Thermal, Mechanical, and Electrical Stability of Cu Films in an Integration Process with Photosensitive Polyimide (PSPI) Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Characterization
2.2. Substrate Preparation
2.3. Spin Coating and Photopatterning of PSPI
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.; Chavan, V.D.; Aziz, J.; Ko, B.; Lee, J.-S.; Rho, J.; Dongale, T.D.; Choi, K.-K.; Kim, D. Effect of ALD Processes on Physical and Electrical Properties of HfO 2 Dielectrics for the Surface Passivation of a CMOS Image Sensor Application. IEEE Access 2022, 68724–68730. [Google Scholar] [CrossRef]
- Elahi, E.; Suleman, M.; Nisar, S.; Sharma, P.R.; Iqbal, M.W.; Patil, S.A.; Kim, H.; Abbas, S.; Chavan, V.D.; Dastgeer, G.; et al. Robust Approach towards Wearable Power Efficient Transistors with Low Subthreshold Swing. Mater. Today Phys. 2023, 30, 100943. [Google Scholar] [CrossRef]
- Chavan, V.D.; Kim, H.; Aziz, J.; Choi, K.K.; Kim, D. kee Effect of Film Stress on Different Electrical Properties of PECVD Grown SiNx Films and Its Bilayer Structures: A Study of Si Surface Passivation Strategy. Mater. Sci. Semicond. Process. 2023, 161, 107451. [Google Scholar] [CrossRef]
- Lee, H.J.; Mahajan, R.; Sheikh, F.; Nagisetty, R.; Deo, M. Multi-Die Integration Using Advanced Packaging Technologies. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22–25 March 2020. [Google Scholar] [CrossRef]
- Lau, J.H. Recent Advances and Trends in Advanced Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 228–252. [Google Scholar] [CrossRef]
- Yu, C.H.; Yen, L.J.; Hsieh, C.Y.; Hsieh, J.S.; Chang, V.C.Y.; Hsieh, C.H.; Liu, C.S.; Wang, C.T.; Yee, K.; Yu, D.C.H. High Performance, High Density RDL for Advanced Packaging. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 587–593. [Google Scholar] [CrossRef]
- Heterogeneous Integration Roadmap: Chapter 23: Wafer Level Packaging; IEEE: Piscataway, NJ, USA, 2019.
- Aziz, J.; Kim, H.; Hussain, T.; Lee, H.; Choi, T.; Rehman, S.; Farooq Khan, M.; Kadam, K.D.; Patil, H.; Muhammad, S.; et al. Power Efficient Transistors with Low Subthreshold Swing Using Abrupt Switching Devices. Nano Energy 2022, 95, 107060. [Google Scholar] [CrossRef]
- Agarwal, R.; Cheng, P.; Shah, P.; Wilkerson, B.; Swaminathan, R.; Wuu, J.; Mandalapu, C. 3D Packaging for Heterogeneous Integration. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; pp. 1103–1107. [Google Scholar] [CrossRef]
- Cao, L. Advanced Packaging Technology Platforms for Chiplets and Heterogeneous Integration. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 331–334. [Google Scholar] [CrossRef]
- Li, G.; Kang, Q.; Niu, F.; Wang, C. Recent Progress on Bumpless Cu/SiO2 Hybrid Bonding for 3D Heterogeneous Integration. Microelectron. Int. 2022, 40, 115–131. [Google Scholar] [CrossRef]
- Kim, S.E.; Kim, S. Wafer Level Cu-Cu Direct Bonding for 3D Integration. Microelectron. Eng. 2015, 137, 158–163. [Google Scholar] [CrossRef]
- Tadepalli, R. Characterization and Requirements for Cu-Cu Bonds for Three-Dimensional Integrated Circuits; Massachusetts Institute of Technology: Cambridge, MA, USA, 2007. [Google Scholar]
- Chang, Y.W.; Hu, C.C.; Peng, H.Y.; Liang, Y.C.; Chen, C.; Chang, T.C.; Zhan, C.J.; Juang, J.Y. A New Failure Mechanism of Electromigration by Surface Diffusion of Sn on Ni and Cu Metallization in Microbumps. Sci. Rep. 2018, 8, 5935. [Google Scholar] [CrossRef]
- Liang, C.L.; Lin, Y.S.; Kao, C.L.; Tarng, D.; Wang, S.B.; Hung, Y.C.; Lin, G.T.; Lin, K.L. Athermal and Thermal Coupling Electromigration Effects on the Microstructure and Failure Mechanism in Advanced Fine-Pitch Cu Interconnects under Extremely High Current Density. Mater. Chem. Phys. 2020, 256, 123680. [Google Scholar] [CrossRef]
- Tran, D.P.; Li, H.H.; Tseng, I.H.; Chen, C. Enhancement of Electromigration Lifetime of Copper Lines by Eliminating Nanoscale Grains in Highly <111>-Oriented Nanotwinned Structures. J. Mater. Res. Technol. 2021, 15, 6690–6699. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Niu, F.; Zhang, G.; Sun, R. A Novel Photosensitive Polyimide for High-Resolution Selective Electroless Plating. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 October 2022. [Google Scholar] [CrossRef]
- Kim, G.R.; Ha, S.-S.; Pae, S.; Park, J.; Choi, B. Reliability Impacts on Flip Chip Packages: Moisture Resistance, Mechanical Integrity and Photo-Sensitive Polyimide (PSPI) Passivation. Sci. Adv. Mater. 2019, 12, 577–582. [Google Scholar] [CrossRef]
- Van Nguyen, S.; Shobha, H.; Haigh, T.; Chen, J.; Lee, J.; Nogami, T.; Liniger, E.; Cohen, S.; Hu, C.K.; Huang, H.; et al. Novel Low k Dielectric Materials for Nano Device Interconnect Technology. In Proceedings of the 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 10–13 August 2020; pp. 117–118. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chang, W.-Y.; Cheng, Y.-L. Effect of Copper Diffusion in Low Dielectric Constant Dielectrics Under Thermal Stress on Electrical and Reliability Characteristics. In Electrochemical Society Meeting Abstracts 233; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2018; Volume MA2018-01, p. 1396. [Google Scholar] [CrossRef]
- An, B.S.; Kwon, Y.; Oh, J.S.; Lee, C.; Choi, S.; Kim, H.; Lee, M.; Pae, S.; Yang, C.W. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect. ACS Appl. Mater. Interfaces 2020, 12, 3104–3113. [Google Scholar] [CrossRef] [PubMed]
- An, B.S.; Kwon, Y.; Oh, J.S.; Lee, M.; Pae, S.; Yang, C.W. Amorphous TaxMnyOz Layer as a Diffusion Barrier for Advanced Copper Interconnects. Sci. Rep. 2019, 9, 20132. [Google Scholar] [CrossRef] [PubMed]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(Lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, T.; Matthews, J.I.; Motobe, T. Advanced Dielectric Materials (Polyimides and Polybenzoxazoles) for Fan-Out Wafer-Level Packaging (FO-WLP). Adv. Embed. Fan-Out Wafer-Level Packag. Technol. 2019, 271–315. [Google Scholar] [CrossRef]
- Chandrakar Shyama Prasad Mukherjee, M.; Kumar Majumder, M.; Prasad Mukherjee, S.; Chandrakar, M. Effect of Polymer Liners in Different Via Shapes: Impact on Crosstalk Induced Delay. Res. Sq. 2021, preprint. [Google Scholar] [CrossRef]
- Fukukawa, K.-I.; Ueda, M. Recent Progress of Photosensitive Polyimides. Polym. J. 2008, 40, 281–296. [Google Scholar] [CrossRef]
- Kato, Y.X.; Furukawa, S.; Samejima, K.; Hironaka, N.; Kashino, M. Photosensitive-Polyimide Based Method for Fabricating Various Neural Electrode Architectures. Front. Neuroeng. 2012, 5, 11. [Google Scholar] [CrossRef]
- Yeh, Y.M.; Karapala, V.K.; Ueda, M.; Hsu, C.S. Low-Temperature Curable, Alkaline-Developable, and Negative-Type Photosensitive Polyimide with High Resolution and Mechanical Properties Based on Chain Extendable Poly(Amic Acid) and Photo-Base Generator. Polym. Adv. Technol. 2021, 32, 663–669. [Google Scholar] [CrossRef]
- Qi, L.; Jia, Y.J.; An, Y.C.; Zhi, X.X.; Zhang, Y.; Liu, J.G.; Li, J.S. Photo-Patternable, High-Speed Electrospun Ultrafine Fibers Fabricated by Intrinsically Negative Photosensitive Polyimide. ACS Omega 2021, 6, 18458–18464. [Google Scholar] [CrossRef]
- Sasaki, T. Low Temperature Curable Polyimide for Advanced Package. J. Photopolym. Sci. Technol. 2016, 29, 379–382. [Google Scholar] [CrossRef]
- Gu, J.; Lv, Z.; Wu, Y.; Guo, Y.; Tian, L.; Qiu, H.; Li, W.; Zhang, Q. Dielectric Thermally Conductive Boron Nitride/Polyimide Composites with Outstanding Thermal Stabilities via in-Situ Polymerization-Electrospinning-Hot Press Method. Compos. Part A Appl. Sci. Manuf. 2017, 94, 209–216. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, J.; Zhang, K.; Bai, R.; Wang, Y.; Hua, C.; Wu, Y.; Liu, X.; Xu, H.; Li, Y. Fluorographene/Polyimide Composite Films: Mechanical, Electrical, Hydrophobic, Thermal and Low Dielectric Properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 428–434. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, B.; Zhang, X.; Wang, J.; Lai, C.; Sun, Y.; Liu, Y.; Yang, H. Enhanced Dielectric Properties of Amino-Modified-CNT/Polyimide Composite Films with a Sandwich Structure. J. Mater. Chem. A 2014, 2, 14118–14126. [Google Scholar] [CrossRef]
- Shoji, Y.; Masuda, Y.; Hashimoto, K.; Isobe, K.; Koyama, Y.; Okuda, R. Development of Novel Low-Temperature Curable Positive-Tone Photosensitive Dielectric Materials with High Elongation. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1707–1712. [Google Scholar] [CrossRef]
- Vaganov, G.; Ivan’kova, E.; Didenko, A.; Popova, E.; Elokhovskiy, V.; Kasatkin, I.; Yudin, V. High-Performance Crystallized Composite Carbon Nanoparticles/Polyimide Fibers. J. Appl. Polym. Sci. 2022, 139, e52748. [Google Scholar] [CrossRef]
- Pechenkin, M.A.; Möhwald, H.; Volodkin, D.V. pH-and Salt-Mediated Response of Layer-by-Layer Assembled PSS/PAH Microcapsules: Fusion and Polymer Exchange. Soft Matter 2012, 8, 8659–8665. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Liu, H.J. Review of Polymer Materials with Low Dielectric Constant. Polym. Int. 2010, 59, 597–606. [Google Scholar] [CrossRef]
- Hoofman, R.J.O.M.; Verheijden, G.J.A.M.; Michelon, J.; Iacopi, F.; Travaly, Y.; Baklanov, M.R.; Tökei, Z.; Beyer, G.P. Challenges in the Implementation of Low-k Dielectrics in the Back-End of Line. Microelectron. Eng. 2005, 80, 337–344. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- VanLandingham, M.R. Review of Instrumented Indentation. J. Res. Natl. Inst. Stand. Technol. 2003, 108, 249–265. [Google Scholar] [CrossRef]
- Aldırmaz, E.; Guler, M.; Guler, E.; Kara, M. The Change of Electrical Resistivity According to Different Quench Techniques in Copper-Manganese Alloy. J. Eng. Fundamentals 2016, 3, 17–21. [Google Scholar] [CrossRef]
- Misják, F.; Nagy, K.H.; Lobotka, P.; Radnóczi, G. Electron Scattering Mechanisms in Cu-Mn Films for Interconnect Applications. J. Appl. Phys. 2014, 116, 083507. [Google Scholar] [CrossRef]
Substrate | Thickness of PSPI | Cu Thickness | Curing |
---|---|---|---|
Cu (100 nm) | 3 and 5 μm | 300 nm | As kept |
Cu (100 nm) | 3 and 5 μm | 325 N2 (3.5 °C/min) | |
Cu (100 nm) | 3 and 5 μm | 350 N2 (3.5 °C/min) | |
Cu (100 nm) | 3 and 5 μm | 375 N2 (3.5 °C/min) | |
Cu (100 nm) | 3 and 5 μm | 350 N2 (2.5 °C/min) (slow) | |
Cu (100 nm) | 3 and 5 μm | 350 Ar (3.5 °C/min) | |
SiN (50 nm) | 7 μm | 325 and 350 N2 and 350 FGA (3.5 °C/min) | |
SiO2 (50 nm) | 7 μm | 325 and 350 N2 and 350 FGA (3.5 °C/min) | |
Al (100 nm) | 7 μm | 325 and 350 N2 and 350 FGA (3.5 °C/min) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ustad, R.E.; Chavan, V.D.; Kim, H.; Shin, M.-h.; Kim, S.-K.; Choi, K.-K.; Kim, D.-k. Thermal, Mechanical, and Electrical Stability of Cu Films in an Integration Process with Photosensitive Polyimide (PSPI) Films. Nanomaterials 2023, 13, 2642. https://doi.org/10.3390/nano13192642
Ustad RE, Chavan VD, Kim H, Shin M-h, Kim S-K, Choi K-K, Kim D-k. Thermal, Mechanical, and Electrical Stability of Cu Films in an Integration Process with Photosensitive Polyimide (PSPI) Films. Nanomaterials. 2023; 13(19):2642. https://doi.org/10.3390/nano13192642
Chicago/Turabian StyleUstad, Ruhan E., Vijay D. Chavan, Honggyun Kim, Min-ho Shin, Sung-Kyu Kim, Kyeong-Keun Choi, and Deok-kee Kim. 2023. "Thermal, Mechanical, and Electrical Stability of Cu Films in an Integration Process with Photosensitive Polyimide (PSPI) Films" Nanomaterials 13, no. 19: 2642. https://doi.org/10.3390/nano13192642
APA StyleUstad, R. E., Chavan, V. D., Kim, H., Shin, M. -h., Kim, S. -K., Choi, K. -K., & Kim, D. -k. (2023). Thermal, Mechanical, and Electrical Stability of Cu Films in an Integration Process with Photosensitive Polyimide (PSPI) Films. Nanomaterials, 13(19), 2642. https://doi.org/10.3390/nano13192642