Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect
Abstract
:1. Introduction
2. Device Structure and Working Mechanism
3. Experiments Section
3.1. Device Fabrication
3.2. Device Measurement
4. Results and Discussion
4.1. Device Characterization
4.2. Position-Sensitive Characteristics
4.3. Photoresponse Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.H.; Liu, J.P.; Ni, Z.H. Position-sensitive Detectors Based on Two-dimensional Materials. Nano Res. 2021, 14, 1889–1900. [Google Scholar] [CrossRef]
- Cao, B.H.; Hoang, P.L.; Ahn, S.; Kang, H.; Kim, J.; Noh, J. High-Speed Focus Inspection System Using a Position-Sensitive Detector. Sensors 2017, 17, 2842. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wan, D.; Wang, W.; Fei, C.; Zhou, T.; Guo, D.; Bai, L.; Li, Y.; Ni, Z.; Lu, J. A Time-Division Position-Sensitive Detector Image System for High-Speed Multitarget Trajectory Tracking. Adv. Mater. 2022, 34, e2206638. [Google Scholar] [CrossRef]
- Lin, S.; Wang, W.; Wang, H.; Song, Y.; Pan, Y.; Qiao, J.; Xue, Y.; Chen, Q.; Liu, M.; Shen, Y.; et al. A High-Precision Dynamic Six Degree-of-Freedom Pose Measurement of the Subreflectors of Large Antennas Based on a Position Sensitive Detector and Laser Array. Adv. Astron. 2022, 2022, 3255088. [Google Scholar] [CrossRef]
- Long, D. Photovoltaic and Photoconductive Infrared Detectors Optical and Infrared Detectors. Top. Appl. Phys. 1974, 19, 101–147. [Google Scholar] [CrossRef]
- Fortunato, E.; Lavareda, G.; Vieira, M.; Martins, R. Thin Film Position Sensitive Detector Based on Amorphous Silicon p–i–n Diode. Rev. Sci. Instrum. 1994, 65, 3487. [Google Scholar] [CrossRef]
- Jiang, H.; Fu, J.T.; Nie, C.B.; Sun, F.Y.; Tang, L.; Sun, J.; Zhu, M.; Shen, J.; Feng, S.; Shi, H.; et al. Gate Modulation Enhanced Position-Sensitive Detectors Using Graphene/Silicon-on-Insulator Structure. Carbon 2021, 184, 445–451. [Google Scholar] [CrossRef]
- Kaniewski, J.; Muszaiski, J.; Piotriwski, J. Recent Advances in InGaAs Detector Technology. Phys. Status Solidi A 2004, 201, 2281–2287. [Google Scholar] [CrossRef]
- Protic, D.; Riepe, G. Position-Sensitive Germanium Detectors. IEEE Trans. Nucl. Sci. 1985, 32, 553–555. [Google Scholar] [CrossRef]
- Zeng, L.H.; Wang, M.Z.; Hu, H.; Nie, B.; Yu, Y.Q.; Wu, C.Y.; Wang, L.; Hu, J.-G.; Xie, C.; Liang, F.-X.; et al. Monolayer Graphene/Germanium Schottky Junction as High-performance Self-driven Infrared Light Photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef]
- Hu, W.; Cong, H.; Huang, W.; Huang, Y.; Chen, L.J.; Pan, A.; Xue, C.L. Germanium/Perovskite Heterostructure for High-performance and Broadband Photodetector from Visible to Infrared Telecommunication Band. Light Sci. Appl. 2019, 8, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colace, L.; Ferrara, P.; Assanto, G.; Fulgoni, D.; Nash, L. Low Dark-Current Germanium-on-Silicon Near-Infrared Detectors. IEEE Photonics Technol. Lett. 2007, 19, 1813–1815. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Cui, A.L.; Li, Q.; He, T.; Zhang, K.; Wang, Z.; Li, Z.; Zhang, Z.; Wu, P.; et al. Fast Uncooled Mid-Wavelength Infrared Photodetectors with Heterostructures of Van Der Waals on Epitaxial HgCdTe. Adv. Mater. 2022, 34, 6. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.N.Y.; Chen, S.Y.; Yang, K.; Chen, M.S.; Shaker, M.; Vdovin, E.E.; Ge, Q.; Novoselov, K.S.; Andreeva, D.V. Introduction to Two-Dimensional Materials. Surf. Rev. Lett. 2021, 28, 2140005. [Google Scholar] [CrossRef]
- Pelella, A.; Capista, D.; Passacantando, M.; Faella, E.; Grillo, A.; Giubileo, F.; Martucciello, N.; Di Bartolomeo, A. A Self-Powered CNT–Si Photodetector with Tuneable Photocurrent. Adv. Electron. Mater. 2022, 9, 2200919. [Google Scholar] [CrossRef]
- Pelella, A.; Capista, D.; Fealla, E.; Luongo, G.; Askari, M.B.; Di Bartolomeo, A. Graphene–Silicon Device for Visible and Infrared Photodetection. ACS Appl. Mater. Interfaces 2021, 13, 47895–47903. [Google Scholar] [CrossRef]
- Ma, J.; Chen, M.; Qiao, S.; Chang, J.; Fu, G.; Wang, S. Photovoltaic–Pyroelectric Coupled Effect in Ag2Se/Si Heterojunction for Broad-Band, Ultrafast, Self-Powered, Position-Sensitive Detectors. ACS Photonics 2022, 9, 2160–2169. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Chen, Y.F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X.; Ye, J.; Chen, Y.; Xie, R.; Zhou, Y.; et al. Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructures. Nat. Electron. 2021, 4, 357–363. [Google Scholar] [CrossRef]
- Liu, B.; Baimova, J.A.; Reddy, C.D.; Law, A.W.-K.; Dmitriev, S.V.; Wu, H.; Zhou, K. Interfacial Thermal Conductance of a Silicene/Graphene Bilayer Heterostructure and The Effect of Hydrogenation. ACS Appl. Mater. Interfaces 2014, 6, 18180–18188. [Google Scholar] [CrossRef]
- Xia, F.N.; Mueller, T.; Lin, Y.M.; Valdes-Garcia, A.; Avouris, P. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, H.Y.; Guo, X.; Bao, A.D.; Mao, H.Y.; Ma, Y.C.; Li, X.C. Graphene-Based Heterojunction for Enhanced Photodetectors. Chin. Phys. B 2022, 31, 038501. [Google Scholar] [CrossRef]
- Behura, S.K.; Wang, C.; Wen, Y.; Berry, V. Graphene–Semiconductor Heterojunction Sheds Light on Emerging Photovoltaics. Nat. Photonics 2019, 13, 312–318. [Google Scholar] [CrossRef]
- Liu, K.Y.; Wang, W.H.; Yu, Y.F.; Hou, X.Y.; Liu, Y.P.; Chen, W.; Wang, X.M.; Lu, J.P.; Ni, Z.H. Graphene-Based Infrared Position-Sensitive Detector for Precise Measurements and High-Speed Trajectory Tracking. Nano Lett. 2019, 19, 8131–8137. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Du, R.X.; Guo, X.T.; Jiang, J.; Zhao, W.W.; Ni, Z.H.; Wang, X.R.; You, Y.M.; Ni, Z.H. Interfacial Amplification for Graphene-Based Position-Sensitive-Detectors. Light Sci. Appl. 2017, 6, e17113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.H.; Liu, K.Y.; Jiang, J.; Du, R.X.; Sun, L.T.; Chen, W.; Lu, J.P.; Ni, Z.H. Ultrasensitive Graphene-Si Position-Sensitive Detector for Motion Tracking. InfoMat 2020, 2, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yan, Z.; Zhang, J.; Lu, J.; Qin, H.; Ni, Z. High-Performance Position-Sensitive Detector Based on Graphene-Silicon Heterojunction. Optica 2018, 5, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Yoo, T.; Kwon, M.; Chang, K.; Hwang, H.; Lee, B. High-Performance Near-Infrared Photodetectors Based on Gate-Controlled Graphene–Germanium Schottky Junction with Split Active Junction. Nanophotonics 2022, 11, 1041–1049. [Google Scholar] [CrossRef]
- Fu, J.T.; Que, L.C.; Jiang, H.; Luo, W.; Nie, C.B.; Leng, Q.Z.; Luo, Y.; Zhou, Y.; Lv, J.; Zhou, D.H. Effects of Doping Graphene on The Performance of Graphene–Silicon Hybrid Photoconductive Detectors. Nanotechnology 2020, 31, 485201. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A Review of Visible and Near-Infrared (Vis-NIR) Spectroscopy Application in Plant Stress Detection. Sens. Actuator A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Tang, Y.C.; Wu, F.; Chen, F.S.; Zhou, Y.; Wang, P.; Long, M.; Zhou, W.; Ning, Z.; He, J.; Gong, F.; et al. A Colloidal-Quantum-Dot Infrared Photodiode with High Photoconductive Gain. Small 2018, 14, e1803158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, M.; Fu, J.T.; Li, Z.C.; Shaikh, M.S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; et al. Ultrahigh Photogain Short-Wave Infrared Detectors Enabled by Integrating Graphene and Hyperdoped Silicon. ACS Nano 2022, 16, 12777–12785. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wei, J.; Sun, F.; Nie, C.; Fu, J.; Shi, H.; Sun, J.; Wei, X.; Qiu, C.W. Enhanced Photogating Effect in Graphene Photodetectors via Potential Fluctuation Engineering. ACS Nano 2022, 16, 4458–4466. [Google Scholar] [CrossRef]
- Khurelbaatar, Z.; Choi, C.J. Graphene/Ge Schottky Junction Based IR Photodetectors. Solid State Phenom. 2018, 271, 133–137. [Google Scholar] [CrossRef]
- Kwon, M.G.; Kim, C.; Chang, K.E.; Yoo, T.J.; Kim, S.Y.; Hwang, H.J.; Lee, S.; Lee, B. Performance Enhancement of Graphene/Ge Near-Infrared Photodetector by Modulating the Doping Level of Graphene. APL Photonics 2022, 7, 026101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Fu, J.; Sun, F.; Nie, C.; Wu, J. Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect. Nanomaterials 2023, 13, 322. https://doi.org/10.3390/nano13020322
Li G, Fu J, Sun F, Nie C, Wu J. Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect. Nanomaterials. 2023; 13(2):322. https://doi.org/10.3390/nano13020322
Chicago/Turabian StyleLi, Genglin, Jintao Fu, Feiying Sun, Changbin Nie, and Jun Wu. 2023. "Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect" Nanomaterials 13, no. 2: 322. https://doi.org/10.3390/nano13020322
APA StyleLi, G., Fu, J., Sun, F., Nie, C., & Wu, J. (2023). Graphene/Ge Photoconductive Position-Sensitive Detectors Based on the Charge Injection Effect. Nanomaterials, 13(2), 322. https://doi.org/10.3390/nano13020322