Biocompatibility Evaluation of TiO2, Fe3O4, and TiO2/Fe3O4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiO2
2.2. Synthesis of Fe3O4
2.3. Synthesis of TiO2/Fe3O4
2.4. Characterization of Nanostructured Materials
2.5. Hemolytic Assay of Nanomaterials
2.6. Cell Viability Assay
2.7. Holotomography Assay
2.8. Statistical Analysis
3. Results
3.1. Scanning Electron Micrography (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
3.2. Transmission Electron Microscopy (TEM)
3.3. Crystallographic Analysis (X-ray Powder Diffraction (XRD) and Raman Spectroscopy)
3.4. Magnetic Susceptibility
3.5. Photoluminescence Spectroscopy (PL)
3.6. NM Characterization in Suspension
3.7. Hemolysis Assay
3.8. Cell Viability Assay
3.9. Holotomography
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. Chapter 1—An Introduction to Nanotechnology. In Interface Science and Technology; Nasrollahzadeh, M., Sajadi, S.M., Sajjadi, M., Issaabadi, Z., Atarod, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 1–27. ISBN 1573-4285. [Google Scholar]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef]
- Sardoiwala, M.N.; Kaundal, B.; Choudhury, S.R. Toxic Impact of Nanomaterials on Microbes, Plants and Animals. Environ. Chem. Lett. 2018, 16, 147–160. [Google Scholar] [CrossRef]
- Jain, R. Recent Advances of Magnetite Nanomaterials to Remove Arsenic from Water. RSC Adv. 2022, 12, 32197–32209. [Google Scholar] [CrossRef] [PubMed]
- Rind, I.K.; Tuzen, M.; Sarı, A.; Lanjwani, M.F.; Memon, N.; Saleh, T.A. Synthesis of TiO2 Nanoparticles Loaded on Magnetite Nanoparticles Modified Kaolinite Clay (KC) and Their Efficiency for As(III) Adsorption. Chem. Eng. Res. Des. 2023, 191, 523–536. [Google Scholar] [CrossRef]
- Ahamed, M.; Khan, M.A.M.; Akhtar, M.J.; Alhadlaq, H.A.; Alshamsan, A. Role of Zn Doping in Oxidative Stress Mediated Cytotoxicity of TiO2 Nanoparticles in Human Breast Cancer MCF-7 Cells. Sci. Rep. 2016, 6, 30196. [Google Scholar] [CrossRef]
- Ahamed, M.; Khan, M.A.M.; Akhtar, M.J.; Alhadlaq, H.A.; Alshamsan, A. Ag-Doping Regulates the Cytotoxicity of TiO2 Nanoparticles via Oxidative Stress in Human Cancer Cells. Sci. Rep. 2017, 7, 17662. [Google Scholar] [CrossRef]
- Ganguly, P.; Breen, A.; Pillai, S.C. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater. Sci. Eng. 2018, 4, 2237–2275. [Google Scholar] [CrossRef]
- Boey, A.; Ho, H.K. All Roads Lead to the Liver: Metal Nanoparticles and Their Implications for Liver Health. Small 2020, 16, 2000153. [Google Scholar] [CrossRef]
- de la Harpe, K.M.; Kondiah, P.P.D.; Choonara, Y.E.; Marimuthu, T.; du Toit, L.C.; Pillay, V. The Hemocompatibility of Nanoparticles: A Review of Cell–Nanoparticle Interactions and Hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef]
- Wadhwa, R.; Aggarwal, T.; Thapliyal, N.; Kumar, A.; Priya; Yadav, P.; Kumari, V.; Reddy, B.S.C.; Chandra, P.; Maurya, P.K. Red Blood Cells as an Efficient in Vitro Model for Evaluating the Efficacy of Metallic Nanoparticles. 3 Biotech 2019, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zang, Y.; Qu, J.; Tang, M.; Zhang, T. The Toxicity Of Metallic Nanoparticles On Liver: The Subcellular Damages, Mechanisms, And Outcomes. Int. J. Nanomed. 2019, 14, 8787–8804. [Google Scholar] [CrossRef] [PubMed]
- Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int. J. Mol. Sci. 2021, 22, 13135. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S.; Gu, Z.; Chen, C.; Zhao, Y. Toxicity of Manufactured Nanomaterials. Particuology 2022, 69, 31–48. [Google Scholar] [CrossRef]
- Shegokar, R. Nanotoxicity: Must Consider Aspect of Nanoparticle Development. In Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment; Lungu, M., Neculae, A., Bunoiu, M., Biris, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 87–102. ISBN 978-3-319-11728-7. [Google Scholar]
- Liu, N.; Tang, M.; Ding, J. The Interaction between Nanoparticles-Protein Corona Complex and Cells and Its Toxic Effect on Cells. Chemosphere 2020, 245, 125624. [Google Scholar] [CrossRef] [PubMed]
- Donato, M.T.; Tolosa, L.; Gómez-Lechón, M.J. Culture and Functional Characterization of Human Hepatoma HepG2 Cells. In Protocols in In Vitro Hepatocyte Research; Vinken, M., Rogiers, V., Eds.; Springer: New York, NY, USA, 2015; pp. 77–93. ISBN 978-1-4939-2074-7. [Google Scholar]
- Savage, D.T.; Hilt, J.Z.; Dziubla, T.D. In Vitro Methods for Assessing Nanoparticle Toxicity. In Nanotoxicity: Methods and Protocols; Zhang, Q., Ed.; Springer: New York, NY, USA, 2019; pp. 1–29. ISBN 978-1-4939-8916-4. [Google Scholar]
- Pyrgiotakis, G.; Blattmann, C.O.; Demokritou, P. Real-Time Nanoparticle–Cell Interactions in Physiological Media by Atomic Force Microscopy. ACS Sustain. Chem. Eng. 2014, 2, 1681–1690. [Google Scholar] [CrossRef]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Lee, M.; Oh, J.; Yang, S.-A.; Park, Y. Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. bioRxiv 2018. [Google Scholar] [CrossRef]
- Bae, C.; Kim, H.; Kook, Y.-M.; Lee, C.; Kim, C.; Yang, C.; Park, M.H.; Piao, Y.; Koh, W.-G.; Lee, K. Induction of Ferroptosis Using Functionalized Iron-Based Nanoparticles for Anti-Cancer Therapy. Mater. Today Bio 2022, 17, 100457. [Google Scholar] [CrossRef]
- Kim, D.; Oh, N.; Kim, K.; Lee, S.; Pack, C.-G.; Park, J.-H.; Park, Y. Label-Free High-Resolution 3-D Imaging of Gold Nanoparticles inside Live Cells Using Optical Diffraction Tomography. Methods Quant. Phase Imaging Life Sci. 2018, 136, 160–167. [Google Scholar] [CrossRef]
- Kim, S.; Kang, S.H.; Byun, S.H.; Kim, H.-J.; Park, I.-K.; Hirschberg, H.; Hong, S.J. Intercellular Bioimaging and Biodistribution of Gold Nanoparticle-Loaded Macrophages for Targeted Drug Delivery. Electronics 2020, 9, 1105. [Google Scholar] [CrossRef]
- Rashid, M.M.; Forte Tavčer, P.; Tomšič, B. Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials 2021, 11, 2354. [Google Scholar] [CrossRef]
- Khan, M.; Naqvi, A.H.; Ahmad, M. Comparative Study of the Cytotoxic and Genotoxic Potentials of Zinc Oxide and Titanium Dioxide Nanoparticles. Toxicol. Rep. 2015, 2, 765–774. [Google Scholar] [CrossRef]
- Datta, A.; Dasgupta, S.; Mukherjee, S. Modifications of Nano-Titania Surface for in Vitro Evaluations of Hemolysis, Cytotoxicity, and Nonspecific Protein Binding. J. Nanopart. Res. 2017, 19, 142. [Google Scholar] [CrossRef]
- Lingaraju, K.; Basavaraj, R.B.; Jayanna, K.; Bhavana, S.; Devaraja, S.; Kumar Swamy, H.M.; Nagaraju, G.; Nagabhushana, H.; Raja Naika, H. Biocompatible Fabrication of TiO2 Nanoparticles: Antimicrobial, Anticoagulant, Antiplatelet, Direct Hemolytic and Cytotoxicity Properties. Inorg. Chem. Commun. 2021, 127, 108505. [Google Scholar] [CrossRef]
- Múzquiz-Ramos, E.M.; Cortés-Hernández, D.A.; Escobedo-Bocardo, J.C.; Zugasti-Cruz, A.; Ramírez-Gómez, X.S.; Osuna-Alarcón, J.G. In Vitro and In Vivo Biocompatibility of Apatite-Coated Magnetite Nanoparticles for Cancer Therapy. J. Mater. Sci. Mater. Med. 2013, 24, 1035–1041. [Google Scholar] [CrossRef]
- Lopez-Barbosa, N.; Garcia, J.G.; Cifuentes, J.; Castro, L.M.; Vargas, F.; Ostos, C.; Cardona-Gomez, G.P.; Hernandez, A.M.; Cruz, J.C. Multifunctional Magnetite Nanoparticles to Enable Delivery of siRNA for the Potential Treatment of Alzheimer’s. Drug Deliv. 2020, 27, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Elje, E.; Mariussen, E.; Moriones, O.H.; Bastús, N.G.; Puntes, V.; Kohl, Y.; Dusinska, M.; Rundén-Pran, E. Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. Nanomaterials 2020, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Brandão, F.; Fernández-Bertólez, N.; Rosário, F.; Bessa, M.J.; Fraga, S.; Pásaro, E.; Teixeira, J.P.; Laffon, B.; Valdiglesias, V.; Costa, C. Genotoxicity of TiO2 Nanoparticles in Four Different Human Cell Lines (A549, HEPG2, A172 and SH-SY5Y). Nanomaterials 2020, 10, 412. [Google Scholar] [CrossRef]
- Dong, C.-D.; Tsai, M.-L.; Chen, C.-W.; Hung, C.-M. Remediation and Cytotoxicity Study of Polycyclic Aromatic Hydrocarbon-Contaminated Marine Sediments Using Synthesized Iron Oxide–Carbon Composite. Environ. Sci. Pollut. Res. 2018, 25, 5243–5253. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, J.A.; Sorgi, C.A.; Machado, A.R.T.; Ogunjimi, A.T.; Gardinassi, L.G.A.; Nardini, V.; Faccioli, L.H.; Antunes, L.M.G.; Barbosa, F. Phospholipids Modifications in Human Hepatoma Cell Lines (HepG2) Exposed to Silver and Iron Oxide Nanoparticles. Arch. Toxicol. 2020, 94, 2625–2636. [Google Scholar] [CrossRef]
- Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of Engineered Nanoparticles with in Vitro Toxicity Assays. Arch. Toxicol. 2012, 86, 1123–1136. [Google Scholar] [CrossRef] [PubMed]
- Guadagnini, R.; Halamoda Kenzaoui, B.; Walker, L.; Pojana, G.; Magdolenova, Z.; Bilanicova, D.; Saunders, M.; Juillerat-Jeanneret, L.; Marcomini, A.; Huk, A.; et al. Toxicity Screenings of Nanomaterials: Challenges Due to Interference with Assay Processes and Components of Classic In Vitro Tests. Nanotoxicology 2015, 9, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Han, Y.; Li, J.; Yan, F.; Yang, W. Preparation of Hollow Mesoporous Silica Spheres by a Sol–Gel/Emulsion Approach. Microporous Mesoporous Mater. 2010, 127, 67–72. [Google Scholar] [CrossRef]
- Vargas-Ortíz, J.R.; Böhnel, H.N.; Gonzalez, C.; Esquivel, K. Magnetic Nanoparticle Behavior Evaluation on Cardiac Tissue Contractility through Langendorff Rat Heart Technique as a Nanotoxicology Parameter. Appl. Nanosci. 2021, 11, 2383–2396. [Google Scholar] [CrossRef]
- Martínez-Montelongo, J.H.; Medina-Ramírez, I.E.; Romo-Lozano, Y.; González-Gutiérrez, A.; Macías-Díaz, J.E. Development of Nano-Antifungal Therapy for Systemic and Endemic Mycoses. J. Fungi 2021, 7, 158. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Luo, L. Comparison Analysis of the Calculation Methods for Particle Diameter. Crystals 2022, 12, 1107. [Google Scholar] [CrossRef]
- Prilepskii, A.Y.; Fakhardo, A.F.; Drozdov, A.S.; Vinogradov, V.V.; Dudanov, I.P.; Shtil, A.A.; Bel’tyukov, P.P.; Shibeko, A.M.; Koltsova, E.M.; Nechipurenko, D.Y.; et al. Urokinase-Conjugated Magnetite Nanoparticles as a Promising Drug Delivery System for Targeted Thrombolysis: Synthesis and Preclinical Evaluation. ACS Appl. Mater. Interfaces 2018, 10, 36764–36775. [Google Scholar] [CrossRef]
- Torres-Limiñana, J.; Feregrino-Pérez, A.A.; Vega-González, M.; Escobar-Alarcón, L.; Cervantes-Chávez, J.A.; Esquivel, K. Green Synthesis via Eucalyptus globulus L. Extract of Ag-TiO2 Catalyst: Antimicrobial Activity Evaluation toward Water Disinfection Process. Nanomaterials 2022, 12, 1944. [Google Scholar] [CrossRef]
- Vafaei, S.; Splingaire, L.; Schnupf, U.; Hisae, K.; Hasegawa, D.; Sugiura, T.; Manseki, K. Low Temperature Synthesis of Anatase TiO2 Nanocrystals Using an Organic-Inorganic Gel Precursor. Powder Technol. 2020, 368, 237–244. [Google Scholar] [CrossRef]
- Nath, D.; Singh, F.; Das, R. X-Ray Diffraction Analysis by Williamson-Hall, Halder-Wagner and Size-Strain Plot Methods of CdSe Nanoparticles- a Comparative Study. Mater. Chem. Phys. 2020, 239, 122021. [Google Scholar] [CrossRef]
- Hernández, R.; Hernández-Reséndiz, J.R.; Cruz-Ramírez, M.; Velázquez-Castillo, R.; Escobar-Alarcón, L.; Ortiz-Frade, L.; Esquivel, K. Au-TiO2 Synthesized by a Microwave- and Sonochemistry-Assisted Sol-Gel Method: Characterization and Application as Photocatalyst. Catalysts 2020, 10, 1052. [Google Scholar] [CrossRef]
- Liu, G.; Han, C.; Pelaez, M.; Zhu, D.; Liao, S.; Likodimos, V.; Ioannidis, N.; Kontos, A.G.; Falaras, P.; Dunlop, P.S.M.; et al. Synthesis, Characterization and Photocatalytic Evaluation of Visible Light Activated C-Doped TiO2 Nanoparticles. Nanotechnology 2012, 23, 294003. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Chávez, L.A.; Rivera-Muñoz, E.M.; Velázquez-Castillo, R.R.; Escobar-Alarcón, L.; Esquivel, K. Au-Ag/TiO2 Thin Films Preparation by Laser Ablation and Sputtering Plasmas for Its Potential Use as Photoanodes in Electrochemical Advanced Oxidation Processes (EAOP). Catalysts 2021, 11, 1406. [Google Scholar] [CrossRef]
- Kamble, S.; Agrawal, S.; Cherumukkil, S.; Sharma, V.; Jasra, R.V.; Munshi, P. Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements. ChemistrySelect 2022, 7, e202103084. [Google Scholar] [CrossRef]
- Meesaragandla, B.; Komaragiri, Y.; Schlüter, R.; Otto, O.; Delcea, M. The Impact of Cell Culture Media on the Interaction of Biopolymer-Functionalized Gold Nanoparticles with Cells: Mechanical and Toxicological Properties. Sci. Rep. 2022, 12, 16643. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Stranik, O.; Schlenk, F.; Werner, S.; Malsch, D.; Fischer, D.; Fritzsche, W. Optical Detection of Nanoparticle Agglomeration in a Living System under the Influence of a Magnetic Field. J. Magn. Magn. Mater. 2015, 380, 61–65. [Google Scholar] [CrossRef]
- Kahbasi, S.; Samadbin, M.; Attar, F.; Heshmati, M.; Danaei, D.; Rasti, B.; Salihi, A.; Nanakali, N.M.Q.; Aziz, F.M.; Akhtari, K.; et al. The Effect of Aluminum Oxide on Red Blood Cell Integrity and Hemoglobin Structure at Nanoscale. Int. J. Biol. Macromol. 2019, 138, 800–809. [Google Scholar] [CrossRef]
- Foo, Y.Y.; Periasamy, V.; Kiew, L.V.; Kumar, G.G.; Malek, S.N. Curcuma Mangga-Mediated Synthesis of Gold Nanoparticles: Characterization, Stability, Cytotoxicity, and Blood Compatibility. Nanomaterials 2017, 7, 123. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, D.; Liu, Q.S.; Li, Y.; Feng, R.; Hao, F.; Qu, G.; Zhou, Q.; Jiang, G. Hematological Effects of Gold Nanorods on Erythrocytes: Hemolysis and Hemoglobin Conformational and Functional Changes. Adv. Sci. 2017, 4, 1700296. [Google Scholar] [CrossRef]
- Lau, I.P.; Chen, H.; Wang, J.; Ong, H.C.; Leung, K.C.-F.; Ho, H.P.; Kong, S.K. In Vitro Effect of CTAB- and PEG-Coated Gold Nanorods on the Induction of Eryptosis/Erythroptosis in Human Erythrocytes. Nanotoxicology 2012, 6, 847–856. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Haynes, C.L. Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. J. Am. Chem. Soc. 2010, 132, 4834–4842. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Tripathi, S.; Ethiraj, K.R.; Chandrasekaran, N.; Mukherjee, A. Human Serum Albumin Corona on Functionalized Gold Nanorods Modulates Doxorubicin Loading and Release. New J. Chem. 2018, 42, 16555–16563. [Google Scholar] [CrossRef]
- Zook, J.M.; MacCuspie, R.I.; Locascio, L.E.; Halter, M.D.; Elliott, J.T. Stable Nanoparticle Aggregates/Agglomerates of Different Sizes and the Effect of Their Size on Hemolytic Cytotoxicity. Nanotoxicology 2011, 5, 517–530. [Google Scholar] [CrossRef]
- Griffiths, S.M.; Singh, N.; Jenkins, G.J.S.; Williams, P.M.; Orbaek, A.W.; Barron, A.R.; Wright, C.J.; Doak, S.H. Dextran Coated Ultrafine Superparamagnetic Iron Oxide Nanoparticles: Compatibility with Common Fluorometric and Colorimetric Dyes. Anal. Chem. 2011, 83, 3778–3785. [Google Scholar] [CrossRef]
- Lupu, A.R.; Popescu, T. The Noncellular Reduction of MTT Tetrazolium Salt by TiO2 Nanoparticles and Its Implications for Cytotoxicity Assays. Toxicol. Vitr. 2013, 27, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Sanches, P.L.; de Oliveira Geaquinto, L.R.; Cruz, R.; Schuck, D.C.; Lorencini, M.; Granjeiro, J.M.; Ribeiro, A.R.L. Toxicity Evaluation of TiO2 Nanoparticles on the 3D Skin Model: A Systematic Review. Front. Bioeng. Biotechnol. 2020, 8, 575. [Google Scholar] [CrossRef] [PubMed]
- Almutary, A.; Sanderson, B.J.S. The MTT and Crystal Violet Assays: Potential Confounders in Nanoparticle Toxicity Testing. Int. J. Toxicol. 2016, 35, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Gea, M.; Bonetta, S.; Iannarelli, L.; Giovannozzi, A.M.; Maurino, V.; Bonetta, S.; Hodoroaba, V.-D.; Armato, C.; Rossi, A.M.; Schilirò, T. Shape-Engineered Titanium Dioxide Nanoparticles (TiO2-NPs): Cytotoxicity and Genotoxicity in Bronchial Epithelial Cells. Food Chem. Toxicol. 2019, 127, 89–100. [Google Scholar] [CrossRef]
- Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of Nanoparticle Cellular Uptake, Intracellular Trafficking, and Kinetics in Nanomedicine. Unraveling Vivo Fate Cell. Pharmacokinet. Drug Nanocarriers 2019, 143, 68–96. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular Uptake and Retention of Nanoparticles: Insights on Particle Properties and Interaction with Cellular Components. Mater. Today Commun. 2020, 25, 101692. [Google Scholar] [CrossRef]
- Mazumdar, S.; Chitkara, D.; Mittal, A. Exploration and Insights into the Cellular Internalization and Intracellular Fate of Amphiphilic Polymeric Nanocarriers. Acta Pharm. Sin. B 2021, 11, 903–924. [Google Scholar] [CrossRef]
- Ikliptikawati, D.K.; Hazawa, M.; So, F.T.-K.; Terada, D.; Kobayashi, A.; Segawa, T.F.; Shirakawa, M.; Wong, R.W. Label-Free Tomographic Imaging of Nanodiamonds in Living Cells. Diam. Relat. Mater. 2021, 118, 108517. [Google Scholar] [CrossRef]
- Friedrich, R.P.; Schreiber, E.; Tietze, R.; Yang, H.; Pilarsky, C.; Alexiou, C. Intracellular Quantification and Localization of Label-Free Iron Oxide Nanoparticles by Holotomographic Microscopy. Nanotechnol. Sci. Appl. 2020, 13, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Shin, Y.S.; Lee, D.-H.; Park, I.S.; Kim, S.K.; Ryu, D.; Park, Y.; Byun, S.-H.; Choi, J.-H.; Hong, S.J. Interactions of Nanoparticles with Macrophages and Feasibility of Drug Delivery for Asthma. Int. J. Mol. Sci. 2022, 23, 1622. [Google Scholar] [CrossRef] [PubMed]
- Buchman, J.T.; Hudson-Smith, N.V.; Landy, K.M.; Haynes, C.L. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc. Chem. Res. 2019, 52, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Sengul, A.B.; Asmatulu, E. Toxicity of Metal and Metal Oxide Nanoparticles: A Review. Environ. Chem. Lett. 2020, 18, 1659–1683. [Google Scholar] [CrossRef]
NMs | Scherrer (nm) | Williamson–Hall (nm) |
---|---|---|
TiO2 350 °C | 8.0 | 6.1 |
TiO2 450 °C | 13.1 | 11.2 |
TiO2/Fe3O4 350 °C | 8.6 | 8.4 |
TiO2/F3O4 450 °C | 10.9 | 9.6 |
Fe-TiO2/Fe3O4 350 °C | 8.3 | 8.7 |
Fe-TiO2/Fe3O4 450 °C | 13.4 | 11.9 |
NMs | Water | Saline Solution (0.9%) | DMEM Medium | |||||
---|---|---|---|---|---|---|---|---|
0 h | 24 h | |||||||
Hydrodynamic Diameter (nm)/PDI | Zeta Potential (mV) | Hydrodynamic Diameter (nm)/PDI | Zeta Potential (mV) | Hydrodynamic Diameter (nm)/PDI | Zeta Potential (mV) | Hydrodynamic Diameter (nm)/PDI | Zeta Potential (mV) | |
Fe3O4 | 1125 ± 48.22/ 0.227 | −17.9 ± 4.87 | 888.53 ± 176.37/ 0.107 | −13.84 ± 7.48 | 1042.47 ± 94.53/ 0.683 | −172.67± 30.66 | 512.63 ± 7.85/ 0.663 | −244.66 ± 37.80 |
TiO2 350 °C | 43.14 ± 1.02/ 0.275 | −2.19 ± 1.19 | 343.53 ± 77.26/ 0.192 | −4.62 ± 6.34 | 439.83 ± 3.20/ 0.175 | −11.73 ± 1.30 | 433.27 ± 16.14/ 0.398 | −10.43 ± 0.21 |
TiO2 450 °C | 49.87 ± 0.69/ 0.244 | −2.30 ± 0.61 | 247.87 ± 33.16/ 0.224 | −4.98 ± 7.80 | 765.3 ± 57.23/ 0.364 | − | 337.73 ± 7.45/ 0.152 | −13.4 ± 0.91 |
TiO2/Fe3O4 350 °C | 118.9 ± 13.07/ 0.318 | −4.34 ± 0.218 | 293.56 ± 72.29/ 0.187 | −0.203 ± 4.25 | 534.43 ± 22.70/ 0.148 | −152.33 ± 21.93 | 367.73 ± 4.94/ 0.177 | −196.33 ± 20.81 |
Fe-TiO2/Fe3O4 350 °C | 145.43 ± 37.94/ 0.237 | −6.41 ± 2.39 | 201.17 ± 54.25/ 0.204 | −0.27 ± 4.85 | 929.73 ± 22.30/ 0.230 | −165.67 ± 34.12 | 436.53 ± 35.47/ 0.52 | −245.67 ± 28.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramo, L.; Jiménez-Chávez, A.; Medina-Ramirez, I.E.; Böhnel, H.N.; Escobar-Alarcón, L.; Esquivel, K. Biocompatibility Evaluation of TiO2, Fe3O4, and TiO2/Fe3O4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells. Nanomaterials 2023, 13, 2824. https://doi.org/10.3390/nano13212824
Paramo L, Jiménez-Chávez A, Medina-Ramirez IE, Böhnel HN, Escobar-Alarcón L, Esquivel K. Biocompatibility Evaluation of TiO2, Fe3O4, and TiO2/Fe3O4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells. Nanomaterials. 2023; 13(21):2824. https://doi.org/10.3390/nano13212824
Chicago/Turabian StyleParamo, Luis, Arturo Jiménez-Chávez, Iliana E. Medina-Ramirez, Harald Norbert Böhnel, Luis Escobar-Alarcón, and Karen Esquivel. 2023. "Biocompatibility Evaluation of TiO2, Fe3O4, and TiO2/Fe3O4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells" Nanomaterials 13, no. 21: 2824. https://doi.org/10.3390/nano13212824
APA StyleParamo, L., Jiménez-Chávez, A., Medina-Ramirez, I. E., Böhnel, H. N., Escobar-Alarcón, L., & Esquivel, K. (2023). Biocompatibility Evaluation of TiO2, Fe3O4, and TiO2/Fe3O4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells. Nanomaterials, 13(21), 2824. https://doi.org/10.3390/nano13212824