Si3C Monolayer as an Efficient Metal-Free Catalyst for Nitrate Electrochemical Reduction: A Computational Study
Abstract
:1. Introduction
2. Computational Methods and Models
3. Results and Discussion
3.1. Structures and Properties of 2D SixCy Nanomaterials
3.2. Adsorption and Activation of NO3− on SixCy Monolayers
3.3. Catalytic Performance of SiC3, SiC7, and Si3C Monolayers for NO3ER
3.4. pH-Dependent NO3ER Activity
3.5. Stability of Si3C Monolayer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M.R.; Shah, A.; Leon, D.A.; Dangour, A.D.; Green, R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res. 2022, 210, 112988. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Shrimali, M.; Singh, K.P. New methods of nitrate removal from water. Environ. Pollut. 2001, 112, 351–359. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Öztürk, N.; Bektaş, T.E.l. Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 2004, 112, 155–162. [Google Scholar] [CrossRef]
- Barrabés, N.; Sá, J. Catalytic nitrate removal from water, past, present and future perspectives. Appl. Catal. B Environ. 2011, 104, 1–5. [Google Scholar] [CrossRef]
- Liou, Y.H.; Lo, S.L.; Lin, C.J.; Hu, C.Y.; Kuan, W.H.; Weng, S.C. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral ph: effects of H2-reducing pretreatment and copper deposition. Environ. Sci. Techn. 2005, 39, 9643–9648. [Google Scholar] [CrossRef]
- Tokazhanov, G.; Ramazanova, E.; Hamid, S.; Bae, S.; Lee, W. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review. Chem. Eng. J. 2020, 384, 123252. [Google Scholar] [CrossRef]
- Xu, H.; Ma, Y.; Chen, J.; Zhang, W.-x.; Yang, J. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B Environ. 2018, 236, 546–568. [Google Scholar] [CrossRef]
- Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B Environ. 2017, 207, 42–59. [Google Scholar] [CrossRef]
- Meng, S.; Ling, Y.; Yang, M.; Zhao, X.; Osman, A.I.; Al-Muhtaseb, A.a.H.; Rooney, D.W.; Yap, P.-S. Recent research progress of electrocatalytic reduction technology for nitrate wastewater: A review. J. Environ. Chem. Engin. 2023, 11, 109418. [Google Scholar] [CrossRef]
- Song, W.; Yue, L.; Fan, X.; Luo, Y.; Ying, B.; Sun, S.; Zheng, D.; Liu, Q.; Hamdy, M.S.; Sun, X. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg. Chem. Front. 2023, 10, 3489–3514. [Google Scholar] [CrossRef]
- Mou, T.; Long, J.; Frauenheim, T.; Xiao, J. Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source. ChemPlusChem 2021, 86, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, D.; Van Beek, Y.; Hensen, E.J.M.; Costa Figueiredo, M. Ammonia electrocatalytic synthesis from nitrate. Electrochem. Sci. Adv. 2022, 3, e2100220. [Google Scholar] [CrossRef]
- Hao, D.; Chen, Z.-g.; Figiela, M.; Stepniak, I.; Wei, W.; Ni, B.-J. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction. J. Mater. Sci. Techn. 2021, 77, 163–168. [Google Scholar] [CrossRef]
- Xiang, T.; Liang, Y.; Zeng, Y.; Deng, J.; Yuan, J.; Xiong, W.; Song, B.; Zhou, C.; Yang, Y. Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: Mechanism, synthesis, characterization, application, and prospects. Small 2023, 19, 2303732. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, P.; Liang, J.; Li, H.; Wang, F. Opportunities and challenges in aqueous nitrate and nitrite reduction beyond electrocatalysis. Inorg. Chem. Front. 2023, 10, 4610–4631. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, H.; Yang, X.; Xue, S.; Liang, Z.; Ren, X.; Liu, A.; Wu, G. Recent Advances in designing efficient electrocatalysts for electrochemical nitrate reduction to ammonia. Small Struct. 2023, 4, 2200202. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Shen, P.; Luo, Y.; Li, X.; Chu, K. PdNi nanosheets boost nitrate electroreduction to ammonia. J. Environ. Chem. Engin. 2022, 10, 108362. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, G.; Shen, P.; Zhang, H.; Ma, D.; Chu, K. Lewis acid Fe-V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2211537. [Google Scholar] [CrossRef]
- Wang, G.; Shen, P.; Cenh, K.; Guo, Y.; Zhao, X.; Chu, K. Rare-earth La-doped VS2−x for electrochemical nitrate reduction to ammonia. Inorg. Chem. Front. 2023, 10, 2014–2021. [Google Scholar] [CrossRef]
- Li, X.; Shen, P.; Li, X.; Ma, D.; Chu, K. Sub-nm RuOx Clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Shen, P.; Luo, Y.; Li, X.; Li, X.; Chu, K. A vacancy engineered MnO2−x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Trans. 2022, 51, 9206–9212. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D.A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F.-Y.; et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870. [Google Scholar] [CrossRef]
- Chen, K.; Ma, Z.; Li, X.; Kang, J.; Ma, D.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2209890. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, K.; Wang, G.; Zhang, G.; Zhang, N.; Chu, K. Ce-doped MoS2−x nanoflower arrays for electrocatalytic nitrate reduction to ammonia. Inorg. Chem. Front. 2023, 10, 1543–1551. [Google Scholar] [CrossRef]
- Hu, C.; Lin, Y.; Connell, J.W.; Cheng, H.-M.; Gogotsi, Y.; Titirici, M.-M.; Dai, L. Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 2019, 31, 1806128. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672. [Google Scholar] [CrossRef]
- Hu, C.; Paul, R.; Dai, Q.; Dai, L. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785–11843. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, S.; Li, X.; Chang, C.; Xie, M.; Xu, J.; Yang, Z. A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia. Mater. Today Phys. 2021, 19, 100431. [Google Scholar] [CrossRef]
- Villora-Picó, J.J.; Jesús García-Fernández, M.; Sepúlveda-Escribano, A.; Mercedes Pastor-Blas, M. Metal-free abatement of nitrate contaminant from water using a conducting polymer. Chem. Eng. J. 2021, 403, 126228. [Google Scholar] [CrossRef]
- Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921. [Google Scholar] [CrossRef]
- Li, T.; Jing, T.; Rao, D.; Mourdikoudis, S.; Zuo, Y.; Wang, M. Two-dimensional materials for electrocatalysis and energy storage applications. Inorg. Chem. Front. 2022, 9, 6008–6046. [Google Scholar] [CrossRef]
- Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408. [Google Scholar] [CrossRef]
- Zhou, L.; Dong, H.; Tretiak, S. Recent advances of novel ultrathin two-dimensional silicon carbides from a theoretical perspective. Nanoscale 2020, 12, 4269–4282. [Google Scholar] [CrossRef] [PubMed]
- Bekaroglu, E.; Topsakal, M.; Cahangirov, S.; Ciraci, S. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B 2010, 81, 075433. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Zhang, Y.-F.; Wu, L.-M. SiC2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cells. Nano Lett. 2013, 13, 5431–5436. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhou, L.; Frauenheim, T.; Hou, T.; Lee, S.-T.; Li, Y. SiC7 siligraphene: A novel donor material with extraordinary sunlight absorption. Nanoscale 2016, 8, 6994–6999. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, R. Two-dimensional topological insulators with binary honeycomb lattices: SiC3 siligraphene and its analogs. Phys. Rev. B 2014, 89, 195427. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y. Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/K-ion batteries. J. Mater. Chem. A 2020, 8, 4274–4282. [Google Scholar] [CrossRef]
- Dong, H.; Wang, L.; Zhou, L.; Hou, T.; Li, Y. Theoretical investigations on novel SiC5 siligraphene as gas sensor for air pollutants. Carbon 2017, 113, 114–121. [Google Scholar] [CrossRef]
- Farmanzadeh, D.; Ardehjani, N.A. Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide nanosheets: A computational study. Appl. Surf. Sci. 2018, 462, 685–692. [Google Scholar] [CrossRef]
- Wang, H.; Wu, M.; Lei, X.; Tian, Z.; Xu, B.; Huang, K.; Ouyang, C. Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. Nano Energy 2018, 49, 67–76. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Huang, Y.; Lin, H. Flexible Si3C monolayer: A superior anode for high-performance non-lithium ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128238. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, W.; Lv, X.; Huang, B.; Dai, Y. Semimetallic Si3C as a high capacity anode material for advanced lithium ion batteries. Appl. Surf. Sci. 2019, 479, 519–524. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Cai, Q. SiC2 siligraphene as a promising anchoring material for lithium-sulfur batteries: A computational study. Appl. Surf. Sci. 2018, 440, 889–896. [Google Scholar] [CrossRef]
- Sinthika, S.; Vala, S.T.; Kawazoe, Y.; Thapa, R. CO oxidation prefers the Eley–Rideal or Langmuir–Hinshelwood pathway: Monolayer vs thin film of SiC. ACS Appl. Mater. Interfaces 2016, 8, 5290–5299. [Google Scholar] [CrossRef]
- Guo, Z.; Qiu, S.; Li, H.; Xu, Y.; Langford, S.J.; Sun, C. Electrocatalytic dinitrogen reduction reaction on silicon carbide: A density functional theory study. Phys. Chem. Chem. Phys. 2020, 22, 21761–21767. [Google Scholar] [CrossRef]
- Guo, Z.; Jasin Arachchige, L.; Qiu, S.; Zhang, X.; Xu, Y.; Langford, S.J.; Sun, C. p-block element-doped silicon nanowires for nitrogen reduction reaction: A DFT study. Nanoscale 2021, 13, 14935–14944. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, T.; Liu, H.; Qiu, S.; Zhang, X.; Xu, Y.; Langford, S.J.; Sun, C. Defective 2D silicon phosphide monolayers for the nitrogen reduction reaction: A DFT study. Nanoscale 2022, 14, 5782–5793. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, H.; Wang, T.; Zhang, X.; Guo, Z.; Li, H. Efficient asymmetrical silicon–metal dimer electrocatalysts for the nitrogen reduction reaction. Phys. Chem. Chem. Phys. 2023, 25, 13126–13135. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Li, Y.; Ding, K.; Zhang, Y.; Chen, W.; Lin, W. Nitrogen fixation on metal-free SiC(111) polar surfaces. J. Mater. Chem. A 2020, 8, 7412–7421. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab-initio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nose-Hoover chains-the canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315. [Google Scholar] [CrossRef]
- Johnson, R. Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database 101; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Sun, Y.; Shi, W.; Sun, M.; Fang, Q.; Ren, X.; Yan, Y.; Gan, Z.; Fu, Y.; Elmarakbi, A.; Li, Z.; et al. Molybdenum based 2D conductive Metal–Organic frameworks as efficient single-atom electrocatalysts for N2 reduction: A density functional theory study. Int. J. Hydrog. Energy 2023, 48, 19972–19983. [Google Scholar] [CrossRef]
- Dai, T.; Wang, Z.; Wen, Z.; Lang, X.; Jiang, Q. Tailoring Electronic Structure of Copper Twin Boundaries Toward Highly Efficient Nitrogen Reduction Reaction. ChemSusChem 2022, 15, e202201189. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, N.; Chen, H.-T. Mechanistic understanding of the electrocatalytic nitrate reduction activity of double-atom catalysts. J. Phys. Chem. C 2023, 127, 994–1005. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533. [Google Scholar] [CrossRef]
- Rehman, F.; Kwon, S.; Musgrave, C.B.; Tamtaji, M.; Goddard, W.A.; Luo, Z. High-throughput screening to predict highly active dual-atom catalysts for electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 103, 107866. [Google Scholar] [CrossRef]
- Wu, D.; Lv, P.; Wu, J.; He, B.; Li, X.; Chu, K.; Jia, Y.; Ma, D. Catalytic active centers beyond transition metals: Atomically dispersed alkaline-earth metals for the electroreduction of nitrate to ammonia. J. Mater. Chem. A 2023, 11, 1817–1828. [Google Scholar] [CrossRef]
- Sathishkumar, N.; Wu, S.-Y.; Chen, H.-T. Mechanistic exploring the catalytic activity of single-atom catalysts anchored in graphitic carbon nitride toward electroreduction of nitrate-to-ammonia. Appl. Surf. Sci. 2022, 598, 153829. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.-H.; Yu, Y.-X. Theoretical exploration of electrochemical nitrate reduction reaction activities on transition-metal-doped h-BP. J. Phys. Chem. Lett. 2021, 12, 3968–3975. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Lv, P.; He, B.; Li, X.; Ma, D.; Jia, Y. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. Nanoscale 2022, 14, 10862–10872. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, M. Theoretical screening of transition metal–N4-doped graphene for electroreduction of nitrate. ACS Catal. 2022, 12, 5407–5415. [Google Scholar] [CrossRef]
- Yin, N.; Dai, Y.; Wei, W.; Huang, B. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 98, 39–44. [Google Scholar] [CrossRef]
- Jiang, J.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q.; Zhang, H.; Li, L.-J.; Zhai, T.; Wee, A.T.S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, Y.; Zhang, Y.; Liu, Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587–2602. [Google Scholar] [CrossRef]
- Polley, C.M.; Fedderwitz, H.; Balasubramanian, T.; Zakharov, A.A.; Yakimova, R.; Bäcke, O.; Ekman, J.; Dash, S.P.; Kubatkin, S.; Lara-Avila, S. Bottom-Up Growth of Monolayer Honeycomb SiC. Phys. Rev. Lett. 2023, 130, 076203. [Google Scholar] [CrossRef]
- Gao, Z.-Y.; Xu, W.; Gao, Y.; Guzman, R.; Guo, H.; Wang, X.; Zheng, Q.; Zhu, Z.; Zhang, Y.-Y.; Lin, X.; et al. Experimental Realization of Atomic Monolayer Si9C15. Adv. Mater. 2022, 34, 2204779. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, S.; Li, X.; Xu, W.; Pi, X.; Liu, X.; Wang, F.; Wu, H.; Chen, H. Quasi-two-dimensional SiC and SiC2: Interaction of silicon and carbon at atomic thin lattice plane. J. Phys. Chem. C 2015, 119, 19772–19779. [Google Scholar] [CrossRef]
- Duan, Z.; Henkelman, G. Theoretical resolution of the exceptional oxygen reduction activity of Au(100) in alkaline media. ACS Catal. 2019, 9, 5567–5573. [Google Scholar] [CrossRef]
- Duan, Z.; Henkelman, G. Surface charge and electrostatic spin crossover effects in CoN4 electrocatalysts. ACS Catal. 2020, 10, 12148–12155. [Google Scholar] [CrossRef]
- Liu, W.; Duan, Z.; Wang, W. Water oxidation-induced surface reconstruction and dissolution at the RuO2 (110) surface revealed by first-principles simulation. J. Phys. Chem. C 2023, 127, 5334–5342. [Google Scholar] [CrossRef]
- Duan, Z.; Henkelman, G. Identification of active sites of pure and nitrogen-doped carbon materials for oxygen reduction reaction using constant-potential calculations. J. Phys. Chem. C 2020, 124, 12016–12023. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, J.; Xia, Z.; Wang, G.; Duan, Z. Spin-dependent active centers in Fe–N–C oxygen reduction catalysts revealed by constant-potential density functional theory. J. Mater. Chem. A 2023, 11, 19360–19373. [Google Scholar] [CrossRef]
- Lv, Y.; Ke, S.-W.; Gu, Y.; Tian, B.; Tang, L.; Ran, P.; Zhao, Y.; Ma, J.; Zou, J.-L.; Ding, M. Highly efficient electrochemical nitrate reduction to ammonia in strong acid conditions with Fe2M-trinuclear-cluster metal-organic frameworks. Angew. Chem. Int. Ed. 2023, 62, e202305246. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-Y.; Wu, Z.-Y.; Gupta, S.; River, D.J.; Lambetts, S.V.; Pecaut, S.; King, J.Y.T.; Zhu, P.; Finfrock, Y.Z.; Meria, D.M.; et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767. [Google Scholar] [CrossRef]
- Yang, J.; Gao, H.; Hu, G.; Wang, S.; Zhang, Y. Novel process of removal of sulfur dioxide by aqueous Ammonia–fulvic acid solution with ammonia escape inhibition. Energy Fuels 2016, 30, 3205–3218. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 2021, 12, 4080. [Google Scholar] [CrossRef]
- Jiao, D.; Wang, Z.; Liu, Y.; Cai, Q.; Zhao, J.; Cabrera, C.R.; Chen, Z. Mo2P monolayer as a superior electrocatalyst for urea synthesis from nitrogen and carbon dioxide fixation: A computational study. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Liu, Y.; Cai, Q.; Zhao, J. The β-PdBi2 monolayer for efficient electrocatalytic NO reduction to NH3: A computational study. Inorg. Chem. Front. 2023, 10, 2677–2688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zhao, T.; Li, F.; Cai, Q.; Zhao, J. Si3C Monolayer as an Efficient Metal-Free Catalyst for Nitrate Electrochemical Reduction: A Computational Study. Nanomaterials 2023, 13, 2890. https://doi.org/10.3390/nano13212890
Guo W, Zhao T, Li F, Cai Q, Zhao J. Si3C Monolayer as an Efficient Metal-Free Catalyst for Nitrate Electrochemical Reduction: A Computational Study. Nanomaterials. 2023; 13(21):2890. https://doi.org/10.3390/nano13212890
Chicago/Turabian StyleGuo, Wanying, Tiantian Zhao, Fengyu Li, Qinghai Cai, and Jingxiang Zhao. 2023. "Si3C Monolayer as an Efficient Metal-Free Catalyst for Nitrate Electrochemical Reduction: A Computational Study" Nanomaterials 13, no. 21: 2890. https://doi.org/10.3390/nano13212890
APA StyleGuo, W., Zhao, T., Li, F., Cai, Q., & Zhao, J. (2023). Si3C Monolayer as an Efficient Metal-Free Catalyst for Nitrate Electrochemical Reduction: A Computational Study. Nanomaterials, 13(21), 2890. https://doi.org/10.3390/nano13212890