An Assessment of the Oral and Inhalation Acute Toxicity of Nickel Oxide Nanoparticles in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Substances
2.2. Animal Care and Observations
2.3. Acute Oral Study
2.4. Acute Inhalation Studies
3. Results
3.1. Acute Oral Toxicity
3.2. Acute Inhalation Toxicity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denkhaus, E.; Salnikow, K. Nickel essentiality, toxicity, and carcinogenicity. Crit. Rev. Oncol./Hematol. 2002, 42, 35–56. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; whether toxic or essential for plants and environment—A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zamble, D.B. Nickel Homeostasis and Nickel Regulation: An Overview. Chem. Rev. 2009, 109, 4617–4643. [Google Scholar] [CrossRef] [PubMed]
- Harasim, P.; Filipek, T. Nickel in the environment. J. Elem. 2015, 20, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G.V.; Jolivet, J.-P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef]
- Barhoum, A.; García-Betancourt, M.L.; Jeevanandam, J.; Hussien, E.A.; Mekkawy, S.A.; Mostafa, M.; Omran, M.M.; Abdalla, M.S.; Bechelany, M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials 2022, 12, 177. [Google Scholar] [CrossRef]
- Jaji, N.-D.; Lee, H.L.; Hussin, M.H.; Akil, H.; Zakaria, M.R.; Othman, M.B.H. Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnol. Rev. 2020, 9, 1456–1480. [Google Scholar] [CrossRef]
- Sana, S.S.; Singh, R.P.; Sharma, M.; Srivastava, A.K.; Manchanda, G.; Rai, A.R.; Zhang, Z.-J. Biogenesis and Application of Nickel Nanoparticles: A Review. Curr. Pharm. Biotechnol. 2021, 22, 808–822. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shi, X.; Castranova, V.; Ding, M. Occupational Toxicology of Nickel and Nickel Compounds. J. Environ. Pathol. Toxicol. Oncol. 2009, 28, 177–208. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Biskos, G.; Schmidt-Ott, A. Airborne Engineered Nanoparticles: Potential Risks and Monitoring Challenges for Assessing their Impacts on Children. Paediatr. Respir. Rev. 2012, 13, 79–83. [Google Scholar] [CrossRef]
- Schimpel, C.; Resch, S.; Flament, G.; Carlander, D.; Vaquero, C.; Bustero, I.; Falk, A. A methodology on how to create a real-life relevant risk profile for a given nanomaterial. ACS Chem. Health Saf. 2018, 25, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Bierkandt, F.S.; Leibrock, L.; Wagener, S.; Laux, P.; Luch, A. The impact of nanomaterial characteristics on inhalation toxicity. Toxicol. Res. 2018, 7, 321–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roach, K.A.; Anderson, S.E.; Stefaniak, A.B.; Shane, H.L.; Kodali, V.; Kashon, M.; Roberts, J.R. Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model. Inhal. Toxicol. 2019, 31, 299–324. [Google Scholar] [CrossRef]
- Sutunkova, M.P.; Privalova, L.I.; Minigalieva, I.A.; Gurvich, V.B.; Panov, V.G.; Katsnelson, B.A. The most important inferences from the Ekaterinburg nanotoxicology team’s animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol. Rep. 2018, 5, 363–376. [Google Scholar] [CrossRef]
- Jeong, M.-J.; Jeon, S.; Yu, H.-S.; Cho, W.-S.; Lee, S.; Kang, D.; Kim, Y.; Kim, Y.-J.; Kim, S.-Y. Exposure to Nickel Oxide Nanoparticles Induces Acute and Chronic Inflammatory Responses in Rat Lungs and Perturbs the Lung Microbiome. Int. J. Environ. Res. Public Health 2022, 19, 522. [Google Scholar] [CrossRef]
- Abdel-Ghany, H.S.M.; Abdel-Shafy, S.; Abuowarda, M.M.; El-Khateeb, R.M.; Hoballah, E.; Hammam, A.M.M.; Fahmy, M.M. In vitro acaricidal activity of green synthesized nickel oxide nanoparticles against the camel tick, Hyalomma dromedarii (Ixodidae), and its toxicity on Swiss albino mice. Exp. Appl. Acarol. 2021, 83, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.F.; Ashiq, M.N.; Gulsher, M.; Akbar, A.; Iqbal, F. Exposure to variable doses of nickel oxide nanoparticles disturbs serum biochemical parameters and oxidative stress biomarkers from vital organs of albino mice in a sex-specific manner. Biomarkers 2020, 25, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.-M. Evaluation of some biological, biochemical, and hematological aspects in male albino rats after acute exposure to the nano-structured oxides of nickel and cobalt. Environ. Sci. Pollut. Res. 2019, 26, 17407–17417. [Google Scholar] [CrossRef] [PubMed]
- Dumala, N.; Mangalampalli, B.; Kamal, S.S.K.; Grover, P. Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: A histological and biochemical perspective. J. Appl. Toxicol. 2019, 39, 1012–1029. [Google Scholar] [CrossRef] [PubMed]
- Dumala, N.; Mangalampalli, B.; Kamal, S.S.K.; Grover, P. Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure. Biomarkers 2017, 23, 33–43. [Google Scholar] [CrossRef]
- More, S.; Kovochich, M.; Lyons-Darden, T.; Taylor, M.; Schulte, A.; Madl, A. Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles. Nanomaterials 2021, 11, 642. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, H.; Gao, J.; Chen, L.; Zhu, A.; Wang, C.; Yu, S.; Ren, X.; Ge, P.; Sun, Y. Pulmonary toxicity of exposure to nano nickel oxide. Micro Nano Lett. 2018, 13, 733–738. [Google Scholar] [CrossRef]
- Gmoshinski, I.V.; Khotimchenko, S.A. Assessing risks caused by nickel-based nanomaterials: Hazardous factor identification. Health Risk Anal. 2021, 2, 177–191. [Google Scholar] [CrossRef]
- Schulte, P.A.; Murashov, V.; Zumwalde, R.; Kuempel, E.D.; Geraci, C.L. Occupational exposure limits for nanomaterials: State of the art. J. Nanoparticle Res. 2010, 12, 1971–1987. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Magrini, A. Engineered nanoparticles at the workplace: Current knowledge about workers’ risk. Occup. Med. 2014, 64, 319–330. [Google Scholar] [CrossRef]
- Dumala, N.; Mangalampalli, B.; Chinde, S.; Kumari, S.I.; Mahoob, M.; Rahman, M.F.; Grover, P. Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis 2017, 32, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.G.; Durando, J.; Oller, A.R.; Merkel, D.J.; Marone, P.A.; Bates, H.K. Acute oral toxicity of nickel compounds. Regul. Toxicol. Pharmacol. 2012, 62, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Guide for the Care and Use of Laboratory Animals, 7th ed.; National Research Council. National Academies Press (US): Washington, DC, USA, 1996.
- Guide for the Care and Use of Laboratory Animals, 8th ed.; National Research Council. National Academies Press (US): Washington, DC, USA, 2011.
- Donaldson, K.; Poland, C.A. Nanotoxicity: Challenging the myth of nano-specific toxicity. Curr. Opin. Biotechnol. 2013, 24, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-J.; Lee, J.K.; Jeong, J.; Choy, J.-H. Toxicity evaluation of inorganic nanoparticles: Considerations and challenges. Mol. Cell. Toxicol. 2013, 9, 205–210. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, C.K. Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Woodhead Publishing: Sawston, UK, 2017; pp. 43–58. [Google Scholar]
- Henderson, R.G.; Cappellini, D.; Seilkop, S.K.; Bates, H.K.; Oller, A.R. Oral bioaccessibility testing and read-across hazard assessment of nickel compounds. Regul. Toxicol. Pharmacol. 2012, 63, 20–28. [Google Scholar] [CrossRef]
- Oller, A.R.; Cappellini, D.; Henderson, R.G.; Bates, H.K. Comparison of nickel release in solutions used for the identification of water-soluble nickel exposures and in synthetic lung fluids. J. Environ. Monit. 2009, 11, 823–829. [Google Scholar] [CrossRef]
- Bakand, S.; Hayes, A. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles. Int. J. Mol. Sci. 2016, 17, 929. [Google Scholar] [CrossRef]
- Fröhlich, E. Cellular Targets and Mechanisms in the Cytotoxic Action of Non-biodegradable Engineered Nanoparticles. Curr. Drug Metab. 2013, 14, 976–988. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Li, N.; Nel, A.E. Potential Health Impact of Nanoparticles. Annu. Rev. Public Health 2009, 30, 137–150. [Google Scholar] [CrossRef]
- Kunc, F.; Bushell, M.; Du, X.; Zborowski, A.; Johnston, L.J.; Kennedy, D.C. Physical Characterization and Cellular Toxicity Studies of Commercial NiO Nanoparticles. Nanomaterials 2022, 12, 1822. [Google Scholar] [CrossRef]
- Recommendation of the Council on the Safety Testing and Assessment of Manufactured Nanomaterials; OECD: Paris, France, 2013.
Test Substance | Purity (%) | BET Surface Area (m2/g) | Hydrodynamic Particle Size a (mm) | Shape | Reactive Oxygen Species b (nM) | Zeta Potential b (mV) | Dispersity Index b |
---|---|---|---|---|---|---|---|
NiO NPs | 99.9 | 74 | 0.210 | Rectangular prism | 23.8 | −14.6 | 0.735 |
NiO MPs | 96.4 | 96 | 15.6 | NA | NA | NA | NA |
Test Substance | Animal Species Strain | Source | Age (Weeks) | Initial Body Weight (Grams) | Acclimation Period (Days) |
---|---|---|---|---|---|
NiO NPs (oral and inhalation studies) | Rat Sprague-Dawley, derived albino | Charles River Laboratories | 10–12 | 320–463, males 202–271, females | 26–39 |
NiO MPs (low-dose inhalation study) | Rat Sprague-Dawley, derived albino | Ace Animals, Inc. | 8–9 | 257–277, males 180–211, females | 9 |
NiO MPs (high-dose inhalation study) | Rat Sprague-Dawley, derived albino | Harlan Laboratories, Inc. | 8–9 | 222–246, males 158–172, females | 7 |
Test Substance | Dose Level (mg/kg) | Mortality (# Dead/# Treated) | LD50 (mg/kg) |
---|---|---|---|
NiO NPs | 175 | 0/1 | >5000 |
550 | 0/1 | ||
1750 | 0/1 | ||
5000 | 0/3 | ||
Data below previously published in Henderson et al., 2012 [32] | |||
NiO MPs | 5000 | 0/1 | 9990 |
6300 | 0/1 | ||
7930 | 0/3 | ||
9990 | 2/4 | ||
11,000 | 2/2 |
Test Substance | Nominal Conc. (mg/L) | Measured Conc. (mg/L) | MMAD (mm) | Mortality (# Dead/# Treated) | LC50 (mg/L) | |
---|---|---|---|---|---|---|
Male | Female | |||||
NiO NPs | 5.0 | 5.41–5.42 | 3.01–4.32 | 0/20 | 0/20 | >5.42 |
NiO MPs | 5.0 | 5.15 | 2.4–2.5 | 0/5 | 0/5 | >8.30 |
8.0 | 8.30 | 2.95–3.01 | 0/5 | 0/5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyons-Darden, T.; Blum, J.L.; Schooley, M.W.; Ellis, M.; Durando, J.; Merrill, D.; Oller, A.R. An Assessment of the Oral and Inhalation Acute Toxicity of Nickel Oxide Nanoparticles in Rats. Nanomaterials 2023, 13, 261. https://doi.org/10.3390/nano13020261
Lyons-Darden T, Blum JL, Schooley MW, Ellis M, Durando J, Merrill D, Oller AR. An Assessment of the Oral and Inhalation Acute Toxicity of Nickel Oxide Nanoparticles in Rats. Nanomaterials. 2023; 13(2):261. https://doi.org/10.3390/nano13020261
Chicago/Turabian StyleLyons-Darden, Tara, Jason L. Blum, Mark W. Schooley, Melissa Ellis, Jennifer Durando, Daniel Merrill, and Adriana R. Oller. 2023. "An Assessment of the Oral and Inhalation Acute Toxicity of Nickel Oxide Nanoparticles in Rats" Nanomaterials 13, no. 2: 261. https://doi.org/10.3390/nano13020261
APA StyleLyons-Darden, T., Blum, J. L., Schooley, M. W., Ellis, M., Durando, J., Merrill, D., & Oller, A. R. (2023). An Assessment of the Oral and Inhalation Acute Toxicity of Nickel Oxide Nanoparticles in Rats. Nanomaterials, 13(2), 261. https://doi.org/10.3390/nano13020261