NiTi-Layered Double Hydroxide@Carbon Nanotube as a Cathode Material for Chloride-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of NiTi-LDH and NiTi-LDH@CNTs
2.2. Materials Characterization
2.3. Preparation of the Anode
2.4. Electrochemical Measurements
3. Results
3.1. Structural Characterization and Compositional Analysis of NiTi-LDH and NiTi-LDH@CNT Materials
3.2. Electrochemical Performances
3.3. Analysis of Chlorine Storage Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [PubMed]
- Sandstrom, S.; Chen, X.; Ji, X. A review of halide charge carriers for rocking-chair and dual-ion batteries. Carbon Energy 2021, 3, 627–653. [Google Scholar] [CrossRef]
- Gao, P.; Reddy, M.A.; Mu, X.; Diemant, T.; Zhang, L.; Zhao-Karger, Z.; Chakravadhanula, V.S.K.; Clemens, O.; Behm, R.J.; Fichtner, M. VOCl as a cathode for rechargeable chloride ion batteries. Angew. Chem. Int. Ed. 2016, 128, 4357–4362. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Yang, X.; Zhou, D.; Wang, X.; Jaumaux, P.; Kang, F.; Li, B.; Ji, X.; Wang, G. Rechargeable anion-shuttle batteries for low-cost energy storage. Chem 2021, 7, 1–29. [Google Scholar] [CrossRef]
- Gschwind, F.; Euchner, H.; Rodriguez-Garcia, G. Chloride ion battery review: Theoretical calculations, state of the art, safety, toxicity, and an outlook towards future developments. Eur. J. Inorg. Chem. 2017, 2017, 2784–2799. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Zhao, H.; Li, T.; Fang, Z. A novel type of chloride ion battery that can change the structure of electric vehicle. J. Power Sources 2021, 512, 230507. [Google Scholar] [CrossRef]
- Karkera, G.; Reddy, M.A.; Fichtner, M. Recent developments and future perspectives of anionic batteries. J. Power Sources 2021, 481, 228877. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Zhang, Y.; Wang, G.; Shi, X.; Zhang, H.; Li, J.; Deng, P.; Tian, X. Recent advances and future perspectives of rechargeable chloride-based batteries. Nano Energy 2023, 110, 108364. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao-Karger, Z.; Wang, D.; Fichtner, M. Metal oxychlorides as cathode materials for chloride ion batteries. Angew. Chem. Int. Ed. 2013, 52, 13621–13624. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhao, X.; Ma, L.; Shen, X. Intercalation and electrochemical behaviors of layered FeOCl cathode material in chloride ion battery. Mater. Res. Bull. 2017, 96, 485–490. [Google Scholar] [CrossRef]
- Yang, R.; Yu, T.; Zhao, X. Polypyrrole-coated iron oxychloride cathode material with improved cycling stability for chloride ion batteries. J. Alloys Compd. 2019, 788, 407–412. [Google Scholar] [CrossRef]
- Lakshmi, K.P.; Janas, K.J.; Shaijumon, M.M. Antimony oxychloride embedded graphene nanocomposite as efficient cathode material for chloride ion batteries. J. Power Sources 2019, 433, 126685. [Google Scholar] [CrossRef]
- Chen, S.; Wu, L.; Liu, Y.; Zhou, P.; An, Q.; Mai, L. Chloride ion battery: A new emerged electrochemical system for next-generation energy storage. J. Energy Chem. 2023, in press. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, T.; Miao, Y.; Zhao, X. Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery. Electrochim. Acta 2018, 270, 30–36. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, R.; Li, Z.; Wei, M.; Evans, D.G.; Duan, X. Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commn. 2015, 51, 15880–15893. [Google Scholar] [CrossRef]
- Yin, Q.; Rao, D.; Zhang, G.; Zhao, Y.; Han, J.; Lin, K.; Zheng, L.; Zhang, J.; Zhou, J.; Wei, M. CoFe–Cl layered double hydroxide: A new cathode material for high-Performance chloride ion batteries. Adv. Funct. Mater. 2019, 29, 1900983. [Google Scholar] [CrossRef]
- Luo, J.; Yin, Q.; Zhang, J.; Zhang, S.; Zheng, L.; Han, J. NiMn-Cl layered double hydroxide/carbon nanotube networks for high-performance chloride ion batteries. ACS Appl. Energy Mater. 2020, 3, 4559–4568. [Google Scholar] [CrossRef]
- Yin, Q.; Luo, J.; Zhang, J.; Zhang, S.; Han, J.; Lin, Y.; Zhou, J.; Zheng, L.; Wei, M. Ultralong-life chloride ion batteries achieved by the synergistic contribution of intralayer metals in layered double hydroxides. Adv. Funct. Mater. 2020, 30, 1907448. [Google Scholar] [CrossRef]
- Yin, Q.; Luo, J.; Zhang, J.; Zheng, L.; Cui, G.; Han, J.; O’hare, D. High-performance, long lifetime chloride ion battery using a NiFe–Cl layered double hydroxide cathode. J. Mater. Chem. A 2020, 8, 12548–12555. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, J.; Luo, J.; Han, J.; Shao, M.; Wei, M. A new family of rechargeable batteries based on halide ions shuttling. Chem. Eng. J. 2020, 389, 124376. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, T.; Song, Z.; Yang, S.; Miao, Y.; Wu, Y.; Sui, Y.; Qi, J.; Li, Y.; Zhao, D.; et al. Computational high-throughput screening of layered double hydroxides as cathodes for chloride ion batteries. Chem. Eng. J. 2023, 459, 141545. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, X.; Chen, G.; Shang, L.; Waterhouse, G.I.N.; Wu, L.; Tung, C.; O’hare, D.; Zhang, T. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, B.; Wang, Q.; Gao, W.; Wang, C.J.; Wei, M.; Evans, D.G.; Duan, X.; O’hare, D. NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chem. Sci. 2014, 5, 951–958. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Bian, T.; Yu, H.; Fan, H.; Zhou, C.; Wu, L.; Tung, C.; O’hare, D.; Zhang, T. Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale 2015, 7, 7168–7173. [Google Scholar] [CrossRef]
- Yang, X.; Tian, P.; Zhang, X.; Yu, X.; Wu, T.; Xu, J.; Han, Y. The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation. AICHE J. 2015, 61, 166–176. [Google Scholar] [CrossRef]
- Lin, G.; Zhu, L.; Duan, T.; Zhang, L.; Liu, B.; Lei, J. Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides. Chem. Eng. J. 2019, 378, 122181. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Zhang, S.; Gao, W.; Wei, M. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials. ACS Appl. Mater. Interfaces 2013, 5, 10233–10239. [Google Scholar] [CrossRef]
- Labajos, F.M.; Rives, V. Thermal evolution of chromium (III) ions in hydrotalcite-like compounds. Inorg. Chem. 1996, 35, 5313–5318. [Google Scholar] [CrossRef]
- Yu, T.; Li, Q.; Zhao, X.; Xia, H.; Ma, L.; Wang, J.; Meng, Y.S.; Shen, X. Nanoconfined iron oxychloride material as a high-performance cathode for rechargeable chloride ion batteries. ACS Energy Lett. 2017, 2, 2341–2348. [Google Scholar] [CrossRef]
- Yang, H.; Wu, X.L.; Cao, M.H.; Guo, Y.G. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J. Phys. Chem. C 2009, 113, 3345–3351. [Google Scholar] [CrossRef]
- Wang, D.; Peng, F.; Li, J.; Qiao, Y.; Li, Q.; Liu, X. Butyrate-inserted Ni–Ti layered double hydroxide film for H2O2-mediated tumor and bacteria killing. Mater. Today 2017, 20, 238–257. [Google Scholar] [CrossRef]
- Samuei, S.; Akbari, S.S.; Ülker, E.; Karadas, F. Effect of cobalt doping on photocatalytic water splitting activity of NiTi-layered double hydroxide. Catal. Sci. Technol. 2022, 12, 3044–3053. [Google Scholar] [CrossRef]
- Ge, N.; Wang, D.; Peng, F.; Li, J.; Qiao, Y.; Liu, X. Poly (styrenesulfonate)-modified Ni–Ti layered double hydroxide film: A smart drug-eluting platform. ACS Appl. Mater. Interfaces 2016, 8, 24491–24501. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; He, S.; Chen, H.; Cui, G.; Zheng, L.; Wang, B.; Wei, M. TiO2–x-modified Ni nanocatalyst with tunable metal–support interaction for water–gas shift reaction. ACS Catal. 2017, 7, 7600–7609. [Google Scholar] [CrossRef]
- Dong, C.; Liu, X.; Wang, X.; Yuan, X.; Xu, Z.; Dong, W.; Riaz, M.S.; Li, G.; Huang, F. Hierarchical Ni/NiTiO3 derived from NiTi LDHs: A bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2017, 5, 24767–24774. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Li, G.; Guo, Z.; Chu, J.; Ai, X.; Song, Z. A high-energy dual-ion battery based on chloride-inserted polyviologen cathode and LiCl/DMSO electrolyte. Energy Stor. Mater. 2022, 50, 658–667. [Google Scholar] [CrossRef]
Cathode Materials | Electrolyte | Current Density | Cycling Performance | References |
---|---|---|---|---|
CoFe-Cl LDH | 0.5 M BpyCl-PP14TFSI-PC | 100 mA g−1 | 160 mAh g−1 after 100 cycles | [19] |
NiMn-Cl LDH | 0.5 M Bpy14Cl-PC | 50 mA g−1 | 130 mAh g−1 after 150 cycles | [20] |
Ni2V0.9Al0.1-Cl LDH | 1 M Bpy14Cl-PP14TFSI-PC | 200 mA g−1 | 113.8 mAh g−1 after 1000 cycles | [21] |
NiFe-Cl LDH | 0.5 M Bpy14Cl-PC | 100 mA g−1 | 130 mAh g−1 after 100 cycles | [22] |
CoNi-Cl LDH | 0.5 M Bpy14Cl-PC/[PP14][NTf2] | 200 mA g−1 | 83 mAh g−1 after 50 cycles | [23] |
NiTi-Cl LDH | 0.5 M PP14Cl in PC | 200 mA g−1 | 131.8 mAh g−1 after 200 cycles | [24] |
This work | 0.5 M PP14Cl in PC | 100 mA g−1 | 69 mAh g−1 after 150 cycles |
Samples | Total Pore Volume (cm3 g−1) | Average Pore Diameter (nm) | BET Specific Surface Area (m2 g−1) |
---|---|---|---|
NiTi-LDH | 0.12 | 4.6 | 118 |
NiTi-LDH@CNTs | 0.42 | 6.3 | 266 |
Sample | Rs (Ω) | Rc (Ω) | Rct (Ω) | CPE1-T | CPE1-P | CPE2-T | CPE2-P | W1-R | W1-T | W1-P |
---|---|---|---|---|---|---|---|---|---|---|
NiTi-LDH | 6.55 | 22.82 | 136 | 2.03 × 10−5 | 0.86 | 2.50 × 10−5 | 0.81 | 749.2 | 4.02 | 0.65 |
NiTi-LDH@CNTs | 4.91 | 7.37 | 95 | 1.71 × 10−5 | 0.92 | 1.61 × 10−5 | 0.85 | 142 | 0.42 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Sun, S.; Zhang, C.; Zhao, X. NiTi-Layered Double Hydroxide@Carbon Nanotube as a Cathode Material for Chloride-Ion Batteries. Nanomaterials 2023, 13, 2779. https://doi.org/10.3390/nano13202779
Zou L, Sun S, Zhang C, Zhao X. NiTi-Layered Double Hydroxide@Carbon Nanotube as a Cathode Material for Chloride-Ion Batteries. Nanomaterials. 2023; 13(20):2779. https://doi.org/10.3390/nano13202779
Chicago/Turabian StyleZou, Lu, Shijiao Sun, Chang Zhang, and Xiangyu Zhao. 2023. "NiTi-Layered Double Hydroxide@Carbon Nanotube as a Cathode Material for Chloride-Ion Batteries" Nanomaterials 13, no. 20: 2779. https://doi.org/10.3390/nano13202779
APA StyleZou, L., Sun, S., Zhang, C., & Zhao, X. (2023). NiTi-Layered Double Hydroxide@Carbon Nanotube as a Cathode Material for Chloride-Ion Batteries. Nanomaterials, 13(20), 2779. https://doi.org/10.3390/nano13202779