. 2017, 19, 297. [Google Scholar] [CrossRef]
- Bertoluzzi, L.; Lopez-Varo, P.; Tejada, J.A.J.; Bisquert, J. Charge Transfer Processes at the Semiconductor/Electrolyte Interface for Solar Fuel Production: Insight from Impedance Spectroscopy. J. Mater. Chem. A Mater. 2016, 4, 2873–2879. [Google Scholar] [CrossRef]
- Cristino, V.; Marinello, S.; Molinari, A.; Caramori, S.; Carli, S.; Boaretto, R.; Argazzi, R.; Meda, L.; Bignozzi, C.A. Some Aspects of the Charge Transfer Dynamics in Nanostructured WO3 Films. J. Mater Chem. A Mater. 2016, 4, 2995–3006. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chou, C.-Y.; Yi, S.-R.; Chen, H.-D. Deposition of Heterojunction of ZnO on Hydrogenated TiO2 Nanotube Arrays by Atomic Layer Deposition for Enhanced Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2019, 44, 28685–28697. [Google Scholar] [CrossRef]
- Ahmadi, E.; Ng, C.Y.; Razak, K.A.; Lockman, Z. Preparation of Anodic Nanoporous WO3 Film Using Oxalic Acid as Electrolyte. J. Alloys Compd. 2017, 704, 518–527. [Google Scholar] [CrossRef]
- Siuzdak, K.; Szkoda, M.; Sawczak, M.; Lisowska-Oleksiak, A.; Karczewski, J.; Ryl, J. Enhanced Photoelectrochemical and Photocatalytic Performance of Iodine-Doped Titania Nanotube Arrays. RSC Adv. 2015, 5, 50379–50391. [Google Scholar] [CrossRef]
- Hazime, R.; Ferronato, C.; Fine, L.; Salvador, A.; Jaber, F.; Chovelon, J.-M. Photocatalytic Degradation of Imazalil in an Aqueous Suspension of TiO2 and Influence of Alcohols on the Degradation. Appl. Catal. B 2012, 126, 90–99. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.; Sivakumar, V.M.; Thirumarimurugan, M. Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian J. Mater. Sci. 2015, 2015, 601827. [Google Scholar] [CrossRef]
- Vaizoğullar, A.İ. TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chem. Eng. Commun. 2017, 204, 689–697. [Google Scholar] [CrossRef]
- Jiménez-Tototzintle, M.; Oller, I.; Hernández-Ramírez, A.; Malato, S.; Maldonado, M.I. Remediation of Agro-Food Industry Effluents by Biotreatment Combined with Supported TiO2/H2O2 Solar Photocatalysis. Chem. Eng. J. 2015, 273, 205–213. [Google Scholar] [CrossRef]
- Hazime, R.; Nguyen, Q.H.; Ferronato, C.; Huynh, T.K.X.; Jaber, F.; Chovelon, J.M. Optimization of Imazalil Removal in the System UV/TiO2/K2S2O8 Using a Response Surface Methodology (RSM). Appl. Catal. B 2013, 132–133, 519–526. [Google Scholar] [CrossRef]
- Santiago, D.E.; Espino-Estévez, M.R.; González, G.V.; Araña, J.; González-Díaz, O.; Doña-Rodríguez, J.M. Photocatalytic Treatment of Water Containing Imazalil Using an Immobilized TiO2 Photoreactor. Appl. Catal. A Gen. 2015, 498, 1–9. [Google Scholar] [CrossRef]
- Faid, A.Y.; Allam, N.K. Stable Solar-Driven Water Splitting by Anodic ZnO Nanotubular Semiconducting Photoanodes. RSC Adv. 2016, 6, 80221–80225. [Google Scholar] [CrossRef]
- Jeong, J.S.; Choe, B.H.; Lee, J.H.; Lee, J.J.; Choi, W.Y. ZnO-Coated TiO2 Nanotube Arrays for a Photoelectrode in Dye-Sensitized Solar Cells. J. Electron. Mater. 2014, 43, 375–380. [Google Scholar] [CrossRef]
- Hazime, R.; Nguyen, Q.H.; Ferronato, C.; Salvador, A.; Jaber, F.; Chovelon, J.M. Comparative Study of Imazalil Degradation in Three Systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Appl. Catal. B 2014, 144, 286–291. [Google Scholar] [CrossRef]
- Baharvand, A.; Ali, R.; Nur, H. Imazalil Sulphate Pesticide Degradation Using Silver Loaded Hollow Anatase TiO2 under UV Light Irradiation. Malays. J. Fundam. Appl. Sci. 2016, 12, 474. [Google Scholar] [CrossRef]
- Papazlatani, C.V.; Kolovou, M.; Gkounou, E.E.; Azis, K.; Mavriou, Z.; Testembasis, S.; Karaoglanidis, G.S.; Ntougias, S.; Karpouzas, D.G. Isolation, Characterization and Industrial Application of a Cladosporium Herbarum Fungal Strain Able to Degrade the Fungicide Imazalil. Environ. Pollut. 2022, 301, 119030. [Google Scholar] [CrossRef]
- Erami, M.; Errami, M.; Salghi, R.; Zarrouk, A.; Assouag, M.; Zarrok, H.; Benali, O.; Bazzi, E.; Hammouti, B.; Al-Deyab, S.S. Electrochemical Degradation of Imazalil and Pyrimethanil by Anodic Oxidation on Boron-Doped Diamond. J. Chem. Pharm. Res. 2012, 4, 3518–3525. [Google Scholar]
- Loveira, E.L.; Fantoni, S.; Espinosa, M.; Babay, P.; Curutchet, G.; Candal, R. Increased Biodegradability of the Fungicide Imazalil after Photo-Fenton Treatment in Solar Pilot Plant. J. Environ. Chem. Eng. 2019, 7, 103023. [Google Scholar] [CrossRef]
- Santiago, D.E.; Dona-Rodriguez, J.M.; Araña, J.; Fernández-Rodríguez, C.; González-Díaz, O.; Pérez-Peña, J.; Silva, A.M.T. Optimization of the Degradation of Imazalil by Photocatalysis: Comparison between Commercial and Lab-Made Photocatalysts. Appl. Catal. B 2013, 138, 391–400. [Google Scholar] [CrossRef]
- Santiago, D.E.; Araña, J.; González-Díaz, O.; Alemán-Dominguez, M.E.; Acosta-Dacal, A.C.; Fernandez-Rodríguez, C.; Pérez-Peña, J.; Doña-Rodríguez, J.M. Effect of Inorganic Ions on the Photocatalytic Treatment of Agro-Industrial Wastewaters Containing Imazalil. Appl. Catal. B 2014, 156, 284–292. [Google Scholar] [CrossRef]
Concentration of Mob (M) | % (Weight) | % (Atomic) | Concentration of Zn(NO3)2 (M) | % Weight | % Atomic | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | W | Mo | O | W | Mo | O | Ti | Zn | O | Ti | Zn | ||
0 | 18.02 | 81.98 | 0.00 | 71.66 | 28.33 | 0.00 | 0 | 34.51 | 65.49 | 0.00 | 61.21 | 38.79 | 0.00 |
0.001 | 28.77 | 70.32 | 0.92 | 82.10 | 17.46 | 0.44 | 0.001 | 38.11 | 57.56 | 4.33 | 65.26 | 32.92 | 1.82 |
0.01 | 19.40 | 78.88 | 1.71 | 73.07 | 25.85 | 1.08 | 0.005 | 36.07 | 58.08 | 5.85 | 63.39 | 34.10 | 2.51 |
0.1 | 18.01 | 80.02 | 1.97 | 71.18 | 27.53 | 1.30 | 0.01 | 35.04 | 57.81 | 7.15 | 62.45 | 34.43 | 3.12 |
Concentration of Mob (M) | R1 (Ω·cm2) | R2 (Ω·cm2) | Concentration of Zn(NO3)2 (M) | R1 (Ω·cm2) | R2 (Ω·cm2) |
---|---|---|---|---|---|
0.000 | 14 | 2355 | 0.000 | 4492 | 20,491 |
0.001 | 26 | 3830 | 0.001 | 5823 | 14,184 |
0.010 | 15 | 2095 | 0.005 | 221 | 5520 |
0.10 | 26 | 7283 | 0.010 | 28 | 3710 |
Concentration of Mob (M) | ND·1019 (cm−3) | Concentration of Zn(NO3)2 (M) | ND·1019 (cm−3) |
---|---|---|---|
0.000 | 297.4 | 0.000 | 1.2 |
0.001 | 54.0 | 0.001 | 2.1 |
0.010 | 144.1 | 0.005 | 85.8 |
0.100 | 37.1 | 0.010 | 99.5 |
Time (h) | Concentration (ppm) | Degraded Concentration (ppm) | Degradation (%) |
---|---|---|---|
0 | 10.00 | 0.00 | 0.0 |
1 | 9.56 | 0.44 | 4.4 |
2 | 9.32 | 0.68 | 6.8 |
3 | 8.79 | 1.21 | 12.1 |
4 | 8.67 | 1.33 | 13.3 |
5 | 8.53 | 1.47 | 14.7 |
6 | 8.06 | 1.94 | 19.4 |
7 | 7.87 | 2.13 | 21.3 |
8 | 7.63 | 2.37 | 23.7 |
24 | 5.02 | 4.98 | 49.8 |
Time (h) | Concentration (ppm) | Degraded Concentration (ppm) | Degradation (%) |
---|---|---|---|
0 | 10.0 | 0.00 | 0.0 |
1 | 8.67 | 1.33 | 13.3 |
2 | 8.16 | 1.84 | 18.4 |
3 | 7.81 | 2.19 | 21.9 |
4 | 6.90 | 3.10 | 31.0 |
5 | 6.62 | 3.38 | 33.8 |
6 | 5.75 | 4.25 | 42.5 |
7 | 5.07 | 4.93 | 49.3 |
8 | 4.82 | 5.18 | 51.8 |
24 | 0.09 | 9.91 | 99.1 |
Intermediate Number | Name | Chemical Structure | m/z | Retention Time (min) |
---|---|---|---|---|
1 | 2-(aliloxi)-2-(2,4-diclorofenil)etanamina | 246.05 | 12.6 | |
2 | 1-(2,4-diclorofenil)-2-(1H-imidazol-1-il)etanol | 257.02 | 9.6 | |
3 | 2,6-dicloro-3-(1-hidroxi-2-(1H-imidazol-1-il)etil)fenol | 273.06 | 13.2 | |
4 | acrilato de 1-(2,4-diclorofenil)-2-(1H-imidazol-1-il)etilo | 311.04 | 12.6 | |
5 | 1-(1-(2,4-diclorofenil)-2-(1H-imidazol-1-il)etoxi)propan-2-ona | 313.03 | 12.6 | |
6 | 5-(1-(aliloxi)-2-(1H-imidazol-1-il)etil)-2,4-diclorobenceno-1,3-diol | 329.04 | 9.8 | |
7 | 3-(1-(2,4-diclorofenil)-2-(1H-imidazol-1-il)etoxi)propano-1,2-diol | 331.06 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cifre-Herrando, M.; Roselló-Márquez, G.; Navarro-Gázquez, P.J.; Muñoz-Portero, M.J.; Blasco-Tamarit, E.; García-Antón, J. Characterization and Comparison of WO3/WO3-MoO3 and TiO2/TiO2-ZnO Nanostructures for Photoelectrocatalytic Degradation of the Pesticide Imazalil. Nanomaterials 2023, 13, 2584. https://doi.org/10.3390/nano13182584
Cifre-Herrando M, Roselló-Márquez G, Navarro-Gázquez PJ, Muñoz-Portero MJ, Blasco-Tamarit E, García-Antón J. Characterization and Comparison of WO3/WO3-MoO3 and TiO2/TiO2-ZnO Nanostructures for Photoelectrocatalytic Degradation of the Pesticide Imazalil. Nanomaterials. 2023; 13(18):2584. https://doi.org/10.3390/nano13182584
Chicago/Turabian StyleCifre-Herrando, Mireia, Gemma Roselló-Márquez, Pedro José Navarro-Gázquez, María José Muñoz-Portero, Encarnación Blasco-Tamarit, and José García-Antón. 2023. "Characterization and Comparison of WO3/WO3-MoO3 and TiO2/TiO2-ZnO Nanostructures for Photoelectrocatalytic Degradation of the Pesticide Imazalil" Nanomaterials 13, no. 18: 2584. https://doi.org/10.3390/nano13182584
APA StyleCifre-Herrando, M., Roselló-Márquez, G., Navarro-Gázquez, P. J., Muñoz-Portero, M. J., Blasco-Tamarit, E., & García-Antón, J. (2023). Characterization and Comparison of WO3/WO3-MoO3 and TiO2/TiO2-ZnO Nanostructures for Photoelectrocatalytic Degradation of the Pesticide Imazalil. Nanomaterials, 13(18), 2584. https://doi.org/10.3390/nano13182584