Shape-Driven Response of Gold Nanoparticles to X-rays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of AuNPs
2.1.1. Turkevich–Frens Method
2.1.2. Synthesis of AuNSs with “Seed and Growth” Method
- -
- Production of the seed solution which was constituted by small AuNPs (5–20 nm) following the protocol described in [21] with some modifications. First, 600 µL of a NaBH4 solution (10 mM) was added to a solution of 0.1 mL of HAuCl4 (25 mM) and a surfactant, i.e., Triton X (150 mM), under stirring. The mix immediately shifted from light yellow to light red.
- -
- The growth solution was prepared with 20 mL of Triton X (150 mM), 0.4 mL of HAuCl4 (25 mM), 0.788 M of ascorbic acid and 100 µL of AgNO3 (45 µM) under stirring for 15 min.
2.2. Characterization of Au-Based Nanomaterials
2.2.1. Transmission Electron Microscopy (TEM)
2.2.2. Uv-Vis and Fourier Transform Infrared (FTIR) Characterization
2.2.3. DLS and ζ-Potential
2.2.4. Irradiation Set-Up
2.3. X-ray Irradiation
2.4. THP-1 Culture and Differentiation
2.5. Confocal Analysis
3. Results and Discussion
3.1. Pre-Irradiation Analysis
3.2. Post-Irradiation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Tarantino, S.; Caricato, A.P.; Rinaldi, R.; Capomolla, C.; De Matteis, V. Cancer Treatment Using Different Shapes of Gold-Based Nanomaterials in Combination with Conventional Physical Techniques. Pharmaceutics 2023, 15, 500. [Google Scholar] [CrossRef]
- De Matteis, V.; Rizzello, L.; Cascione, M.; Liatsi-Douvitsa, E.; Apriceno, A.; Rinaldi, R. Green Plasmonic Nanoparticles and Bio-Inspired Stimuli-Responsive Vesicles in Cancer Therapy Application. Nanomaterials 2020, 10, 1083. [Google Scholar] [CrossRef] [PubMed]
- Sibuyi, N.R.S.; Moabelo, K.L.; Fadaka, A.O.; Meyer, S.; Onani, M.O.; Madiehe, A.M.; Meyer, M. Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. Nanoscale Res. Lett. 2021, 16, 174. [Google Scholar] [CrossRef]
- Hassan, H.; Sharma, P.; Hasan, M.R.; Singh, S.; Thakur, D.; Narang, J. Gold nanomaterials—The golden approach from synthesis to applications. Mater. Sci. Energy Technol. 2022, 5, 375–390. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2020, 15, 9407–9430. [Google Scholar] [CrossRef]
- Crapanzano, R.; Secchi, V.; Villa, I. Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Appl. Sci. 2021, 11, 7073. [Google Scholar] [CrossRef]
- Yogo, K.; Misawa, M.; Shimizu, H.; Kitagawa, T.; Hirayama, R.; Ishiyama, H.; Yasuda, H.; Kametaka, S.; Takami, S. Radiosensitization Effect of Gold Nanoparticles on Plasmid DNA Damage Induced by Therapeutic MV X-rays. Nanomaterials 2022, 12, 771. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, X.; Liu, Y.; Wang, S.; Han, X.; Cheng, C. Research progress on nano-sensitizers for enhancing the effects of radiotherapy. Mater. Adv. 2022, 3, 3709–3725. [Google Scholar] [CrossRef]
- Mao, Z.; Nakamura, M.; Liu, J.; Hu, X.; Zhang, Y.; Ding, T.; Zhao, H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020, 8, 990. [Google Scholar] [CrossRef]
- Konefał, A.; Lniak, W.; Rostocka, J.; Orlef, A.; Sokół, M.; Kasperczyk, J.; Jarząbek, P.; Wrońska, A.; Rusiecka, K. Influence of a shape of gold nanoparticles on the dose enhancement in the wide range of gold mass concentration for high-energy X-ray beams from a medical linac. Rep. Pract. Oncol. Radiother. 2020, 25, 579–585. [Google Scholar] [CrossRef]
- Aminabad, N.S.; Farshbaf, M.; Akbarzadeh, A. Recent Advances of Gold Nanoparticles in Biomedical Applications: State of the Art. Cell Biochem. Biophys. 2019, 77, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Morozov, K.V.; Kolyvanova, M.A.; Kartseva, M.E.; Shishmakova, E.M.; Dement’eva, O.V.; Isagulieva, A.K.; Salpagarov, M.H.; Belousov, A.V.; Rudoy, V.M.; Shtil, A.A.; et al. Radiosensitization by Gold Nanoparticles: Impact of the Size, Dose Rate, and Photon Energy. Nanomaterials 2020, 10, 952. [Google Scholar] [CrossRef]
- Li, W.B.; Stangl, S.; Klapproth, A.; Shevtsov, M.; Hernandez, A.; Kimm, M.A.; Schuemann, J.; Qiu, R.; Michalke, B.; Bernal, M.A.; et al. Application of high-z gold nanoparticles in targeted cancer radiotherapy—Pharmacokinetic modeling, monte carlo simulation and radiobiological effect modeling. Cancers 2021, 13, 5370. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Dai, Z.; Hu, R.; Xie, Y.; Wang, L. Monte Carlo simulation of physical dose enhancement in core-shell magnetic gold nanoparticles with TOPAS. Front. Oncol. 2022, 12, 992358. [Google Scholar] [CrossRef]
- Teraoka, S.; Kakei, Y.; Akashi, M.; Iwata, E.; Hasegawa, T.; Miyawaki, D.; Sasaki, R.; Komori, T. Gold nanoparticles enhance X-ray irradiation-induced apoptosis in head and neck squamous cell carcinoma in vitro. Biomed. Rep. 2018, 9, 415–420. [Google Scholar] [CrossRef]
- Janic, B.; Brown, S.L.; Neff, R.; Liu, F.; Mao, G.; Chen, Y.; Jackson, L.; Chetty, I.J.; Movsas, B.; Wen, N. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol. Ther. 2021, 22, 124–135. [Google Scholar] [CrossRef]
- Yoshida, A.; Kitayama, Y.; Hayakawa, N.; Mizukawa, Y.; Nishimura, Y.; Takano, E.; Sunayama, H.; Takeuchi, T. Biocompatible polymer-modified gold nanocomposites of different shapes as radiation sensitizers. Biomater. Sci. 2022, 10, 2665–2672. [Google Scholar] [CrossRef] [PubMed]
- Alhussan, A.; Palmerley, N.; Smazynski, J.; Karasinska, J.; Renouf, D.J.; Schaeffer, D.F.; Beckham, W.; Alexander, A.S.; Chithrani, D.B. Potential of Gold Nanoparticles in Current Radiotherapy Using a Co-Culture Model of Cancer Cells and Cancer Associated Fibroblasts. Cancers 2022, 14, 3586. [Google Scholar] [CrossRef]
- Maiorano, G.; Rizzello, L.; Malvindi, M.A.; Shankar, S.S.; Martiradonna, L.; Falqui, A.; Cingolani, R.; Pompa, P.P. Monodispersed and size-controlled multibranched gold nanoparticles with nanoscale tuning of surface morphology. Nanoscale 2013, 3, 2227–2232. [Google Scholar] [CrossRef] [PubMed]
- Tsoulos, T.V.; Atta, S.; Lagos, M.J.; Beetz, M.; Batson, P.E.; Tsilomelekis, G.; Fabris, L. Colloidal plasmonic nanostar antennas with wide range resonance tunability. Nanoscale 2019, 11, 18662–18671. [Google Scholar] [CrossRef] [PubMed]
- Modena, M.M.; Rühle, B.; Burg, T.P.; Wuttke, S. Nanoparticle Characterization: What to Measure? Adv. Mater. 2019, 31, 1901556. [Google Scholar] [CrossRef] [PubMed]
- Chirico, G.; Pallavicini, P.; Borzenkov, M. Physical Properties of Gold Nanostars. In Gold Nanostars; SpringerBriefs in Materials; Springer International Publishing: Cham, Switzerland, 2015; pp. 25–42. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Huang, M.H. Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach. Langmuir 2005, 21, 2012–2016. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-L.; Chen, C.-H.; Huang, M.H. Seed-Mediated Synthesis of Branched Gold Nanocrystals Derived from the Side Growth of Pentagonal Bipyramids and the Formation of Gold Nanostars. Chem. Mater. 2009, 21, 110–114. [Google Scholar] [CrossRef]
- Farkas, N.; Kramar, J.A. Dynamic light scattering distributions by any means. J. Nanoparticle Res. 2021, 23, 120. [Google Scholar] [CrossRef]
- Zheng, T.; Bott, S.; Huo, Q. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation. ACS Appl. Mater. Interfaces 2016, 8, 21585–21594. [Google Scholar] [CrossRef]
- Quevedo, A.C.; Guggenheim, E.; Briffa, S.M.; Adams, J.; Lofts, S.; Kwak, M.; Lee, T.G.; Johnston, C.; Wagner, S.; Holbrook, T.R.; et al. UV-Vis Spectroscopic Characterization of Nanomaterials in Aqueous Media. J. Vis. Exp. 2021, 176, e61764. [Google Scholar] [CrossRef]
- Walsh, A.A. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine. J. Nanoparticle Res. 2017, 19, 152. [Google Scholar] [CrossRef]
- Pakravan, A.; Salehi, R.; Mahkam, M. Comparison study on the effect of gold nanoparticles shape in the forms of star, hallow, cage, rods, and Si-Au and Fe-Au core-shell on photothermal cancer treatment. Photodiagnosis Photodyn. Ther. 2021, 33, 102144. [Google Scholar] [CrossRef]
- Giotta, L.; Mastrogiacomo, D.; Italiano, F.; Milano, F.; Agostiano, A.; Nagy, K.; Valli, L.; Trotta, M. Reversible Binding of Metal Ions onto Bacterial Layers Revealed by Protonation-Induced ATR-FTIR Difference Spectroscopy. Langmuir 2011, 27, 3762–3773. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Pallavicini, P.; Donà, A.; Casu, A.; Chirico, G.; Collini, M.; Dacarro, G.; Falqui, A.; Milanese, C.; Sironi, L.; Taglietti, A. Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem. Commun. 2013, 49, 6265. [Google Scholar] [CrossRef] [PubMed]
- Warring, S.L.; Krasowska, M.; Beattie, D.A.; McQuillan, A.J. Adsorption of a Polyethoxylated Surfactant from Aqueous Solution to Silica Nanoparticle Films Studied with In Situ Attenuated Total Reflection Infrared Spectroscopy and Colloid Probe Atomic Force Microscopy. Langmuir 2018, 34, 13481–13490. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Dixon, J.B.; White, G.N. Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. Colloid Polym. Sci. 2006, 284, 347–356. [Google Scholar] [CrossRef]
- Weichsel, J.; Herold, N.; Lehmann, M.J.; Kräusslich, H.-G.; Schwarz, U.S. A quantitative measure for alterations in the actin cytoskeleton investigated with automated high-throughput microscopy: Quantifying the Actin Cytoskeleton. Cytom. A 2010, 77, 52–63. [Google Scholar] [CrossRef] [PubMed]
Angles | 0° | 180° | 90° | 270° | |
---|---|---|---|---|---|
Prescription | |||||
1.8 Gy | 74 MU | 37 MU | 61 MU | 63 MU | |
2 Gy | 83 MU | 41 MU | 68 MU | 71 MU |
AuNP Type | Zeta Potential ± SD (mV) | Hydrodynamic Diameter ± SD (nm) |
---|---|---|
Turkevich–Frens | −20 ± 2 | 19 ± 2 |
Seeds | −11 ± 1.3 | 7 ± 5 |
Stars (6 h) | −16 ± 3 | 60 ± 6 |
Stars (9 h) | −20 ± 2 | 68 ± 3 |
Stars (12 h) | −24 ± 2 | 70 ± 2 |
AuNP Type (Irradiation, 1.8 Gy) | Zeta Potential ± SD (mV) | Hydrodynamic Diameter ± SD (nm) |
---|---|---|
Turkevich–Frens | −21 ± 3 | 20 ± 1 |
Stars | −27 ± 2 | 72 ± 1 |
AuNP Type (Irradiation, 2 Gy) | Zeta Potential ± SD (mV) | Hydrodynamic Diameter ± SD (nm) |
Turkevich–Frens | −19 ± 4 | 19 ± 1 |
Stars | −22 ± 3 | 68 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, S.; Capomolla, C.; Carlà, A.; Giotta, L.; Cascione, M.; Ingrosso, C.; Scarpa, E.; Rizzello, L.; Caricato, A.P.; Rinaldi, R.; et al. Shape-Driven Response of Gold Nanoparticles to X-rays. Nanomaterials 2023, 13, 2719. https://doi.org/10.3390/nano13192719
Tarantino S, Capomolla C, Carlà A, Giotta L, Cascione M, Ingrosso C, Scarpa E, Rizzello L, Caricato AP, Rinaldi R, et al. Shape-Driven Response of Gold Nanoparticles to X-rays. Nanomaterials. 2023; 13(19):2719. https://doi.org/10.3390/nano13192719
Chicago/Turabian StyleTarantino, Simona, Caterina Capomolla, Alessandra Carlà, Livia Giotta, Mariafrancesca Cascione, Chiara Ingrosso, Edoardo Scarpa, Loris Rizzello, Anna Paola Caricato, Rosaria Rinaldi, and et al. 2023. "Shape-Driven Response of Gold Nanoparticles to X-rays" Nanomaterials 13, no. 19: 2719. https://doi.org/10.3390/nano13192719
APA StyleTarantino, S., Capomolla, C., Carlà, A., Giotta, L., Cascione, M., Ingrosso, C., Scarpa, E., Rizzello, L., Caricato, A. P., Rinaldi, R., & De Matteis, V. (2023). Shape-Driven Response of Gold Nanoparticles to X-rays. Nanomaterials, 13(19), 2719. https://doi.org/10.3390/nano13192719