Luminescent Behavior of Sb3+-Activated Luminescent Metal Halide
Abstract
:1. Introduction
2. Synthesis
2.1. Quantum Dots (QDs) and Nanocrystals (NCs)
2.2. Films and Single Crystals
3. Optical Properties
3.1. Mechanism of Luminescence of Sb3+
3.2. Structure and Luminescence of Sb-MHPs
3.2.1. Dimensions in Size
3.2.2. Dimensions at the Molecular Level
3.2.3. Coordination of Sb3+
3.3. Sb3+-Doped and Un-Doped Luminescent Behaviors
3.3.1. Sb3+-Based
3.3.2. Sb3+-Doped
3.4. Different Colors of Emission
3.4.1. Ultraviolet (UV) Emission and Blue Emission
3.4.2. Cyan Emission and Green Emission
3.4.3. Yellow Emission and Orange Emission
3.4.4. Red Emission and Near-Infrared Emission
3.4.5. White Emission
3.5. The Tunable Emission of Sb-Activated MHPs
3.6. Summarization of the Separated
3.6.1. Dimensionality
3.6.2. A-Position Cation
3.6.3. Coordination
3.7. Summary of Luminescence Performance of Sb-Activated MHPs
4. Applications
4.1. Light Emitting Diode (LED)
4.1.1. White LED
4.1.2. Electroluminescent LEDs
4.2. Temperature Sensor
4.3. Optical Anti-Counterfeiting Technology
4.4. Scintillators
5. Summary and Perspectives
- (1)
- At present, there is a lack of theoretical guidance in the development of novel Sb-MHPs, including whether we can use theoretical calculations to predict how various materials self-assemble to form novel Sb-MHPs. In addition, the influencing factors of the singlet and triplet double emission bands of Sb3+ are still unclear, and more theoretical research is needed to understand this optical property.
- (2)
- As ionic compounds, Sb-MHPs are physically and chemically unstable in environments such as heat, humidity, and light. Especially in lighting applications, the excitation threshold increases significantly with increasing temperature, which requires the rational design of calcium Sb-MHPs with temperature insensitivity. Further research is needed to further improve its stability and realize its industrial production and application as soon as possible.
- (3)
- It is necessary to develop a variety of synthetic routes to develop efficient, stable, and multifunctional Sb-MHPs and to introduce more application fields, such as fluorescence sensors, lasers, and other fields.
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.W.; Tan, S.; Seok, S.I.; Yang, Y.; Park, N.G. Rethinking the A cation in halide perovskites. Science 2022, 375, eabj1186. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.C.; Jung, K.W. Recent Progress in Fabrication of Antimony/Bismuth Chalcohalides for Lead-Free Solar Cell Applications. Nanomaterials 2020, 10, 2284. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Zhou, G.; Huang, J.; Song, E.; Nag, A.; Xia, Z. Mn2+-Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application. Laser Photonics Rev. 2020, 15, 2000334. [Google Scholar] [CrossRef]
- Wells, H.L. On the caesium- and the potassium-lead halides. Am. J. Sci. 1893, s3–s45, 121–134. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Huang, T.; Peng, H.; Wei, Q.; Peng, C.; Tian, Y.; Yao, S.; Han, X.; Zou, B. Magnetic polaronic and bipolaronic excitons in Mn(II) doped (TDMP)PbBr4 and their high emission. Nano Energy 2022, 93, 106863. [Google Scholar] [CrossRef]
- Shamsi, J.; Urban, A.S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119, 3296–3348. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, W.; Gao, Z.; Tang, Z.; Lei, L.; Sun, X.; Li, Y.; Cai, H.-L.; Wu, X. New photoluminescence hybrid perovskites with ultrahigh photoluminescence quantum yield and ultrahigh thermostability temperature up to 600 K. Nano Energy 2020, 77, 105170. [Google Scholar] [CrossRef]
- Wang, C.; Han, D.; Wang, J.; Yang, Y.; Liu, X.; Huang, S.; Zhang, X.; Chang, S.; Wu, K.; Zhong, H. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 2020, 11, 6428. [Google Scholar] [CrossRef]
- Tan, Z.K.; Moghaddam, R.S.; Lai, M.L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wan, Q.; Wang, H.; Carulli, F.; Sun, X.; Zheng, W.; Kong, L.; Zhang, Q.; Zhang, C.; Zhang, Q.; et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 2021, 15, 379–385. [Google Scholar] [CrossRef]
- Zhou, G.; Jiang, X.; Molokeev, M.; Lin, Z.; Zhao, J.; Wang, J.; Xia, Z. Optically Modulated Ultra-Broad-Band Warm White Emission in Mn2+-Doped (C6H18N2O2)PbBr4 Hybrid Metal Halide Phosphor. Chem. Mater. 2019, 31, 5788–5795. [Google Scholar] [CrossRef]
- Li, M.; Zhou, J.; Zhou, G.; Molokeev, M.S.; Zhao, J.; Morad, V.; Kovalenko, M.V.; Xia, Z. Hybrid Metal Halides with Multiple Photoluminescence Centers. Angew. Chem. Int. Ed. 2019, 58, 18670–18675. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiao, L.; Jiang, Y.; He, T.; Long, R.; Yang, F.; Wang, L.; Lei, X.; Yuan, M.; Chen, J. A-site Cation Engineering for Highly Efficient MAPbI3 Single-Crystal X-ray Detector. Angew. Chem. Int. Ed. 2019, 58, 17834–17842. [Google Scholar] [CrossRef]
- He, T.; Li, S.; Jiang, Y.; Qin, C.; Cui, M.; Qiao, L.; Xu, H.; Yang, J.; Long, R.; Wang, H.; et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 2020, 11, 1672. [Google Scholar] [CrossRef]
- Wu, X.; Ji, H.; Yan, X.; Zhong, H. Industry outlook of perovskite quantum dots for display applications. Nat. Nanotechnol. 2022, 17, 813–816. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Gratzel, M.; Mhaisalkar, S.; Sum, T.C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef]
- Tian, W.; Zhou, H.; Li, L. Hybrid Organic-Inorganic Perovskite Photodetectors. Small 2017, 13, 1702107. [Google Scholar] [CrossRef]
- Parobek, D.; Roman, B.J.; Dong, Y.; Jin, H.; Lee, E.; Sheldon, M.; Son, D.H. Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals. Nano Lett. 2016, 16, 7376–7380. [Google Scholar] [CrossRef]
- Huang, G.; Wang, C.; Xu, S.; Zong, S.; Lu, J.; Wang, Z.; Lu, C.; Cui, Y. Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange. Adv. Mater. 2017, 29, 1700095. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, Z.; Fu, Q.; Chen, Z.; He, J.; Zhang, S.; Yan, L.; Hu, Y.; Luo, W. Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals. CrystEngComm 2017, 19, 6797–6803. [Google Scholar] [CrossRef]
- Peng, L.; Dutta, S.K.; Mondal, D.; Hudait, B.; Shyamal, S.; Xie, R.; Mahadevan, P.; Pradhan, N. Arm Growth and Facet Modulation in Perovskite Nanocrystals. J. Am. Chem. Soc. 2019, 141, 16160–16168. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhou, G.; Chen, D.; Zhao, J.; Wang, Y.; Liu, Q. Broadband Photoluminescence in 2D Organic-Inorganic Hybrid Perovskites: (C7H18N2)PbBr4 and (C9H22N2)PbBr4. J. Phys. Chem. Lett. 2020, 11, 2934–2940. [Google Scholar] [CrossRef] [PubMed]
- Navas, J.; Sanchez-Coronilla, A.; Gallardo, J.J.; Hernandez, N.C.; Pinero, J.C.; Alcantara, R.; Fernandez-Lorenzo, C.; De los Santos, D.M.; Aguilar, T.; Martin-Calleja, J. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+. Nanoscale 2015, 7, 6216–6229. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, X.; Li, B.; Yang, L.; Li, Q.; Jiang, H.; Xu, D. Tunable Dual-Emission in Monodispersed Sb3+/Mn2+ Codoped Cs2NaInCl6 Perovskite Nanocrystals through an Energy Transfer Process. Small 2020, 16, e2002547. [Google Scholar] [CrossRef]
- Roccanova, R.; Yangui, A.; Nhalil, H.; Shi, H.; Du, M.-H.; Saparov, B. Near-Unity Photoluminescence Quantum Yield in Blue-Emitting Cs3Cu2Br5−xIx (0 ≤ x ≤ 5). ACS Appl. Electron. Mater. 2019, 1, 269–274. [Google Scholar] [CrossRef]
- Huang, S.; Li, Z.; Kong, L.; Zhu, N.; Shan, A.; Li, L. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in “Waterless” Toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 2019, 14, 215–218. [Google Scholar] [CrossRef]
- Luo, J.; Yang, L.; Tan, Z.; Xie, W.; Sun, Q.; Li, J.; Du, P.; Xiao, Q.; Wang, L.; Zhao, X.; et al. Efficient Blue Light Emitting Diodes Based On Europium Halide Perovskites. Adv. Mater. 2021, 33, e2101903. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.; Khan, J.; Tang, J.; Song, H. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots. ACS Nano 2017, 11, 9294–9302. [Google Scholar] [CrossRef]
- Xu, L.; Gao, J.X.; Chen, X.G.; Hua, X.N.; Liao, W.Q. A temperature-triggered triplex bistable switch in a hybrid multifunctional material: [(CH2)4N(CH2)4]2[MnBr4]. Dalton Trans. 2018, 47, 16995–17003. [Google Scholar] [CrossRef]
- Su, B.; Song, G.; Molokeev, M.S.; Lin, Z.; Xia, Z. Synthesis, Crystal Structure and Green Luminescence in Zero-Dimensional Tin Halide (C8H14N2)2SnBr6. Inorg. Chem. 2020, 59, 9962–9968. [Google Scholar] [CrossRef]
- Zhao, X.G.; Yang, J.H.; Fu, Y.; Yang, D.; Xu, Q.; Yu, L.; Wei, S.H.; Zhang, L. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Su, B.; Huang, J.; Zhang, Q.; Xia, Z. Broad-band emission in metal halide perovskites: Mechanism, materials, and applications. Mater. Sci. Eng. R Rep. 2020, 141, 100548. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, Y.; Li, M.; Xia, Z. Photoluminescence of Singlet/Triplet Self-Trapped Excitons in Sb3+-Based Metal Halides. Adv. Opt. Mater. 2021, 9, 2002213. [Google Scholar] [CrossRef]
- Pal, J.; Manna, S.; Mondal, A.; Das, S.; Adarsh, K.V.; Nag, A. Colloidal Synthesis and Photophysics of M3Sb2I9 (M = Cs and Rb) Nanocrystals: Lead-Free Perovskites. Angew. Chem. Int. Ed. 2017, 56, 14187–14191. [Google Scholar] [CrossRef]
- Mahmood, Q.; Hassan, M.; Yousaf, N.; AlObaid, A.A.; Al-Muhimeed, T.I.; Morsi, M.; Albalawi, H.; Alamri, O.A. Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications. Mater. Sci. Semicond. Process. 2022, 137, 106180. [Google Scholar] [CrossRef]
- Aslam, S.; Farooqi, A.S.; Rahman, M.Y.A.; Samsuri, S.A.M. Titanium-Based Vacancy-Ordered Double Halide Family in Perovskite Solar Cells. Phys. Status Solidi A 2022, 219, 2100671. [Google Scholar] [CrossRef]
- Wu, S.; Li, W.; Hu, J.; Gao, P. Antimony doped lead-free double perovskites (Cs2NaBi1−xSbxCl6) with enhanced light absorption and tunable emission. J. Mater. Chem. C 2020, 8, 13603–13611. [Google Scholar] [CrossRef]
- Schade, L.; Wright, A.D.; Johnson, R.D.; Dollmann, M.; Wenger, B.; Nayak, P.K.; Prabhakaran, D.; Herz, L.M.; Nicholas, R.; Snaith, H.J.; et al. Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite. ACS Energy Lett. 2018, 4, 299–305. [Google Scholar] [CrossRef]
- Slavney, A.H.; Hu, T.; Lindenberg, A.M.; Karunadasa, H.I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 2016, 138, 2138–2141. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, J.; Yang, S.; Hong, F.; Sun, L.; Han, P.; Pullerits, T.; Deng, W.; Han, K. Lead-Free Silver-Bismuth Halide Double Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2018, 57, 5359–5363. [Google Scholar] [CrossRef]
- Luo, R.; Zhang, S.; Zhao, S.; Li, J.; Kang, F.; Yu, K.; Wei, G. Ultrasmall Blueshift of Near-Infrared Fluorescence in Phase-Stable Cs2SnI6 Thin Films. Phys. Rev. Appl. 2020, 14, 014048. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Sun, M.; Zhang, S.; Liu, S.; Li, D.-J.; Niu, Z.; Li, Y.; Wang, S. First-principles study of thermodynamic miscibility, structures, and optical properties of Cs2Sn(X1−xYx)6 (X,Y = I, Br, Cl) lead-free perovskite solar cells. Appl. Phys. Lett. 2021, 118, 141903. [Google Scholar] [CrossRef]
- Huang, J.; Chang, T.; Zeng, R.; Yan, J.; Wei, Q.; Zhou, W.; Cao, S.; Zou, B. Controlled Structural Transformation in Sb-Doped Indium Halides A3InCl6 and A2InCl5∙H2O Yields Reversible Green-to-Yellow Emission Switch. Adv. Opt. Mater. 2021, 9, 2002267. [Google Scholar] [CrossRef]
- Wei, Q.; Chang, T.; Zeng, R.; Cao, S.; Zhao, J.; Han, X.; Wang, L.; Zou, B. Self-Trapped Exciton Emission in a Zero-Dimensional (TMA)2SbCl5.DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability. J. Phys. Chem. Lett. 2021, 12, 7091–7099. [Google Scholar] [CrossRef]
- Chang, T.; Wei, Q.; Wang, Z.; Gao, Y.; Lian, B.; Zhu, X.; Cao, S.; Zhao, J.; Zou, B.; Zeng, R. Phase-Selective Solution Synthesis of Cd-Based Perovskite Derivatives and Their Structure/Emission Modulation. J. Phys. Chem. Lett. 2022, 13, 3682–3690. [Google Scholar] [CrossRef]
- Su, B.; Li, M.; Song, E.; Xia, Z. Sb3+-Doping in Cesium Zinc Halides Single Crystals Enabling High-Efficiency Near-Infrared Emission. Adv. Funct. Mater. 2021, 31, 2105316. [Google Scholar] [CrossRef]
- Khalfin, S.; Bekenstein, Y. Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 2019, 11, 8665–8679. [Google Scholar] [CrossRef] [PubMed]
- Igbari, F.; Wang, Z.K.; Liao, L.S. Progress of Lead-Free Halide Double Perovskites. Adv. Energy Mater. 2019, 9, 1803150. [Google Scholar] [CrossRef]
- Lin, J.; Liu, K.; Ruan, H.; Sun, N.; Chen, X.; Zhao, J.; Guo, Z.; Liu, Q.; Yuan, W. Zero-Dimensional Lead-Free Halide with Indirect Optical Gap and Enhanced Photoluminescence by Sb Doping. J. Phys. Chem. Lett. 2022, 13, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Gautier, R.; Clerac, R.; Paris, M.; Massuyeau, F. Role of specific distorted metal complexes in exciton self-trapping for hybrid metal halides. Chem. Commun. 2020, 56, 10139–10142. [Google Scholar] [CrossRef]
- Zhu, D.; Zaffalon, M.L.; Pinchetti, V.; Brescia, R.; Moro, F.; Fasoli, M.; Fanciulli, M.; Tang, A.; Infante, I.; De Trizio, L.; et al. Bright Blue Emitting Cu-Doped Cs2ZnCl4 Colloidal Nanocrystals. Chem. Mater. 2020, 32, 5897–5903. [Google Scholar] [CrossRef]
- Tan, Z.; Chu, Y.; Chen, J.; Li, J.; Ji, G.; Niu, G.; Gao, L.; Xiao, Z.; Tang, J. Lead-Free Perovskite Variant Solid Solutions Cs2Sn1-xTexCl6: Bright Luminescence and High Anti-Water Stability. Adv. Mater. 2020, 32, e2002443. [Google Scholar] [CrossRef]
- Li, M.; Zhou, J.; Molokeev, M.S.; Jiang, X.; Lin, Z.; Zhao, J.; Xia, Z. Lead-Free Hybrid Metal Halides with a Green-Emissive [MnBr4] Unit as a Selective Turn-On Fluorescent Sensor for Acetone. Inorg. Chem. 2019, 58, 13464–13470. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Guan, X.; Mi, Y.; Al-Hussain, A.; Ha, S.T.; Chiu, M.H.; Ma, C.; Amer, M.R.; Li, L.J.; et al. One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. J. Phys. Chem. Lett. 2019, 10, 2363–2371. [Google Scholar] [CrossRef]
- Xing, J.; Liu, X.F.; Zhang, Q.; Ha, S.T.; Yuan, Y.W.; Shen, C.; Sum, T.C.; Xiong, Q. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Lett. 2015, 15, 4571–4577. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, A.; Hao, S.; Li, X.; Luo, X.; Fang, G.; Liu, J.; Wang, S. Fluorescent methylammonium lead halide perovskite quantum dots as a sensing material for the detection of polar organochlorine pesticide residues. Analyst 2020, 145, 6683–6690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hodes, G.; Jin, Z.; Liu, S.F. All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects. Angew. Chem. Int. Ed. 2019, 58, 15596–15618. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yuan, S.; Chen, X.; Li, J.; Mao, Q.; Li, X.; Zhong, J. CsPbX3 (X = Br, I) perovskite quantum dot embedded low-melting phosphosilicate glasses: Controllable crystallization, thermal stability and tunable emissions. J. Mater. Chem. C 2018, 6, 6832–6839. [Google Scholar] [CrossRef]
- Zhang, B.; Pinchetti, V.; Zito, J.; Ray, A.; Melcherts, A.E.M.; Ghini, M.; Pianetti, A.; Infante, I.; Brovelli, S.; De Trizio, L.; et al. Isolated [SbCl6]3– Octahedra Are the Only Active Emitters in Rb7Sb3Cl16 Nanocrystals. ACS Energy Lett. 2021, 6, 3952–3959. [Google Scholar] [CrossRef]
- Cai, T.; Shi, W.; Hwang, S.; Kobbekaduwa, K.; Nagaoka, Y.; Yang, H.; Hills-Kimball, K.; Zhu, H.; Wang, J.; Wang, Z.; et al. Lead-Free Cs4CuSb2Cl12 Layered Double Perovskite Nanocrystals. J. Am. Chem. Soc. 2020, 142, 11927–11936. [Google Scholar] [CrossRef]
- Lv, K.; Qi, S.; Liu, G.; Lou, Y.; Chen, J.; Zhao, Y. Lead-free silver-antimony halide double perovskite quantum dots with superior blue photoluminescence. Chem. Commun. 2019, 55, 14741–14744. [Google Scholar] [CrossRef]
- Yang, H.; Guo, Y.; Liu, G.; Song, R.; Chen, J.; Lou, Y.; Zhao, Y. Near UV luminescent Cs2NaBi0.75Sb0.25Cl6 perovskite colloidal nanocrystals with high stability. Chin. Chem. Lett. 2022, 33, 537–540. [Google Scholar] [CrossRef]
- Singh, A.; Chiu, N.C.; Boopathi, K.M.; Lu, Y.J.; Mohapatra, A.; Li, G.; Chen, Y.F.; Guo, T.F.; Chu, C.W. Lead-Free Antimony-Based Light-Emitting Diodes through the Vapor-Anion-Exchange Method. ACS. Appl. Mater. Interfaces 2019, 11, 35088–35094. [Google Scholar] [CrossRef]
- Correa-Baena, J.-P.; Nienhaus, L.; Kurchin, R.C.; Shin, S.S.; Wieghold, S.; Putri Hartono, N.T.; Layurova, M.; Klein, N.D.; Poindexter, J.R.; Polizzotti, A.; et al. A-Site Cation in Inorganic A3Sb2I9 Perovskite Influences Structural Dimensionality, Exciton Binding Energy, and Solar Cell Performance. Chem. Mater. 2018, 30, 3734–3742. [Google Scholar] [CrossRef]
- Peng, H.; Tian, Y.; Yu, Z.; Wang, X.; Ke, B.; Zhao, Y.; Dong, T.; Wang, J.; Zou, B. (C16H28N)2SbCl5: A new lead-free zero-dimensional metal-halide hybrid with bright orange emission. Sci. China Mater. 2022, 65, 1594–1600. [Google Scholar] [CrossRef]
- Jacobs, P.W.M. Alkali halide crystals containing impurity ions with the ns2 ground-state electronic configuration. J. Phys. Chem. Solids 1991, 52, 35–67. [Google Scholar] [CrossRef]
- Oomen, E.W.J.L.; Smit, W.M.A.; Blasse, G. Jahn-Teller effect in the Sb3+ emission in zircon-structured phosphates. Chem. Phys. Lett. 1984, 112, 547–550. [Google Scholar] [CrossRef]
- Hariharan, M.; Scholes, G.D. Virtual Issue on Triplet Excitons. J. Phys. Chem. Lett. 2022, 13, 8365–8368. [Google Scholar] [CrossRef]
- Peng, H.; Tian, Y.; Wang, X.; Huang, T.; Xiao, Y.; Dong, T.; Hu, J.; Wang, J.; Zou, B. Bulk assembly of a 0D organic antimony chloride hybrid with highly efficient orange dual emission by self-trapped states. J. Mater. Chem. C 2021, 9, 12184–12190. [Google Scholar] [CrossRef]
- Luo, J.B.; Wei, J.H.; Zhang, Z.Z.; Kuang, D.B. Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide. Inorg. Chem. 2022, 61, 338–345. [Google Scholar] [CrossRef]
- Jin, J.; Peng, Y.; Xu, Y.; Han, K.; Zhang, A.; Yang, X.-B.; Xia, Z. Bright Green Emission from Self-Trapped Excitons Triggered by Sb3+ Doping in Rb4CdCl6. Chem. Mater. 2022, 34, 5717–5725. [Google Scholar] [CrossRef]
- Li, D.-Y.; Song, J.-H.; Xu, Z.-Y.; Gao, Y.-J.; Yin, X.; Hou, Y.-H.; Feng, L.-J.; Yue, C.-Y.; Fei, H.; Lei, X.-W. Reversible Triple-Mode Switching in Photoluminescence from 0D Hybrid Antimony Halides. Chem. Mater. 2022, 34, 6985–6995. [Google Scholar] [CrossRef]
- Meng, X.; Wei, Q.; Lin, W.; Huang, T.; Ge, S.; Yu, Z.; Zou, B. Efficient Yellow Self-Trapped Exciton Emission in Sb3+-Doped RbCdCl3 Metal Halides. Inorg. Chem. 2022, 61, 7143–7152. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, X.; Qi, X.; Liang, W.; Wang, M.; Ma, Z.; Ji, X.; Yang, D.; Jia, M.; Wu, D.; et al. Regulating the Singlet and Triplet Emission of Sb3+ Ions to Achieve Single-Component White-Light Emitter with Record High Color-Rendering Index and Stability. Nano Lett. 2022, 22, 5046–5054. [Google Scholar] [CrossRef]
- Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Magalhaes, D.V.; Bals, S.; Hens, Z. Cyan Emission in Two-Dimensional Colloidal Cs2CdCl4:Sb3+ Ruddlesden-Popper Phase Nanoplatelets. ACS Nano 2021, 15, 17729–17737. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lin, H.; He, Q.; Xu, L.; Worku, M.; Chaaban, M.; Lee, S.; Shi, X.; Du, M.-H.; Ma, B. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R Rep. 2019, 137, 38–65. [Google Scholar] [CrossRef]
- Mao, L.; Ke, W.; Pedesseau, L.; Wu, Y.; Katan, C.; Even, J.; Wasielewski, M.R.; Stoumpos, C.C.; Kanatzidis, M.G. Hybrid Dion-Jacobson 2D Lead Iodide Perovskites. J. Am. Chem. Soc. 2018, 140, 3775–3783. [Google Scholar] [CrossRef] [PubMed]
- Lassoued, M.S.; Soltan, W.B.; Abdelbaky, M.S.M.; Ammar, S.; Gadri, A.; Salah, A.B.; García-Granda, S. Structural, vibrational and optical properties of a new self assembled organic–inorganic crystal (C4H7N2) [CdCl3(H2O)]. J. Mater. Sci: Mater. Electron. 2017, 28, 12698–12710. [Google Scholar] [CrossRef]
- Majher, J.D.; Gray, M.B.; Liu, T.; Holzapfel, N.P.; Woodward, P.M. Rb3InCl6: A Monoclinic Double Perovskite Derivative with Bright Sb3+-Activated Photoluminescence. Inorg. Chem. 2020, 59, 14478–14485. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, X.; Lian, X.; Su, B.; Pang, J.; Li, M.D.; Xia, Z.; Zhang, J.Z.; Luo, B.; Huang, X.C. Ultrafast Study of Exciton Transfer in Sb(III)-Doped Two-Dimensional [NH3(CH2)4NH3]CdBr4 Perovskite. ACS Nano 2021, 15, 15354–15361. [Google Scholar] [CrossRef]
- McCall, K.M.; Morad, V.; Benin, B.M.; Kovalenko, M.V. Efficient Lone-Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s2 Metal Halides. ACS Mater. Lett. 2020, 2, 1218–1232. [Google Scholar] [CrossRef]
- Peng, H.; He, X.; Wei, Q.; Tian, Y.; Lin, W.; Yao, S.; Zou, B. Realizing High-Efficiency Yellow Emission of Organic Antimony Halides via Rational Structural Design. ACS. Appl. Mater. Interfaces 2022, 14, 45611–45620. [Google Scholar] [CrossRef]
- Su, B.; Geng, S.; Xiao, Z.; Xia, Z. Highly Distorted Antimony(III) Chloride [Sb2Cl8]2− Dimers for Near-Infrared Luminescence up to 1070 nm. Angew. Chem. Int. Ed. 2022, 61, e202208881. [Google Scholar] [CrossRef]
- McCall, K.M.; Stoumpos, C.C.; Kostina, S.S.; Kanatzidis, M.G.; Wessels, B.W. Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 2017, 29, 4129–4145. [Google Scholar] [CrossRef]
- Tan, Z.; Hu, M.; Niu, G.; Hu, Q.; Li, J.; Leng, M.; Gao, L.; Tang, J. Inorganic antimony halide hybrids with broad yellow emissions. Sci. Bull. 2019, 64, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, K.; Lei, J.; Niu, Q.; Peng, H.; Zou, B. Origin of singlet self-trapped exciton and enhancement of photoluminescence quantum yield of organic-inorganic hybrid antimony(III) chlorides with the [SbCl5]2− units. Nano Res. 2023, in press. [CrossRef]
- Ma, Z.; Shi, Z.; Yang, D.; Zhang, F.; Li, S.; Wang, L.; Wu, D.; Zhang, Y.; Na, G.; Zhang, L.; et al. Electrically-Driven Violet Light-Emitting Devices Based on Highly Stable Lead-Free Perovskite Cs3Sb2Br9 Quantum Dots. ACS Energy Lett. 2019, 5, 385–394. [Google Scholar] [CrossRef]
- Wei, Q.; Meng, X.; Lin, W.; Ge, S.; Han, X.; Chen, L.; Zeng, R.; Zou, B. Green Triplet Self-Trapped Exciton Emission in Layered Rb3Cd2Cl7:Sb3+ Perovskite: Comparison with RbCdCl3:Sb3+. J. Phys. Chem. Lett. 2022, 13, 8436–8446. [Google Scholar] [CrossRef]
- Lin, W.; Wei, Q.; Huang, T.; Meng, X.; Tian, Y.; Peng, H.; Zou, B. Antimony doped tin(iv) hybrid metal halides with high-efficiency tunable emission, WLED and information encryption. J. Mater. Chem. C 2023, 11, 5688–5700. [Google Scholar] [CrossRef]
- Li, C.; Luo, Z.; Liu, Y.; Wei, Y.; He, X.; Chen, Z.; Zhang, L.; Chen, Y.; Wang, W.; Liu, Y.; et al. Self-Trapped Exciton Emission with High Thermal Stability in Antimony-Doped Hybrid Manganese Chloride. Adv. Opt. Mater. 2022, 10, 2102746. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Zheng, D.; Xia, X.; Yang, S.; Yang, Y.; Bai, T.; Wang, X.; Chen, J.; Yang, B. Ultrasensitive Optical Thermometry via Inhibiting the Energy Transfer in Zero-Dimensional Lead-Free Metal Halide Single Crystals. J. Phys. Chem. Lett. 2022, 13, 9255–9262. [Google Scholar] [CrossRef]
- Zhou, J.; Rong, X.; Molokeev, M.S.; Zhang, X.; Xia, Z. Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach. J. Mater. Chem. A 2018, 6, 2346–2352. [Google Scholar] [CrossRef]
- Noculak, A.; Morad, V.; McCall, K.M.; Yakunin, S.; Shynkarenko, Y.; Worle, M.; Kovalenko, M.V. Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs2MInCl6 (M = Na, K) Matrices. Chem. Mater. 2020, 32, 5118–5124. [Google Scholar] [CrossRef]
- Gray, M.B.; Hariyani, S.; Strom, T.A.; Majher, J.D.; Brgoch, J.; Woodward, P.M. High-efficiency blue photoluminescence in the Cs2NaInCl6:Sb3+ double perovskite phosphor. J. Mater. Chem. C 2020, 8, 6797–6803. [Google Scholar] [CrossRef]
- Chang, T.; Wang, H.; Gao, Y.; Cao, S.; Zhao, J.; Zou, B.; Zeng, R. Component Engineering to Tailor the Structure and Optical Properties of Sb-Doped Indium-Based Halides. Inorg. Chem. 2022, 61, 1486–1494. [Google Scholar] [CrossRef]
- Biswas, A.; Bakthavatsalam, R.; Mali, B.P.; Bahadur, V.; Biswas, C.; Raavi, S.S.K.; Gonnade, R.G.; Kundu, J. The metal halide structure and the extent of distortion control the photo-physical properties of luminescent zero dimensional organic-antimony(iii) halide hybrids. J. Mater. Chem. C 2021, 9, 348–358. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Jin, J.C.; Gong, L.K.; Lin, Y.P.; Du, K.Z.; Huang, X.Y. Co-luminescence in a zero-dimensional organic-inorganic hybrid antimony halide with multiple coordination units. Dalton Trans. 2021, 50, 3586–3592. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.-M.; Li, J.-L.; Xu, L.-J.; Wu, Y.; Xuan, H.-L.; Wang, J.-Y.; Chen, Z.-N. Methanol-induced luminescence vapochromism based on a Sb3+-doped organic indium halide hybrid. Sci. China Mater. 2022, 65, 1876–1881. [Google Scholar] [CrossRef]
- McCall, K.M.; Benin, B.M.; Wörle, M.; Vonderach, T.; Günther, D.; Kovalenko, M.V. Expanding the 0D Rb7M3X16 (M = Sb, Bi; X = Br, I) Family: Dual-Band Luminescence in Rb7Sb3Br16. Helv. Chim. Acta 2020, 104, e2000206. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Zhang, S.; Wang, N.; Gong, P.; Xia, Z.; Lin, Z. Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules. Adv. Funct. Mater. 2020, 30, 2002468. [Google Scholar] [CrossRef]
- Zhou, C.; Worku, M.; Neu, J.; Lin, H.; Tian, Y.; Lee, S.; Zhou, Y.; Han, D.; Chen, S.; Hao, A.; et al. Facile Preparation of Light Emitting Organic Metal Halide Crystals with Near-Unity Quantum Efficiency. Chem. Mater. 2018, 30, 2374–2378. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, Q.; Xing, K.; Li, X.; Yu, P.; Chen, L.; Zhong, X.; Zou, B. Highly efficient and stable red-emitting Sb-doped Indium-based perovskites via anionic component engineering. Mater. Res. Bull. 2022, 155, 111948. [Google Scholar] [CrossRef]
- Qiao, J.; Zhou, G.; Zhou, Y.; Zhang, Q.; Xia, Z. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat. Commun. 2019, 10, 5267. [Google Scholar] [CrossRef]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef]
- Xie, R.-J. Light-emitting diodes: Brighter NIR-emitting phosphor making light sources smarter. Light-Sci. Appl. 2020, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wu, Y.; Stoumpos, C.C.; Wasielewski, M.R.; Kanatzidis, M.G. White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites. J. Am. Chem. Soc. 2017, 139, 5210–5215. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Xiao, Y.; Tian, Y.; Wang, X.; Huang, T.; Dong, T.; Zhao, Y.; Wang, J.; Zou, B. Dual self-trapped exciton emission of (TBA)2Cu2I4: Optical properties and high anti-water stability. J. Mater. Chem. C 2021, 9, 16014–16021. [Google Scholar] [CrossRef]
- Chang, T.; Wei, Q.; Zeng, R.; Cao, S.; Zhao, J.; Zou, B. Efficient Energy Transfer in Te4+-Doped Cs2ZrCl6 Vacancy-Ordered Perovskites and Ultrahigh Moisture Stability via A-Site Rb-Alloying Strategy. J. Phys. Chem. Lett. 2021, 12, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Ma, Y.; Wang, S.; Gao, S.; Huang, Q.; Zhen, H.; Yan, D.; Ling, Q.; Lin, Z. Light/Force-Sensitive 0D Lead-Free Perovskites: From Highly Efficient Blue Afterglow to White Phosphorescence with Near-Unity Quantum Efficiency. Angew. Chem. Int. Ed. 2022, 61, e202116511. [Google Scholar] [CrossRef]
- Lin, H.; Wei, Q.; Ke, B.; Lin, W.; Zhao, H.; Zou, B. Excitation-Wavelength-Dependent Emission Behavior in (NH4)2SnCl6 via Sb3+ Dopant. J. Phys. Chem. Lett. 2023, 14, 1460–1469. [Google Scholar] [CrossRef]
- Li, J.L.; Sang, Y.F.; Xu, L.J.; Lu, H.Y.; Wang, J.Y.; Chen, Z.N. Highly Efficient Light-Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid. Angew. Chem. Int. Ed. 2022, 61, e202113450. [Google Scholar] [CrossRef]
- Qi, Z.; Chen, Y.; Gao, H.; Zhang, F.-Q.; Li, S.-L.; Zhang, X.-M. Two SbX5-based isostructural polar 1D hybrid antimony halides with tunable broadband emission, nonlinear optics, and semiconductor properties. Sci. China Chem. 2021, 64, 2111–2117. [Google Scholar] [CrossRef]
- Sun, C.; Deng, Z.; Li, Z.; Chen, Z.; Zhang, X.; Chen, J.; Lu, H.; Canepa, P.; Chen, R.; Mao, L. Achieving Near-unity Photoluminescence Quantum Yields in Organic-Inorganic Hybrid Antimony (III) Chlorides with the [SbCl5] Geometry. Angew. Chem. Int. Ed. 2023, 62, e202216720. [Google Scholar] [CrossRef]
- Morad, V.; Yakunin, S.; Kovalenko, M.V. Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides. ACS Mater. Lett. 2020, 2, 845–852. [Google Scholar] [CrossRef]
- Peng, H.; Wang, X.; Tian, Y.; Zou, B.; Yang, F.; Huang, T.; Peng, C.; Yao, S.; Yu, Z.; Yao, Q.; et al. Highly Efficient Cool-White Photoluminescence of (Gua)3Cu2I5 Single Crystals: Formation and Optical Properties. ACS Appl. Mater. Interfaces 2021, 13, 13443–13451. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Lu, M.; Wang, H.; Sui, N.; Shi, Z.; Yu, W.W.; Zhang, Y. Metal halide perovskite nanocrystals and their applications in optoelectronic devices. InfoMat 2019, 1, 430–459. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Lima, P.P.; Silva, N.J.O.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. Lanthanide-based luminescent molecular thermometers. New J. Chem. 2011, 35, 1177–1183. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, G.; Peng, C.; Fei, H. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chem. Commun. 2019, 55, 1702–1705. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Peng, H.; Wei, Q.; Lin, W.; Tian, Y.; Li, T.; Zhou, S.; Zhao, J.; Zou, B. Bulk assemblies of organic antimony chloride with multiple reversible photoluminescence switching for anti-counterfeiting and information encryption. Mater. Today Phys. 2023, 35, 101085. [Google Scholar] [CrossRef]
- Ge, S.; Peng, H.; Wei, Q.; Shen, X.; Huang, W.; Liang, W.; Zhao, J.; Zou, B. Realizing Color-Tunable and Time-Dependent Ultralong Afterglow Emission in Antimony-Doped CsCdCl3 Metal Halide for Advanced Anti-Counterfeiting and Information Encryption. Adv. Opt. Mater. 2023, 11, 2300323. [Google Scholar] [CrossRef]
- Zhu, D.; Zaffalon, M.L.; Zito, J.; Cova, F.; Meinardi, F.; De Trizio, L.; Infante, I.; Brovelli, S.; Manna, L. Sb-Doped Metal Halide Nanocrystals: A 0D versus 3D Comparison. ACS Energy Lett. 2021, 6, 2283–2292. [Google Scholar] [CrossRef]
- Mo, Q.; Qian, Q.; Shi, Y.; Cai, W.; Zhao, S.; Zang, Z. High Quantum Efficiency of Stable Sb-Based Perovskite-Like Halides toward White Light Emission and Flexible X-Ray Imaging. Adv. Opt. Mater. 2022, 10, 2201509. [Google Scholar] [CrossRef]
Chemical Formula | PLE/PL Peak (nm) | Color | FWHM (nm) | PLQY | Lifetime (ns) |
---|---|---|---|---|---|
Cs3Sb2Cl9 QDs [31] | /370 | violet | 52 | 11% | 2.96 |
Cs2AgSbCl6 QDs [67] | 325/409 | blue | 70 | 31.33% | 10.09 |
Cs3Sb2Br9 QDs [31] | 375/410 | blue | 41 | 46% | 4.29 |
Cs2NaInCl6:5%Sb [99] | 330/445 | blue | ~80 | 79% | 1029 |
Cs2AgSbBr6 NCs [67] | 440/465 | blue | 82 | 0.7% | |
14%Sb3+:Cs2KInCl6 [101] | 290/495 | cyan | ~95 | 99.2% | 2990 |
Cs2CdCl4:5%Sb3+ NPs [81] | 280/510 | cyan | 103 | 20% | 1625.9 |
Sb3+:(Cs1−xRbx)3InCl6 [47] | 320/513 | cyan | ~105 | 91.8% | 3090 |
C12H52Cl18N8O4Sb3 [102] | 360/517 | green | 110 | 45% | 4800 |
20%Sb3+:Rb3Cd2Cl7 [94] | 325/525 | green | 115 | 57.47% | 19,400 |
0.4%Sb3+:Rb4CdCl6 [77] | 340/525 | green | 116 | 70% | 1845 |
Cs3Sb2Br0.5I0.5 QDs [67] | /531 | green | 90% | ||
Sb:Cs2CdCl2Br2 [49] | 355/559 | yellow | 123 | 35.23% | 2140 |
β-[DHEP]SbCl5·2H2O [78] | 365/552 | yellow | 122 | 93.35 | 10,550 |
Rb7Sb3Cl16 NCs [65] | 325/556 | yellow | 101 | ≤1% | |
[Emim]8[SbCl6]2[SbCl5] [103] | 354/577 | yellow | 146 | 11.2% | 2250 |
C24H88Cl25N16O4Sb3 [102] | 360/590 | yellow | 140 | 43% | 5200 |
Rb7Sb3Br16 SCs [105] | 350/600 | orange | ≈95 | ||
(TPA)2SbCl5 [75] | 375/610 | orange | 130 | 95.3% | 5300 |
Sb:Cs7Cd3Br13 [49] | 375/625 | orange | 147 | 57.42% | 2170 |
Cs3Sb2I9 SCs [90] | 473/632 | red | 94 | ||
Rb3Sb2I9 SCs [90] | 473/646 | red | 117 | ||
C12H50Cl14N8O3Sb2 [102] | 340/650 | red | 160 | 6% | 5600 |
Sb:Cs2InClBr4·H2O [108] | 380/680 | red | 180 | 93% | 3310 |
Sb3+:Cs2ZnCl4 [50] | 316/745 | near-infrared | 175 | 69.9% | 12,800 |
(C13H22N)2Sb2Cl8 [89] | 350/865 | near-infrared | ~230 | 5% | 1870 |
(C10H16N)2Sb2Cl8 [89] | 345/990 | near-infrared | ~260 | 3% | 1580 |
(C16H36P)SbCl4 [89] | 335/1070 | near-infrared | ~280 | 1% | 1340 |
Cs2ZrCl6:1.5%Sb [80] | 310/480,580 | white | 52.48% | 5.62/61.64 | |
PA6InCl9-Sb [115] | 282/468,580 | white | 90.6% | ||
(C13H30N)2SnCl6:20%Sb [95] | 325/510,670 | white | 99.32% | 23.48/7760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Zou, B. Luminescent Behavior of Sb3+-Activated Luminescent Metal Halide. Nanomaterials 2023, 13, 2867. https://doi.org/10.3390/nano13212867
Huang T, Zou B. Luminescent Behavior of Sb3+-Activated Luminescent Metal Halide. Nanomaterials. 2023; 13(21):2867. https://doi.org/10.3390/nano13212867
Chicago/Turabian StyleHuang, Tao, and Bingsuo Zou. 2023. "Luminescent Behavior of Sb3+-Activated Luminescent Metal Halide" Nanomaterials 13, no. 21: 2867. https://doi.org/10.3390/nano13212867
APA StyleHuang, T., & Zou, B. (2023). Luminescent Behavior of Sb3+-Activated Luminescent Metal Halide. Nanomaterials, 13(21), 2867. https://doi.org/10.3390/nano13212867