Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Studies on Filled SWCNTs
- Molecule-filled SWCNTs were synthesized for the investigation of growth kinetics of carbon nanotubes. The fullerenes coalesce and form an inner nanotube. The mechanism was studied by our group [218].
- The filling process of SWCNTs with other molecules was analyzed by Ákos Botos and Katalin Kamaros [46].
- The carbon nanotubes were also filled with molecules other than fullerenes, e.g., metallocenes, by Hidetsugu Shiozawa [59,95,96,97,98,109,110,111] and Marianna Kharlamova [105,106,107,108]. The growth properties of molecule-filled SWCNTs were reviewed in Ref. [219] where the growth mechanisms of carbon nanotubes were also discussed extensively.
- Extensive studies of the microstructure of filled SWCNTs have been performed.
- The filling processes of SWCNTs have been analyzed, and the procedures have been optimized for the filling.
- The electronic properties have been investigated by spectroscopy.
- The methods of processing of the kinetic data were developed to reveal precise trends in growth rates and activation energies of the growth of SWCNTs.
- The metal-dependence of kinetics was revealed.
- Metallicity-sorted (metallic and semiconducting) SWCNTs were filled with a range of substances. Indeed, only metallicity-mixed SWCNTs have previously been used for the filling [10]. The filling of metallicity-sorted SWCNTs allowed for the unambiguous assessment of the influence of encapsulated substances on the electronic properties of SWCNTs.
- New approaches to processing the data of spectroscopic investigations of filled SWCNTs were developed, which allowed for a more reliable and precise analysis of the experimental results and for the drawing of clear conclusions about the influence of different fillers on the electronic properties of SWCNTs.
- The correlation between the physical and chemical properties of encapsulated substances and their influence on the electronic properties of metallicity-sorted and mixed SWCNTs with different diameters was elucidated.
3. Kinetics of Growth of SWCNTs
4. Investigation of Doping Effects in Metallicity-Sorted SWCNTs Filled with Inorganic Compounds
5. Comparison of Doping Effect of Inorganic Compounds on Different Diameter SWCNTs
6. Discussion of the Influence of Different Encapsulated Substances on the Electronic Properties of SWCNTs
- Regarding kinetics of growth of carbon nanotubes, the growth mechanism of SWCNTs was revealed. The application of Raman spectroscopy allowed us to calculate the growth rates and activation energies. They are in the range of 0.5 to 3.0 eV. No activation energies for growth of individual carbon nanotubes were reported thus far.
- The authors showed the metal-dependence of growth kinetics, and that the use of different metal catalyst precursors allowed analyzing the influence of metal on the growth mechanism of SWCNTs. It was shown that different metals lead to different growth mechanisms of carbon nanotubes. More TEM investigations are required to analyze the mechanism in detail.
- Regarding the filling of metallicity-sorted SWCNTs, separated metallic, semiconducting SWCNT samples were proved to be a viable tool to unravel the effects of the filler on the electronic properties of the compound material. The investigation of the macroscopic electronic properties by a variety of spectroscopic methods (OAS, RS, XPS, UPS and XAS) allowed us to thoroughly address the influences on the electronic properties that are caused by encapsulated elementary substances, inorganic compounds and molecules.
- The authors developed new approaches to processing the data of spectroscopic investigations of filled SWCNTs. There have been developments in the evaluation of spectroscopic data. The precise and reliable data analysis supported drawing clear conclusions on the quantitative charge transfer present in differently filled SWCNTs.
- Regarding the correlation between the physical and chemical properties of encapsulated substances and the electronic properties of SWCNTs, the combined spectroscopic studies on filled SWCNTs allowed us to determine the charge transfer quantitatively. It can be evaluated as elementary charges per SWCNT surface atom, or additionally as elementary charges per SWCNT length. With the filling ratio and the interconversion of encapsulated substances, the doping level can be varied in a wide range. It is even possible to tune the doping level across the charge neutrality point and switch from n to p type doping. This powerful control of the electronic properties in heterogeneously filled SWCNTs enabled the demonstration of many different applications. The applications covered in this review include nanoelectronics, thermoelectric power generation, electrochemical energy storage, catalysis, sensors, spintronics, magnetic recording and biomedicine. This review also addresses current issues and likely contenders for a breakthrough in the near future, namely photovoltaics and light emission.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kharlamova, M.V. Electronic properties of pristine and modified single-walled carbon nanotubes. Phys.-Uspekhi. 2013, 56, 1047–1073. [Google Scholar] [CrossRef]
- Ferguson, V.; Silva, S.R.P.; Zhang, W. Carbon Materials in Perovskite Solar Cells: Prospects and Future Challenges. Energy Environ. Mater. 2019, 2, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Fukumaru, T.; Fujigaya, T.; Nakashima, N. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci. Rep. 2015, 5, 7951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Jeon, I.; Lin, H.S.; Seo, S.; Han, T.H.; Anisimov, A.; Kauppinen, E.I.; Matsuo, Y.; Maruyama, S.; Yang, Y. Vapor-Assisted Ex-Situ Doping of Carbon Nanotube toward Efficient and Stable Perovskite Solar Cells. Nano Lett. 2019, 19, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.W.; Lowe, G.A.; McSweeney, R.L.; Stoppiello, C.T.; Lodge, R.W.; Skowron, S.T.; Biskupek, J.; Rance, G.A.; Kaiser, U.; Walsh, D.A.; et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes. Adv. Mater. 2019, 31, 41. [Google Scholar] [CrossRef]
- Martincic, M.; Tobias, G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin. Drug Deliv. 2014, 12, 563–581. [Google Scholar] [CrossRef]
- Liu, B.L.; Wu, F.Q.; Gui, H.; Zheng, M.; Zhou, C.W. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. ACS Nano 2017, 11, 31–53. [Google Scholar] [CrossRef]
- Bati, A.S.R.; Yu, L.P.; Batmunkh, M.; Shapter, J.G. Recent Advances in Applications of Sorted Single-Walled Carbon Nanotubes. Adv. Funct. Mater. 2019, 29, 30. [Google Scholar] [CrossRef]
- Moore, K.E.; Tune, D.D.; Flavel, B.S. Double-Walled Carbon Nanotube Processing. Adv. Mater. 2015, 27, 3105–3137. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog. Mater. Sci. 2016, 77, 125–211. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Sato, Y.; Saito, T.; Suenaga, K.; Pichler, T.; Shiozawa, H. Chiral vector and metal catalyst-dependent growth kinetics of single-wall carbon nanotubes. Carbon 2018, 133, 283–292. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Saito, T.; Sato, Y.; Suenaga, K.; Picher, T.; Shiozawa, H. Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale 2017, 9, 7998–8006. [Google Scholar] [CrossRef] [Green Version]
- Tkachenko, N.V. Optical Spectroscopy: Methods and Instrumentations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kharlamova, M.V.; Kramberger, C.; Sauer, M.; Yanagi, K.; Pichler, T. Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Phys. Status Solidi (b) 2015, 252, 2512–2518. [Google Scholar] [CrossRef]
- Ayala, P.; Miyata, Y.; De Blauwe, K.; Shiozawa, H.; Feng, Y.; Yanagi, K.; Kramberger, C.; Silva, S.R.P.; Follath, R.; Kataura, H.; et al. Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes. Phys. Rev. B 2009, 80, 205427. [Google Scholar] [CrossRef]
- Kuzmany, H. Solid-State Spectroscopy: An Introduction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Atalla, R.H.; Agarwal, U.P.; Bond, J.L. Raman spectroscopy. Springer series in wood science. In Methods in Lignin Chemistry; Springer: Berlin/Heidelberg, Germany, 1992; pp. 162–176. [Google Scholar]
- Smekal, A. The quantum theory of dispersion. Naturwissenschaften 1923, 11, 873–875. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, K.S. The optical analog of the Compton eect. Nature 1928, 121, 711. [Google Scholar] [CrossRef]
- Lamdsberg, G.; Mandelstam, L. A novel eect of light scattering in crystals. Naturwissenschaften 1928, 16, 5757-558. [Google Scholar]
- Maiman, T.H. Stimulated optical radiation in ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Porto, S.P.S.; Wood, D.L. Ruby optical maser as a raman source. J. Opt. Soc. Am. 1962, 52, 251–252. [Google Scholar] [CrossRef]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons Ltd.: Chichester, UK, 2005. [Google Scholar]
- Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A.; Souza, A.G.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043–2061. [Google Scholar] [CrossRef]
- Araujo, P.T.; Maciel, I.O.; Pesce, P.B.C.; Pimenta, M.A.; Doorn, S.K.; Qian, H.; Hartschuh, A.; Steiner, M.; Grigorian, L.; Hata, K.; et al. Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B. 2008, 77, 24. [Google Scholar] [CrossRef]
- Fouquet, M.; Telg, H.; Maultzsch, J.; Wu, Y.; Chandra, B.; Hone, J.; Heinz, T.F.; Thomsen, C. Longitudinal Optical Phonons in Metallic and Semiconducting Carbon Nanotubes. Phys. Rev. Lett. 2009, 102, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.D.M.; Corio, P.; Marucci, A.; Dresselhaus, M.S.; Pimenta, M.A.; Kneipp, K. Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys. Rev. B. 2000, 61, R5137–R5140. [Google Scholar] [CrossRef]
- Das, A.; Sood, A.K. Renormalization of the phonon spectrum in semiconducting single-walled carbon nanotubes studied by Raman spectroscopy. Phys. Rev. B. 2009, 79, 23. [Google Scholar] [CrossRef]
- Grimm, S.; Schiessl, S.P.; Zakharko, Y.; Rother, M.; Brohmann, M.; Zaumseil, J. Doping-dependent G-mode shifts of small diameter semiconducting single-walled carbon nanotubes. Carbon 2017, 118, 261–267. [Google Scholar] [CrossRef]
- Tsang, J.C.; Freitag, M.; Perebeinos, V.; Liu, J.; Avouris, P. Doping and phonon renormalization in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 725–730. [Google Scholar] [CrossRef]
- Das, A.; Sood, A.K.; Govindaraj, A.; Saitta, A.M.; Lazzeri, M.; Mauri, F.; Rao, C.N.R. Doping in carbon nanotubes probed by Raman and transport measurements. Phys. Rev. Lett. 2007, 99, 13. [Google Scholar] [CrossRef] [Green Version]
- Kalbac, M.; Farhat, H.; Kavan, L.; Kong, J.; Dresselhaus, M.S. Competition between the Spring Force Constant and the Phonon Energy Renormalization in Electrochemically Doped Semiconducting Single-Walled Carbon Nanotubes. Nano Lett. 2008, 8, 3532–3537. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, V.; Yu, Z.H. Raman spectroelectrochemistry of a single-wall carbon nanotube bundle. Carbon 2010, 48, 2582–2589. [Google Scholar] [CrossRef]
- Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A.C.; Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B. 2007, 75, 3. [Google Scholar] [CrossRef] [Green Version]
- Lazzeri, M.; Piscanec, S.; Mauri, F.; Ferrari, A.C.; Robertson, J. Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys. Rev. B. 2006, 73, 15. [Google Scholar] [CrossRef]
- Caudal, N.; Saitta, A.M.; Lazzeri, M.; Mauri, F. Kohn anomalies and nonadiabaticity in doped carbon nanotubes. Phys. Rev. B. 2007, 75, 11. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.T.; Gaur, A.; Shim, M. Fano lineshape and phonon softening in single isolated metallic carbon nanotubes. Phys. Rev. Lett. 2007, 98, 14. [Google Scholar] [CrossRef]
- Farhat, H.; Son, H.; Samsonidze, G.G.; Reich, S.; Dresselhaus, M.S.; Kong, J. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys. Rev. Lett. 2007, 99, 14. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.F.; Wolstenholme, J. An Introduction to Surface Analysis by XPS and AES.; John Wiley & Sons, Ltd.: Chichester, UK, 2003. [Google Scholar]
- Leckrey, R. Ultraviolet Photoelectron Spectroscopy of Solids. Surface Analysis Methods in Materials Science; 1 Springer Series in Surface Sciences; O’Connor, D.J., Sexton, B.A., Smart, R.S.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 23. [Google Scholar]
- Hertz, H. Uber einen einuss des ultravioletten lichtes auf die electrische entladung. Ann. Phys. 1887, 267, 983–1000. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Uber einen die erzeugung und verwandlung des lichtes betreenden heuristischen gesichtspunkt. Ann. Phys. 1905, 322, 132–148. [Google Scholar] [CrossRef]
- Innes, P.D. On the velocity of the cathode particles emitted by various metals under the inuence of Röntgen rays, and its bearing on the theory of atomic disintegration. Proc. Roy. Soc. London Ser. A 1907, 79, 442–462. [Google Scholar]
- Briggs, D.; Grant, G.T. Perspectives on XPS and AES. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; IM Publications and SurfaceSpectra Limited: Chichester, UK, 2003; pp. 1–30. [Google Scholar]
- Smith, B.W.; Monthioux, M.; Luzzi, D.E. Encapsulated C-60 in carbon nanotubes. Nature 1998, 396, 323–324. [Google Scholar] [CrossRef]
- Botos, A.; Khlobystov, A.N.; Botka, B.; Hackl, R.; Szekely, E.; Simandi, B.; Kamaras, K. Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys. Status Solidi (b) 2010, 247, 2743–2745. [Google Scholar] [CrossRef]
- Burteaux, B.; Claye, A.; Smith, B.W.; Monthioux, M.; Luzzi, D.E.; Fischer, J.E. Abundance of encapsulated C-60 in single-wall carbon nanotubes. Chem. Phys. Lett. 1999, 310, 21–24. [Google Scholar] [CrossRef]
- Chamberlain, T.W.; Popov, A.M.; Knizhnik, A.A.; Samoilov, G.E.; Khlobystov, A.N. The Role of Molecular Clusters in the Filling of Carbon Nanotubes. ACS Nano 2010, 4, 5203–5210. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, K.; Suenaga, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5384–5387. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.H.; Hirata, T.; Hatakeyama, R.; Tohji, K.; Motomiya, K. C-60 encapsulation inside single-walled carbon nanotubes using alkali-fullerene plasma method. Carbon 2002, 40, 2247–2253. [Google Scholar] [CrossRef]
- Kataura, H.; Maniwa, Y.; Kodama, T.; Kikuchi, K.; Hirahara, K.; Suenaga, K.; Iijima, S.; Suzuki, S.; Achiba, Y.; Kratschmer, W. High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth. Met. 2001, 121, 1195–1196. [Google Scholar] [CrossRef]
- Kataura, H.; Maniwa, Y.; Abe, M.; Fujiwara, A.; Kodama, T.; Kikuchi, K.; Imahori, H.; Misaki, Y.; Suzuki, S.; Achiba, Y. Optical properties of fullerene and non-fullerene peapods. Appl. Phys. A 2002, 74, 349–354. [Google Scholar] [CrossRef]
- Khlobystov, A.N.; Britz, D.A.; Wang, J.W.; O’Neil, S.A.; Poliakoff, M.; Briggs, G.A.D. Low temperature assembly of fullerene arrays in single-walled carbon nanotubes using supercritical fluids. J. Mater. Chem. 2004, 14, 2852–2857. [Google Scholar] [CrossRef]
- Khlobystov, A.N.; Porfyrakis, K.; Kanai, M.; Britz, D.A.; Ardavan, A.; Shinohara, H.; Dennis, T.J.S.; Briggs, G.A.D. Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Aew. Chem. Int. Ed. 2004, 43, 1386–1389. [Google Scholar] [CrossRef] [Green Version]
- Khlobystov, A.N.; Britz, D.A.; Briggs, G.A.D. Molecules in carbon nanotubes. Accounts Chem. Res. 2005, 38, 901–909. [Google Scholar] [CrossRef]
- Luzzi, D.E.; Smith, B.W. Carbon cage structures in single wall carbon nanotubes: A new class of materials. Carbon 2000, 38, 1751–1756. [Google Scholar] [CrossRef]
- Monthioux, M.; Smith, B.W.; Burteaux, B.; Claye, A.; Fischer, J.E.; Luzzi, D.E. Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation. Carbon 2001, 39, 1251–1272. [Google Scholar] [CrossRef]
- Shimada, T.; Ohno, Y.; Okazaki, T.; Sugai, T.; Suenaga, K.; Kishimoto, S.; Mizutani, T.; Inoue, T.; Taniguchi, R.; Fukui, N.; et al. Transport properties of C-78, C-90 and Dy@C-82 fullerenes-nanopeapods by field effect transistors. Physica E 2004, 21, 1089–1092. [Google Scholar] [CrossRef]
- Shiozawa, H.; Ishii, H.; Kihara, H.; Sasaki, N.; Nakamura, S.; Yoshida, T.; Takayama, Y.; Miyahara, T.; Suzuki, S.; Achiba, Y.; et al. Photoemission and inverse photoemission study of the electronic structure of C-60 fullerenes encapsulated in single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 075406. [Google Scholar] [CrossRef]
- Simon, F.; Kuzmany, H.; Rauf, H.; Pichler, T.; Bernardi, J.; Peterlik, H.; Korecz, L.; Fulop, F.; Janossy, A. Low temperature fullerene encapsulation in single wall carbon nanotubes: Synthesis of N@C-60@SWCNT. Chem. Phys. Lett. 2004, 383, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Sloan, J.; Dunin-Borkowski, R.E.; Hutchison, J.L.; Coleman, K.S.; Williams, V.C.; Claridge, J.B.; York, A.P.E.; Xu, C.G.; Bailey, S.R.; Brown, G.; et al. The size distribution, imaging and obstructing properties of C-60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem. Phys. Lett. 2000, 316, 191–198. [Google Scholar] [CrossRef]
- Smith, B.W.; Monthioux, M.; Luzzi, D.E. Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials. Chem. Phys. Lett. 1999, 315, 31–36. [Google Scholar] [CrossRef]
- Smith, B.W.; Luzzi, D.E. Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis. Chem. Phys. Lett. 2000, 321, 169–174. [Google Scholar] [CrossRef]
- Yudasaka, M.; Ajima, K.; Suenaga, K.; Ichihashi, T.; Hashimoto, A.; Iijima, S. Nano-extraction and nano-condensation for C-60 incorporation into single-wall carbon nanotubes in liquid phases. Chem. Phys. Lett. 2003, 380, 42–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Iijima, S.; Shi, Z.; Gu, Z. Defects in arc-discharge-produced single-walled carbon nanotubes. Philos. Mag. Lett. 1999, 79, 473–479. [Google Scholar] [CrossRef]
- Simon, F.; Kramberger, C.; Pfeiffer, R.; Kuzmany, H.; Zolyomi, V.; Kurti, J.; Singer, P.M.; Alloul, H. Isotope engineering of carbon nanotube systems. Phys. Rev. Lett. 2005, 95, 017401. [Google Scholar] [CrossRef] [Green Version]
- Simon, F.; Kukovecz, A.; Kramberger, C.; Pfeiffer, R.; Hasi, F.; Kuzmany, H.; Kataura, H. Diameter selective reaction processes of single-wall carbon nanotubes. Phys. Rev. B 2005, 71, 165439. [Google Scholar] [CrossRef] [Green Version]
- Ashino, M.; Obergfell, D.; Haluska, M.; Yang, S.H.; Khlobystov, A.N.; Roth, S.; Wiesendanger, R. Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat. Nanotechnol. 2008, 3, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.W.; Gu, G.; Kim, G.T.; Philipp, G.; Roth, S.; Yang, S.F.; Yang, S. Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Appl. Phys. Lett. 2001, 79, 3845–3847. [Google Scholar] [CrossRef]
- Gloter, A.; Suenaga, K.; Kataura, H.; Fujii, R.; Kodama, T.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Suzuki, S.; Achiba, Y.; et al. Structural evolutions of carbon nano-peapods under electron microscopic observation. Chem. Phys. Lett. 2004, 390, 462–466. [Google Scholar] [CrossRef]
- Kitaura, R.; Imazu, N.; Kobayashi, K.; Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 2008, 8, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Suenaga, K.; Hirahara, K.; Bandow, S.; Iijima, S.; Shinohara, I.E. Real time reaction dynamics in carbon nanotubes. J. Am. Chem. Soc. 2001, 123, 9673–9674. [Google Scholar] [CrossRef]
- Okazaki, T.; Suenaga, K.; Hirahara, K.; Bandow, S.; Iijima, S.; Shinohara, H. Electronic and geometric structures of metallofullerene peapods. Phys. B Condens. Matter 2002, 323, 97–99. [Google Scholar] [CrossRef]
- Pichler, T.; Kramberger, C.; Ayala, P.; Shiozawa, H.; Knupfer, M.; Rummeli, M.H.; Batchelor, D.; Kitaura, R.; Imazu, N.; Kobayashi, K.; et al. Bonding environment and electronic structure of Gd metallofullerene and Gd nanowire filled single-wall carbon nanotubes. Phys. Status Solidi (b) 2008, 245, 2038–2041. [Google Scholar] [CrossRef]
- Suenaga, K.; Tence, T.; Mory, C.; Colliex, C.; Kato, H.; Okazaki, T.; Shinohara, H.; Hirahara, K.; Bandow, S.; Iijima, S. Element-selective single atom imaging. Science 2000, 290, 2280. [Google Scholar] [CrossRef]
- Ayala, P.; Kitaura, R.; Kramberger, C.; Shiozawa, H.; Imazu, N.; Kobayashi, K.; Mowbray, D.J.; Hoffmann, P.; Shinohara, H.; Pichler, T. A Resonant Photoemission Insight to the Electronic Structure of Gd Nanowires Templated in the Hollow Core of SWCNTs. Mater. Express 2011, 1, 30–35. [Google Scholar] [CrossRef]
- Debarre, A.; Jaffiol, R.; Julien, C.; Richard, A.; Nutarelli, D.; Tchenio, P. Antenna effect in dimetallofullerene peapods. Chem. Phys. Lett. 2003, 380, 6–11. [Google Scholar] [CrossRef]
- Smith, B.W.; Luzzi, D.E.; Achiba, Y. Tumbling atoms and evidence for charge transfer in La-2@C-80@SWNT. Chem. Phys. Lett. 2000, 331, 137–142. [Google Scholar] [CrossRef]
- Suenaga, K.; Okazaki, T.; Wang, C.R.; Bandow, S.; Shinohara, H.; Iijima, S. Direct imaging of Sc-2@C-84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. Phys. Rev. Lett. 2003, 90, 5. [Google Scholar] [CrossRef]
- Suenaga, K.; Taniguchi, R.; Shimada, T.; Okazaki, T.; Shinohara, H.; Iijima, S. Evidence for the intramolecular motion of Gd atoms in a Gd-2@C-92 nanopeapod. Nano Lett. 2003, 3, 1395–1398. [Google Scholar] [CrossRef]
- Britz, D.A.; Khlobystov, A.N.; Porfyrakis, K.; Ardavan, A.; Briggs, G.A.D. Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. 2004, 37–39. [Google Scholar] [CrossRef]
- Sun, B.Y.; Sato, Y.; Suenaga, K.; Okazaki, T.; Kishi, N.; Sugai, T.; Bandow, S.; Iijima, S.; Shinohara, H. Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)(n)@SWNT nano-peapods. J. Am. Chem. Soc. 2005, 127, 17972–17973. [Google Scholar] [CrossRef]
- Chamberlain, T.W.; Champness, N.R.; Schroder, M.; Khlobystov, A.N. A Piggyback Ride for Transition Metals: Encapsulation of Exohedral Metallofullerenes in Carbon Nanotubes. Chem.–A Eur. J. 2010, 17, 668–674. [Google Scholar] [CrossRef]
- Chamberlain, T.W.; Meyer, J.C.; Biskupek, J.; Leschner, J.; Santana, A.; Besley, N.A.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A.N. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nat. Chem. 2011, 3, 732–737. [Google Scholar] [CrossRef]
- Khlobystov, A.N. Carbon Nanotubes: From Nano Test Tube to Nano-Reactor. Acs Nano 2011, 5, 9306–9312. [Google Scholar] [CrossRef]
- Britz, D.A.; Khlobystov, A.N.; Wang, J.W.; O’Neil, A.S.; Poliakoff, M.; Ardavan, A.; Briggs, G.A.D. Selective host-guest interaction of single-walled carbon nanotubes with functionalised fullerenes. Chem. Commun. 2004, 2, 176–177. [Google Scholar] [CrossRef]
- Briones, A.; Liu, X.J.; Kramberger, C.; Saito, T.; Pichler, T. Nanochemical reactions by laser annealing of ferrocene filled single-walled carbon nanotubes. Phys. Status Solidi (b) 2011, 248, 2488–2491. [Google Scholar] [CrossRef]
- Guan, L.H.; Shi, Z.J.; Li, M.X.; Gu, Z.N. Ferrocene-filled single-walled carbon nanotubes. Carbon 2005, 43, 2780–2785. [Google Scholar] [CrossRef]
- Kocsis, D.; Kaptas, D.; Botos, A.; Pekker, A.; Kamaras, K. Ferrocene encapsulation in carbon nanotubes: Various methods of filling and investigation. Phys. Status Solidi (b) 2011, 248, 2512–2515. [Google Scholar] [CrossRef]
- Liu, X.J.; Kuzmany, H.; Saito, T.; Pichler, T. Temperature dependence of inner tube growth from ferrocene-filled single-walled carbon nanotubes. Phys. Status Solidi (b) 2011, 248, 2492–2495. [Google Scholar] [CrossRef]
- Liu, X.J.; Kuzmany, H.; Ayala, P.; Calvaresi, M.; Zerbetto, F.; Pichler, T. Selective Enhancement of Photoluminescence in Filled Single-Walled Carbon Nanotubes. Adv. Funct. Mater. 2012, 22, 3202–3208. [Google Scholar] [CrossRef]
- Plank, W.; Kuzmany, H.; Pfeiffer, R.; Saito, T.; Iijima, S. Raman scattering from ferrocene encapsulated in narrow diameter carbon nanotubes. Phys. Status Solidi (b) 2009, 246, 2724–2727. [Google Scholar] [CrossRef]
- Sauer, M.; Shiozawa, H.; Ayala, P.; Ruiz-Soria, G.; Kataura, H.; Yanagi, K.; Krause, S.; Pichler, T. In situ filling of metallic single-walled carbon nanotubes with ferrocene molecules. Phys. Status Solidi (b) 2012, 249, 2408–2411. [Google Scholar] [CrossRef]
- Shiozawa, H.; Pichler, T.; Pfeiffer, R.; Kuzmany, H.; Kataura, H. Ferrocene encapsulated in single-wall carbon nanotubes: A precursor to secondary tubes. Phys. Status Solidi (b) 2007, 244, 4102–4105. [Google Scholar] [CrossRef]
- Shiozawa, H.; Pichler, T.; Kramberger, C.; Gruneis, A.; Knupfer, M.; Buchner, B.; Zolyomi, V.; Koltai, J.; Kurti, J.; Batchelor, D.; et al. Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Phys. Rev. B 2008, 77, 153402. [Google Scholar] [CrossRef] [Green Version]
- Shiozawa, H.; Giusca, C.E.; Silva, S.R.P.; Kataura, H.; Pichler, T. Capillary filling of single-walled carbon nanotubes with ferrocene in an organic solvent. Phys. Status Solidi (b) 2008, 245, 1983–1985. [Google Scholar] [CrossRef]
- Shiozawa, H.; Pichler, T.; Gruneis, A.; Pfeiffer, R.; Kuzmany, H.; Liu, Z.; Suenaga, K.; Kataura, H. A catalytic reaction inside a single-walled carbon nanotube. Adv. Mater. 2008, 20, 1443–1449. [Google Scholar] [CrossRef]
- Shiozawa, H.; Kramberger, C.; Pfeiffer, R.; Kuzmany, H.; Pichler, T.; Liu, Z.; Suenaga, K.; Kataura, H.; Silva, S.R.P. Catalyst and Chirality Dependent Growth of Carbon Nanotubes Determined Through Nano-Test Tube Chemistry. Adv. Mater. 2010, 22, 3685–3689. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Sauer, M.; Saito, T.; Krause, S.; Liu, X.; Yanagi, K.; Pichler, T.; Shiozawa, H. Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Phys. Status Solidi (b) 2013, 250, 2575–2580. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Saito, T.; Shiozawa, H.; Pichler, T. In situ Raman spectroscopy studies on time-dependent inner tube growth in ferrocene-filled large diameter single-walled carbon nanotubes. Phys. Status Solidi (b) 2014, 251, 2394–2400. [Google Scholar] [CrossRef]
- Sauer, M.; Shiozawa, H.; Ayala, P.; Ruiz-Soria, G.; Liu, X.J.; Chernov, A.; Krause, S.; Yanagi, K.; Kataura, H.; Pichler, T. Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon 2013, 59, 237–245. [Google Scholar] [CrossRef]
- Plank, W.; Pfeiffer, R.; Schaman, C.; Kuzmany, H.; Calvaresi, M.; Zerbetto, F.; Meyer, J. Electronic Structure of Carbon Nanotubes with Ultrahigh Curvature. ACS Nano 2010, 4, 4515–4522. [Google Scholar] [CrossRef]
- Briones-Leon, A.; Ayala, P.; Liu, X.J.; Yanagi, K.; Weschke, E.; Eisterer, M.; Jiang, H.; Kataura, H.; Pichler, T.; Shiozawa, H. Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Phys. Rev. B 2013, 87, 195435. [Google Scholar] [CrossRef] [Green Version]
- Li, L.J.; Khlobystov, A.N.; Wiltshire, J.G.; Briggs, G.A.D.; Nicholas, R.J. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat. Mater. 2005, 4, 481–485. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Saito, T.; Shiozawa, H.; Pichler, T. Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes. Appl. Phys. A. 2016, 122, 749. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Sauer, M.; Saito, T.; Sato, Y.; Suenaga, K.; Pichler, T.; Shiozawa, H. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 2014, 7, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Kharlamova, M.V.; Sauer, M.; Egorov, A.; Kramberger, C.; Saito, T.; Pichler, T.; Shiozawa, H. Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. Phys. Status Solidi (b) 2015, 252, 2485–2490. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Sauer, M.; Yanagi, K.; Saito, T.; Pichler, T. Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes. Appl. Phys. A 2018, 124, 247. [Google Scholar] [CrossRef]
- Shiozawa, H.; Pichler, T.; Kramberger, C.; Rummeli, M.; Batchelor, D.; Liu, Z.; Suenaga, K.; Kataura, H.; Silva, S.R.P. Screening the Missing Electron: Nanochemistry in Action. Phys. Rev. Lett. 2009, 102, 046804. [Google Scholar] [CrossRef] [PubMed]
- Shiozawa, H.; Kramberger, C.; Rummeli, M.; Batchelor, D.; Kataura, H.; Pichler, T.; Silva, S.R.P. Electronic properties of single-walled carbon nanotubes encapsulating a cerium organometallic compound. Phys. Status Solidi (b) 2009, 246, 2626–2630. [Google Scholar] [CrossRef]
- Shiozawa, H.; Silva, S.R.P.; Liu, Z.; Suenaga, K.; Kataura, H.; Kramberger, C.; Pfeiffer, R.; Kuzmany, H.; Pichler, T. Low-temperature growth of single-wall carbon nanotubes inside nano test tubes. Phys. Status Solidi (b) 2010, 247, 2730–2733. [Google Scholar] [CrossRef]
- Stoppiello, C.T.; Biskupek, J.; Li, Z.Y.; Rance, G.A.; Botos, A.; Fogarty, R.M.; Bourne, R.A.; Yuan, J.; Lovelock, K.R.J.; Thompson, P.; et al. A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale 2017, 9, 14385–14394. [Google Scholar] [CrossRef]
- Sauer, M.; Briones-Leon, A.; Saito, T.; Yanagi, K.; Schulte, K.; Pichler, T.; Shiozawa, H. Tailoring the electronic properties of single-walled carbon nanotubes via filling with nickel acetylacetonate. Phys. Status Solidi (b) 2015, 252, 2546–2550. [Google Scholar] [CrossRef]
- Loebick, C.Z.; Majewska, M.; Ren, F.; Haller, G.L.; Pfefferle, L.D. Fabrication of Discrete Nanosized Cobalt Particles Encapsulated Inside Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2010, 114, 11092–11097. [Google Scholar] [CrossRef]
- Morgan, D.A.; Sloan, J.; Green, M.L.H. Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem. Commun. 2002, 2442–2443. [Google Scholar] [CrossRef]
- Kataura, H.; Maniwa, Y.; Kodama, T.; Kikuchi, K.; Suzuki, S.; Achiba, Y.; Sugiura, K.; Okubo, S.; Tsukagoshi, K. One-dimensional system in carbon nanotubes. AIP Conf. Proc. 2003, 685, 349–353. [Google Scholar]
- Tschirner, N.; Brose, K.; Maultzsch, J.; Yanagi, K.; Kataura, H.; Thomsen, C. The influence of incorporated beta-carotene on the vibrational properties of single wall carbon nanotubes. Phys. Status Solidi (b) 2010, 247, 2734–2737. [Google Scholar] [CrossRef]
- Yanagi, K.; Miyata, Y.; Kataura, H. Highly stabilized beta-carotene in carbon nanotubes. Adv. Mater. 2006, 18, 437. [Google Scholar] [CrossRef]
- Takenobu, T.; Takano, T.; Shiraishi, M.; Murakami, Y.; Ata, M.; Kataura, H.; Achiba, Y.; Iwasa, Y. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2003, 2, 683–688. [Google Scholar] [CrossRef]
- Fan, X.; Dickey, E.C.; Eklund, P.C.; Williams, K.A.; Grigorian, L.; Buczko, R.; Pantelides, S.T.; Pennycook, S.J. Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4621–4624. [Google Scholar] [CrossRef]
- Guan, L.H.; Suenaga, K.; Shi, Z.J.; Gu, Z.N.; Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 2007, 7, 1532–1535. [Google Scholar] [CrossRef]
- Kissell, K.R.; Hartman, K.B.; Van der Heide, P.A.W.; Wilson, L.J. Preparation of I-2@ SWNTs: Synthesis and spectroscopic characterization of I-2-loaded SWNTs. J. Phys. Chem. B 2006, 110, 17425–17429. [Google Scholar] [CrossRef]
- Tonkikh, A.A.; Tsebro, V.I.; Obraztsova, E.A.; Suenaga, K.; Kataura, H.; Nasibulin, A.G.; Kauppinen, E.I.; Obraztsova, E.D. Metallization of single-wall carbon nanotube thin films induced by gas phase iodination. Carbon 2015, 94, 768–774. [Google Scholar] [CrossRef]
- Hatakeyama, R.; Li, Y. Synthesis and electronic-property control of Cs-encapsulated single- and double-walled carbon nanotubes by plasma ion irradiation. J. Appl. Phys. 2007, 102, 034309. [Google Scholar] [CrossRef]
- Jeong, G.H.; Hatakeyama, R.; Hirata, T.; Tohji, K.; Motomiya, K.; Yaguchi, T.; Kawazoe, Y. Formation and structural observation of cesium encapsulated single-walled carbon nanotubes. Chem. Commun. 2003, 152–153. [Google Scholar] [CrossRef]
- Nishide, D.; Dohi, H.; Wakabayashi, T.; Nishibori, E.; Aoyagi, S.; Ishida, M.; Kikuchi, S.; Kitaura, R.; Sugai, T.; Sakata, M.; et al. Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside. Chem. Phys. Lett. 2006, 428, 356–360. [Google Scholar] [CrossRef]
- Chancolon, J.; Archaimbault, F.; Pineau, A.; Bonnamy, S. Filling of carbon nanotubes with selenium by vapor phase process. J. Nanosci. Nanotech. 2006, 6, 82–86. [Google Scholar] [CrossRef]
- Chernysheva, M.V.; Kiseleva, E.A.; Verbitskii, N.I.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Savilov, S.V.; Kiselev, N.A.; Zhigalina, O.M.; Kumskov, A.S.; et al. The electronic properties of SWNTs intercalated by electron acceptors. Physica E 2008, 40, 2283–2288. [Google Scholar] [CrossRef]
- Sedelnikova, O.V.; Gurova, O.A.; Makarova, A.A.; Fedorenko, A.D.; Nikolenko, A.D.; Plyusnin, P.E.; Arenal, R.; Bulusheva, L.G.; Okotrub, A.V. Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials 2020, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.; White, E.R.; Chen, J.; McGilvery, C.M.; Pickard, C.J.; Michaelides, A.; Sella, A.; Shaffer, M.S.P.; Salzmann, C.G. Encapsulation and Polymerization of White Phosphorus Inside Single-Wall Carbon Nanotubes. Aew. Chem. Int. Edit. 2017, 56, 8144–8148. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.; Chen, J.; Michaelides, A.; Sella, A.; Shaffer, M.S.P.; Salzmann, C.G. One-Dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Single-Wall Carbon Nanotubes. Aew. Chem. Int. Edit. 2018, 57, 11649–11653. [Google Scholar]
- Wang, Z.Y.; Shi, Z.J.; Gu, Z.N. Synthesis of single-walled carbon nanotube/metal nanoparticle hybrid materials from potassium-filled nanotubes. Carbon 2010, 48, 443–446. [Google Scholar] [CrossRef]
- Kiang, C.H.; Choi, J.S.; Tran, T.T.; Bacher, A.D. Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes. J. Phys. Chem. B 1999, 103, 7449–7451. [Google Scholar] [CrossRef]
- Borowiak-Palen, E.; Mendoza, E.; Bachmatiuk, A.; Rummeli, M.H.; Gemming, T.; Nogues, J.; Skumryev, V.; Kalenczuk, R.J.; Pichler, T.; Silva, S.R.P. Iron filled single-wall carbon nanotubes-A novel ferromagnetic medium. Chem. Phys. Lett. 2006, 421, 129–133. [Google Scholar] [CrossRef]
- Borowiak-Palen, E.; Bachmatiuk, A.; Rummeli, M.H.; Gemming, T.; Pichler, T.; Kalenczuk, R.J. Iron filled singlewalled carbon nanotubes-synthesis and characteristic properties. Phys. Status Solidi (b) 2006, 243, 3277–3280. [Google Scholar] [CrossRef]
- Cui, T.T.; Pan, X.L.; Dong, J.H.; Miao, S.; Miao, D.Y.; Bao, X.H. A versatile method for the encapsulation of various non-precious metal nanoparticles inside single-walled carbon nanotubes. Nano Res. 2018, 11, 3132–3144. [Google Scholar] [CrossRef]
- Li, Y.F.; Kaneko, T.; Ogawa, T.; Takahashi, M.; Hatakeyama, R. Novel properties of single-walled carbon nanotubes with encapsulated magnetic atoms. Jpn. J. Appl. Phys. 2008, 47, 2048–2055. [Google Scholar] [CrossRef]
- Domanov, O.; Weschke, E.; Saito, T.; Peterlik, H.; Pichler, T.; Eisterer, M.; Shiozawa, H. Exchange coupling in a frustrated trimetric molecular magnet reversed by a 1D nano-confinement. Nanoscale 2019, 11, 10615–10621. [Google Scholar] [CrossRef] [Green Version]
- Sloan, J.; Hammer, J.; Zwiefka-Sibley, M.; Green, M.L.H. The opening and filling of single walled carbon nanotubes (SWTs). Chem. Commun. 1998, 347–348. [Google Scholar] [CrossRef]
- Govindaraj, A.; Satishkumar, B.C.; Nath, M.; Rao, C.N.R. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 2000, 12, 202–205. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Niu, J.J. Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl. Phys. A 2012, 109, 25–29. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Niu, J.J. Donor doping of single-walled carbon nanotubes by filling of channels with silver. J. Exp. Theor. Phys. 2012, 115, 485–491. [Google Scholar] [CrossRef]
- Borowiak-Palen, E.; Ruemmeli, M.H.; Gemming, T.; Pichler, T.; Kalenczuk, R.J.; Silva, S.R.P. Silver filled single-wall carbon nanotubes-synthesis, structural and electronic properties. Nanotechnology 2006, 17, 2415–2419. [Google Scholar] [CrossRef]
- Corio, P.; Santos, A.P.; Santos, P.S.; Temperini, M.L.A.; Brar, V.W.; Pimenta, M.A.; Dresselhaus, M.S. Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem. Phys. Lett. 2004, 383, 475–480. [Google Scholar] [CrossRef]
- Sloan, J.; Wright, D.M.; Woo, H.G.; Bailey, S.; Brown, G.; York, A.P.E.; Coleman, K.S.; Hutchison, J.L.; Green, M.L.H. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 1999, 699–700. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Li, B.; Shi, Z.J.; Gu, Z.N.; Xue, Z.Q.; Peng, L.M. Filling of single-walled carbon nanotubes with silver. J. Mater. Res. 2000, 15, 2658–2661. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Niu, J.J. New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett. 2012, 95, 314–319. [Google Scholar] [CrossRef]
- Chamberlain, T.W.; Zoberbier, T.; Biskupek, J.; Botos, A.; Kaiser, U.; Khlobystov, A.N. Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes. Chem. Sci. 2012, 3, 1919–1924. [Google Scholar] [CrossRef]
- Costa, P.M.F.J.; Sloan, J.; Rutherford, T.; Green, M.L.H. Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem. Mater. 2005, 17, 6579–6582. [Google Scholar] [CrossRef]
- Zoberbier, T.; Chamberlain, T.W.; Biskupek, J.; Kuganathan, N.; Eyhusen, S.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A.N. Interactions and Reactions of Transition Metal Clusters with the Interior of Single-Walled Carbon Nanotubes Imaged at the Atomic Scale. J. Am. Chem. Soc. 2012, 134, 3073–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitaura, R.; Nakanishi, R.; Saito, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High-Yield Synthesis of Ultrathin Metal Nanowires in Carbon Nanotubes. Aew. Chem. Int. Edit. 2009, 48, 8298–8302. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, R.; Kitaura, R.; Ayala, P.; Shiozawa, H.; De Blauwe, K.; Hoffmann, P.; Choi, D.; Miyata, Y.; Pichler, T.; Shinohara, H. Electronic structure of Eu atomic wires encapsulated inside single-wall carbon nanotubes. Phys. Rev. B 2012, 86, 115445. [Google Scholar] [CrossRef]
- Ayala, P.; Kitaura, R.; Nakanishi, R.; Shiozawa, H.; Ogawa, D.; Hoffmann, P.; Shinohara, H.; Pichler, T. Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes. Phys. Rev. B 2011, 83, 085407. [Google Scholar] [CrossRef]
- Zakalyukin, R.M.; Mavrin, B.N.; Dem’yanets, L.N.; Kiselev, N.A. Synthesis and characterization of single-walled carbon nanotubes filled with the superionic material SnF2. Carbon 2008, 46, 1574–1578. [Google Scholar] [CrossRef]
- Eliseev, A.A.; Yashina, L.V.; Brzhezinskaya, M.M.; Chernysheva, M.V.; Kharlamova, M.V.; Verbitsky, N.I.; Lukashin, A.V.; Kiselev, N.A.; Kumskov, A.S.; Zakalyuhin, R.M.; et al. Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 2010, 48, 2708–2721. [Google Scholar] [CrossRef]
- Eliseev, A.A.; Yashina, L.V.; Verbitskiy, N.I.; Brzhezinskaya, M.M.; Kharlamova, M.V.; Chernysheva, M.V.; Lukashin, A.V.; Kiselev, N.A.; Kumskov, A.S.; Freitag, B.; et al. Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 2012, 50, 4021–4039. [Google Scholar] [CrossRef]
- Flahaut, E.; Sloan, J.; Coleman, K.; Green, M. Synthesis of 1D P-block halide crystals within single walled carbon nanotubes. AIP Conf. Proc. 2001, 591, 283–286. [Google Scholar]
- Monthioux, M.; Flahaut, E.; Cleuziou, J.P. Hybrid carbon nanotubes: Strategy, progress, and perspectives. J. Mater. Res. 2006, 21, 2774–2793. [Google Scholar] [CrossRef]
- Sloan, J.; Kirkland, A.I.; Hutchison, J.L.; Green, M.L.H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 2002, 1319–1332. [Google Scholar] [CrossRef]
- Eremina, V.A.; Fedotov, P.V.; Obraztsova, E.D. Copper chloride functionalization of semiconducting and metallic fractions of single-walled carbon nanotubes. J. Nanophotonics 2015, 10, 012515. [Google Scholar] [CrossRef]
- Fedotov, P.V.; Tonkikh, A.A.; Obraztsova, E.A.; Nasibulin, A.G.; Kauppinen, E.I.; Chuvilin, A.L.; Obraztsova, E.D. Optical properties of single-walled carbon nanotubes filled with CuCl by gas-phase technique. Phys. Status Solidi (b) 2014, 251, 2466–2470. [Google Scholar] [CrossRef]
- Fedotov, P.V.; Eremina, V.A.; Tonkikh, A.A.; Chernov, A.I.; Obraztsova, E.D. Enhanced optical transparency of films formed from sorted metallic or semiconducting single-walled carbon nanotubes filled with CuCl. Phys. Status Solidi (b) 2016, 253, 2400–2405. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Mittelberger, A.; Yanagi, K.; Pichler, T.; Eder, D. Silver Chloride Encapsulation-Induced Modifications of Raman Modes of Metallicity-Sorted Semiconducting Single-Walled Carbon Nanotubes. Spectrosc. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Domanov, O.; Mittelberger, A.; Yanagi, K.; Pichler, T.; Eder, D. Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. J. Mater. Sci. 2018, 53, 13018–13029. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Domanov, O.; Mittelberger, A.; Saito, T.; Yanagi, K.; Pichler, T.; Eder, D. Comparison of Doping Levels of Single-Walled Carbon Nanotubes Synthesized by Arc-Discharge and Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. Phys. Status Solidi (b) 2018, 255, 1800178. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Comparison of influence of incorporated 3d-, 4d- and 4f metal chlorides on electronic properties of single-walled carbon nanotubes. Appl. Phys. A-Mer. 2013; in press. [Google Scholar]
- Kharlamova, M.V.; Yashina, L.V.; Eliseev, A.A.; Volykhov, A.A.; Neudachina, V.S.; Brzhezinskaya, M.M.; Zyubina, T.S.; Lukashin, A.V.; Tretyakov, Y.D. Single-walled carbon nanotubes filled with nickel halogenides: Atomic structure and doping effect. Phys. Status Solidi (b) 2012, 249, 2328–2332. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Eliseev, A.A.; Yashina, L.V.; Lukashin, A.V.; Tretyakov, Y.D. Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides. J. Phys. Conf. Ser. 2012, 345, 012034. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Yashina, L.V.; Volykhov, A.A.; Niu, J.J.; Neudachina, V.S.; Brzhezinskaya, M.M.; Zyubina, T.S.; Belogorokhov, A.I.; Eliseev, A.A. Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur. Phys. J. B 2012, 85, 34. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Brzhezinskaya, M.; Vinogradov, A.; Suzdalev, I.; Maksimov, Y.V.; Imshennik, V.; Novichikhin, S.V.; Krestinin, A.V.; Yashina, L.V.; Lukashin, A.V.; et al. The forming and properties of one-dimensional FeHaI 2 (HaI=Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes. Rus. Nanotechnol. 2009, 4, 77–8787. [Google Scholar]
- Sloan, J.; Friedrichs, S.; Flahaut, E.; Brown, G.; Bailey, S.R.; Coleman, K.S.; Xu, C.; Green, M.L.H.; Hutchison, J.L.; Kirkland, A.I.; et al. The characterisation of sub-nanometer scale structures within single walled carbon nanotubes. Am. Inst. Phys. 2001, 277–282. [Google Scholar]
- Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; et al. Single-Walled Carbon Nanotube Reactor for Redox Transformation of Mercury Dichloride. Acs Nano 2017, 11, 8643–8649. [Google Scholar] [CrossRef] [PubMed]
- Kharlamova, M.V.; Yashina, L.V.; Lukashin, A.V. Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J. Mater. Sci. 2013, 48, 8412–8419. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Nanoscomposites on Basis of Carbon Nnaotubes: Synthsis, and Modification of the Electronic Properties. Ph.D. Thesis, Lomonosov Moscow State University, Moscow, Russia, 2013. [Google Scholar]
- Kharlamova, M.V. Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Appl. Phys. A 2016, 122, 791. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Pichler, T. Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride. Phys. Status Solidi (b) 2016, 253, 2433–2439. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Rudatis, P.; Pichler, T.; Eder, D. Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes. Appl. Phys. A 2019, 125, 320. [Google Scholar] [CrossRef]
- Kitaura, R.; Ogawa, D.; Kobayashi, K.; Saito, T.; Ohshima, S.; Nakamura, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High Yield Synthesis and Characterization of the Structural and Magnetic Properties of Crystalline ErCl3 Nanowires in Single-Walled Carbon Nanotube Templates. Nano Res. 2008, 1, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Satishkumar, B.C.; Taubert, A.; Luzzi, D.E. Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires. J. Nanosci. Nanotechnol. 2003, 3, 159–163. [Google Scholar] [CrossRef]
- Xu, C.G.; Sloan, J.; Brown, G.; Bailey, S.; Williams, V.C.; Friedrichs, S.; Coleman, K.S.; Flahaut, E.; Hutchison, J.L.; Dunin-Borkowski, R.E.; et al. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem. Commun. 2000, 2427–2428. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes. Appl. Phys. A 2014, 118, 27–35. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Volykhov, A.A.; Yashina, L.V.; Egorov, A.V.; Lukashin, A.V. Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. J. Mater. Sci. 2015, 50, 5419–5430. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Mittelberger, A. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes. Appl. Phys. A 2017, 123, 239. [Google Scholar] [CrossRef]
- Santidrian, A.; Kierkowicz, M.; Pach, E.; Darvasiova, D.; Ballesteros, B.; Tobias, G.; Kalbac, M. Charge transfer in steam purified arc discharge single walled carbon nanotubes filled with lutetium halides. Phys. Chem. Chem. Phys. 2020, 22, 10063–10075. [Google Scholar] [CrossRef]
- Brown, G.; Bailey, S.R.; Sloan, J.; Xu, C.G.; Friedrichs, S.; Flahaut, E.; Coleman, K.S.; Hutchison, J.L.; Dunin-Borkowski, R.E.; Green, M.L.H. Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem. Commun. 2001, 845–846. [Google Scholar] [CrossRef]
- Brown, G.; Bailey, S.R.; Novotny, M.; Carter, R.; Flahaut, E.; Coleman, K.S.; Hutchison, J.L.; Green, M.L.H.; Sloan, J. High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes. Appl. Phys. A 2003, 76, 457–462. [Google Scholar] [CrossRef]
- Kirkland, A.I.; Meyer, M.R.; Sloan, J.; Hutchison, J.L. Structure determination of atomically controlled crystal architectures grown within single wall carbon nanotubes. Microsc. Microanal. 2005, 11, 401–409. [Google Scholar] [CrossRef]
- Sloan, J.; Friedrichs, S.; Meyer, R.R.; Kirkland, A.I.; Hutchison, J.L.; Green, M.L.H. Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: A brief review. Inorg. Chim. Acta. 2002, 330, 1–12. [Google Scholar] [CrossRef]
- Sloan, J.; Kirkland, A.I.; Hutchison, J.L.; Green, M.L.H. Aspects of crystal growth within carbon nanotubes. Comptes Rendus Phys. 2003, 4, 1063–1074. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Eliseev, A.A.; Yashina, L.V.; Petukhov, D.I.; Liu, C.P.; Wang, C.Y.; Semenenko, D.A.; Belogorokhov, A.I. Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Lett. 2010, 91, 196–200. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Raman Spectroscopy Study of the Doping Effect of the Encapsulated Iron, Cobalt, and Nickel Bromides on Single-Walled Carbon Nanotubes. J. Spectrosc. 2015, 2015, 653848. [Google Scholar] [CrossRef] [Green Version]
- Bendall, J.S.; Ilie, A.; Welland, M.E.; Sloan, J.; Green, M.L.H. Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 6569–6573. [Google Scholar] [CrossRef] [PubMed]
- Chernysheva, M.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Savilov, S.V.; Kiselev, N.A.; Zhigalina, O.M.; Kumskov, A.S.; Krestinin, A.V.; Hutchison, J.L. Filling of single-walled carbon nanotubes by Cul nanocrystals via capillary technique. Physica E 2007, 37, 62–65. [Google Scholar] [CrossRef]
- Hutchison, J.L.; Sloan, J.; Kirkland, A.I.; Green, M.L.H.; Green, M.L.H. Growing and characterizing one-dimensional crystals within single-walled carbon nanotubes. J. Electron Microsc. 2004, 53, 101–106. [Google Scholar] [CrossRef]
- Kiselev, N.A.; Zakalyukin, R.M.; Zhigalina, O.M.; Grobert, N.; Kumskov, A.S.; Grigoriev, Y.V.; Chernysheva, M.V.; Eliseev, A.A.; Krestinin, A.V.; Tretyakov, Y.D.; et al. The structure of 1D CuI crystals inside SWNTs. J. Microsc. 2008, 232, 335–342. [Google Scholar] [CrossRef]
- Kiselev, N.A.; Kumskov, A.S.; Zakalyukin, R.M.; Vasiliev, A.L.; Chernisheva, M.V.; Eliseev, A.A.; Krestinin, A.V.; Freitag, B.; Hutchison, J.L. The structure of nanocomposite 1D cationic conductor crystal@SWNT. J. Microsc. 2012, 246, 309–321. [Google Scholar] [CrossRef]
- Kumskov, A.S.; Zhigalina, V.G.; Chuvilin, A.L.; Verbitskiy, N.I.; Ryabenko, A.G.; Zaytsev, D.D.; Eliseev, A.A.; Kiselev, N.A. The structure of 1D and 3D CuI nanocrystals grown within 1.5-2.5 nm single wall carbon nanotubes obtained by catalyzed chemical vapor deposition. Carbon 2012, 50, 4696–4704. [Google Scholar] [CrossRef]
- Meyer, R.R.; Sloan, J.; Dunin-Borkowski, R.E.; Kirkland, A.I.; Novotny, M.C.; Bailey, S.R.; Hutchison, J.L.; Green, M.L.H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289, 1324–1326. [Google Scholar] [CrossRef] [Green Version]
- Sloan, J.; Novotny, M.C.; Bailey, S.R.; Brown, G.; Xu, C.; Williams, V.C.; Friedrichs, S.; Flahaut, E.; Callender, R.L.; York, A.P.E.; et al. Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem. Phys. Lett. 2000, 329, 61–65. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C.; Rudatis, P.; Yanagi, K.; Eder, D. Characterization of the Electronic Properties of Single-Walled Carbon Nanotubes Filled with an Electron Donor-Rubidium Iodide: Multifrequency Raman and X-ray Photoelectron Spectroscopy Studies. Phys. Status Solidi (b) 2019, 256, 1900209. [Google Scholar] [CrossRef]
- Flahaut, E.; Sloan, J.; Friedrichs, S.; Kirkland, A.I.; Coleman, K.S.; Williams, V.C.; Hanson, N.; Hutchison, J.L.; Green, M.L.H. Crystallization of 2H and 4H PbI2 in carbon nanotubes of varying diameters and morphologies. Chem. Mater. 2006, 18, 2059–2069. [Google Scholar] [CrossRef]
- Philp, E.; Sloan, J.; Kirkland, A.I.; Meyer, R.R.; Friedrichs, S.; Hutchison, J.L.; Green, M.L.H. An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat. Mater. 2003, 2, 788–791. [Google Scholar] [CrossRef]
- Sloan, J.; Grosvenor, S.J.; Friedrichs, S.; Kirkland, A.I.; Hutchison, J.L.; Green, M.L.H. A one-dimensional BaI2 chain with five- and six-coordination, formed within a single-walled carbon nanotube. Aew. Chem. Int. Edit. 2002, 41, 1156. [Google Scholar] [CrossRef]
- Friedrichs, S.; Falke, U.; Green, M.L.H. Phase separation of Lal3 inside single-walled carbon nanotubes. Chemphyschem 2005, 6, 300–305. [Google Scholar] [CrossRef]
- Friedrichs, S.; Kirkland, A.I.; Meyer, R.R.; Sloan, J.; Green, M.L.H. LaI2@(18,3)SWNT: The unprecedented structure of a LaI2 "Crystal," encapsulated within a single-walled carbon nanotube. Microsc. Microanal. 2005, 11, 421–430. [Google Scholar] [CrossRef]
- Sloan, J.; Terrones, M.; Nufer, S.; Friedrichs, S.; Bailey, S.R.; Woo, H.G.; Ruhle, M.; Hutchison, J.L.; Green, M.L.H. Metastable one-dimensional AgCl1-xIx solid-solution wurzite "tunnel" crystals formed within single-walled carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 2116–2117. [Google Scholar] [CrossRef]
- Falaleev, N.S.; Kumskov, A.S.; Zhigalina, V.G.; Verbitskiy, I.I.; Vasiliev, A.L.; Makarova, A.A.; Vyalikh, D.V.; Kiselev, N.A.; Eliseev, A.A. Capsulate structure effect on SWNTs doping in RbxAg1-xI@SWNT composites. Crystengcomm 2017, 19, 3063–3070. [Google Scholar] [CrossRef] [Green Version]
- Kharlamova, M.V. Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. J. Mater. Sci. 2014, 49, 8402–8411. [Google Scholar] [CrossRef]
- Eliseev, A.A.; Chernysheva, M.V.; Verbitskii, N.I.; Kiseleva, E.A.; Lukashin, A.V.; Tretyakov, Y.D.; Kiselev, N.A.; Zhigalina, O.M.; Zakalyukin, R.M.; Vasiliev, A.L.; et al. Chemical Reactions within Single-Walled Carbon Nanotube Channels. Chem. Mater. 2009, 21, 5001–5003. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, H.; Liu, Z.; Shi, Z.J.; Lu, J.; Suenaga, K.; Joung, S.K.; Okazaki, T.; Gu, Z.N.; Zhou, J.; et al. Mixed Low-Dimensional Nanomaterial: 2D Ultranarrow MoS2 Inorganic Nanoribbons Encapsulated in Quasi-1D Carbon Nanotubes. J. Am. Chem. Soc. 2010, 132, 13840–13847. [Google Scholar] [CrossRef] [PubMed]
- Kharlamova, M.V.; Yashina, L.V.; Lukashin, A.V. Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl. Phys. A-Mer. 2013, 112, 297–304. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process. JETP Lett. 2013, 98, 272–277. [Google Scholar] [CrossRef]
- Carter, R.; Sloan, J.; Kirkland, A.I.; Meyer, R.R.; Lindan, P.J.D.; Lin, G.; Green, M.L.H.; Vlandas, A.; Hutchison, J.L.; Harding, J. Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys. Rev. Lett. 2006, 96, 215501. [Google Scholar] [CrossRef]
- Sloan, J.; Carter, R.; Meyer, R.R.; Vlandas, A.; Kirkland, A.I.; Lindan, P.J.D.; Lin, G.; Harding, J.; Hutchison, J.L. Structural correlation of band-gap modifications induced in mercury telluride by dimensional constraint in single walled carbon nanotubes. Phys. Status Solidi (b) 2006, 243, 3257–3262. [Google Scholar] [CrossRef]
- Monthioux, M. Introduction to the Meta-Nanotube Book. In Carbon Meta-Nanotubes: Synthesis, Properties, and Applications; John Wiley & Sons Ltd.: New York, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Sloan, J.; Monthioux, M. Filled Carbon Nanotubes: (X@CNTs). In Carbon Meta-Nanotubes: Synthesis, Properties, and Applications; John Wiley & Sons Ltd.: New York, NY, USA, 2012; pp. 225–272. [Google Scholar]
- Simon, F.; Monthioux, M. Fullerenes inside Carbon Nanotubes: The Peapods. In Carbon Meta-Nanotubes: Synthesis, Properties, and Applications; John Wiley & Sons Ltd.: New York, NY, USA, 2012; pp. 273–322. [Google Scholar]
- Pfeiffer, R.; Holzweber, M.; Peterlik, H.; Kuzmany, H.; Liu, Z.; Suenaga, K.; Kataura, H. Dynamics of Carbon Nanotube Growth from Fullerenes. Nano Lett. 2007, 7, 2428–2434. [Google Scholar] [CrossRef]
- Kharlamova, M.V. Investigation of growth dynamics of carbon nanotubes. Beilstein J. Nanotechnol. 2017, 8, 826–856. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Kramberger, C. Metal Cluster Size-Dependent Activation Energies of Growth of Single-Chirality Single-Walled Carbon Nanotubes inside Metallocene-Filled Single-Walled Carbon Nanotubes. Nanomaterials 2021, 11, 2649. [Google Scholar] [CrossRef]
Encapsulated Metal Halogenide | Diameter and Conductivity Type of SWCNTs a | Methods of the Investigation of the Electronic Properties b | Type of Doping | Fermi Level Shift, eV | Reference |
---|---|---|---|---|---|
AgCl | 1.4 nm m-SWCNT | RS, XPS, UPS | p | −0.36 | [164] |
AgCl | 1.4 nm s-SWCNT | RS | p | n/a | [163] |
PrCl3 | 1.4 nm m-SWCNT | OAS, RS, XAS, XPS | p | −0.42 | [182] |
1.4 nm s-SWCNT | −0.28 | ||||
CuCl | 1.4 nm m-SWCNT | OAS, RS (+ EC charging), XAS, XPS, WF, VB | p | −0.57 | [156] |
1.4 nm s-SWCNT | −0.37 | ||||
CuBr | 1.4 nm m-SWCNT | OAS, RS (+ EC charging), XAS, XPS, WF, VB | p | −0.60 | [156] |
1.4 nm s-SWCNT | −0.36 | ||||
CuI | 1.4 nm m-SWCNT | OAS, RS (+ EC charging), XAS, XPS, WF, VB | p | −0.35 | [156] |
1.4 nm s-SWCNT | −0.25 | ||||
MnCl2 | 1.4 nm mix-SWCNT | RS, XPS | p | −0.43 | [175] |
MnBr2 | 1.4 nm mix-SWCNT | RS, XPS | p | −0.37 | [175] |
FeCl2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.30 | [170] |
FeBr2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.30 | [170] |
FeI2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.30 | [170] |
CoBr2 | 1.4 nm mix-SWCNT | OAS, RS, XPS | p | −0.38 | [190] |
NiCl2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.58 | [167] |
NiBr2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.29 | [167] |
ZnCl2 | 1.4 nm mix-SWCNT | OAS, RS, XAS | p | n/a | [169] |
ZnBr2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS, WF, VB | p | −0.28 | [169] |
ZnI2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.25 | [169] |
RbI | 1.4 nm mix-SWCNT | RS, XPS | n | +0.20 | [200] |
RbAg4I5 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.35 | [207] |
AgCl | 1.4 nm mix-SWCNT | OAS, RS (+ EC charging), XAS, XPS, UPS | p | −0.38 | [155] |
AgBr | 1.4 nm mix-SWCNT | OAS, RS (+ EC charging), XAS, XPS, UPS | p | −0.37 | [155] |
AgI | 1.4 nm mix-SWCNT | OAS, RS (+ EC charging), XAS, XPS, UPS | p | −0.30 | [155] |
CdCl2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.36 | [173] |
CdBr2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.36 | [173] |
CdI2 | 1.4 nm mix-SWCNT | OAS, RS, XAS, XPS | p | −0.39 | [173] |
PbCl2 | 1.4 nm mix-SWCNT | RS, XPS | p | −0.15 | [177] |
PbBr2 | 1.4 nm mix-SWCNT | RS, XPS | p | −0.07 | [177] |
PbI2 | 1.4 nm mix-SWCNTs | RS, XPS | p | −0.17 | [177] |
TbCl3 | 1.4 nm mix-SWCNTs | RS | p | [183] | |
TbBr3 | 1.4 nm mix-SWCNTs | RS | p | [183] | |
TbI3 | 1.4 nm mix-SWCNTs | RS | p | [183] | |
TmCl3 | 1.4 nm mix-SWCNTs | RS | p | [211] | |
LuCl3 | 1.4 nm mix-SWCNTs | RS (+ EC charging) | p | [184] | |
LuBr3 | 1.4 nm mix-SWCNTs | RS (+ EC charging) | p | [184] | |
LuI3 | 1.4 nm mix-SWCNTs | RS (+ EC charging) | p | [184] | |
HgCl2 | 1.7 nm mix-SWCNT | XAS, XPS | p | −0.20 | [172] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharlamova, M.V.; Kramberger, C. Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes. Nanomaterials 2023, 13, 314. https://doi.org/10.3390/nano13020314
Kharlamova MV, Kramberger C. Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes. Nanomaterials. 2023; 13(2):314. https://doi.org/10.3390/nano13020314
Chicago/Turabian StyleKharlamova, Marianna V., and Christian Kramberger. 2023. "Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes" Nanomaterials 13, no. 2: 314. https://doi.org/10.3390/nano13020314
APA StyleKharlamova, M. V., & Kramberger, C. (2023). Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes. Nanomaterials, 13(2), 314. https://doi.org/10.3390/nano13020314