Green Synthesis and Morphological Evolution for Bi2Te3 Nanosystems via a PVP-Assisted Hydrothermal Method
Abstract
:1. Introduction
2. Experimental Sections
2.1. Preparation of BiTe Nanosheets
2.2. Sample Characterization
3. Results and Discussion
Structure and Morphology of BiTe Nanosheets
4. Morphological Evolution of BiTe Nanosheets
4.1. Influences of the Reaction Temperature
4.2. Influences of the Molar Mass of NaOH
4.3. Influences of the Surfactants
4.4. Influences of the Reaction Time
5. Transport Properties of Bi2Te3 Solid-State Samples
5.1. Measurement of Solid-State Sample Density
5.2. Electrical Conductivity () of the BiTe Solid-State Samples
5.3. Seebeck Coefficient (S) of the BiTe Solid-State Samples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Ibáñez, M. Tidying up the mess: Cadmium doping improves the thermoelectric properties of AgSbTe2 through ordering effects. Science 2021, 371, 678. [Google Scholar] [CrossRef]
- Liu, Y.; Calcabrini, M.; Yu, Y.; Genç, A.; Chang, C.; Costanzo, T.; Kleinhanns, T.; Lee, S.; Llorca, J.; Cojocaru-Mirédin, O.; et al. The importance of surface adsorbates in solution-processed thermoelectric materials: The case of SnSe. Adv. Mater. 2021, 33, 2106858. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Ortega, S.; Ibáñez, M.; Lim, K.; Arbiol, J.; Kovalenko, M.V.; Cadavid, D.; Cabot, A. High crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2−xTe3 nanocrystal building blocks. Nano Lett. 2018, 18, 2557. [Google Scholar] [CrossRef]
- Liu, Y.; Calcabrini, M.; Yu, Y.; Lee, S.; Chang, C.; David, J.; Ghosh, T.; Spadaro, M.C.; Xie, C.; Cojocaru-Mirédin, O.; et al. Defect engineering in solution processed polycrystalline SnSe leads to high thermoelectric performance. ACS Nano 2021, 16, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, Y.; Zhang, Y.; Zhang, T.; Zuo, Y.; Xiao, K.; Arbiol, J.; Llorca, J.; Ibáñez, M.; Liu, J.; et al. Effect of the annealing atmosphere on crystal phase and thermoelectric properties of copper sulfide. ACS Nano 2021, 15, 4967. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Lim, K.; Ibáñez, M.; Ortega, S.; Kovalenko, M.V.; Cadavid, D.; Cabot, A. High thermoelectric performance in crystallographically textured n-type Bi2Te3−xSex produced from asymmetric colloidal nanocrystals. ACS Nano 2018, 12, 7174. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, C.; Liu, Y.; Chiara, M.; Wang, X.; Li, M.; Xiao, K.; Zhang, T.; Guardia, P.; Arbiol, J.; et al. Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2−xS. Nano Energy 2021, 85, 105991. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zhang, Y.; Chang, C.; Han, X.; Xiao, K.; Arbiol, J.; Llorca, J.; Ibáñez, M.; Cabot, A. Room temperature aqueous-based synthesis of copper-doped lead sulfide nanoparticles for thermoelectric application. Chem. Eng. J. 2021, 433, 133837. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, C.; Liu, Y.; Li, M.; Xiao, K.; Lee, S.; Han, X.; Roa, J.; Arbiol, J.; Cadavid, D.; et al. Influence of copper telluride nanodomains on the transport properties of n-type bismuth telluride. Chem. Eng. J. 2021, 418, 129374. [Google Scholar] [CrossRef]
- Liu, Y.; García, G.; Ortega, S.; Cadavid, D.; Palacios, P.; Lu, J.Y.; Ibáñez, M.; Xi, L.L.; De Roo, J.; Lopez, A.M.; et al. Solution-based synthesis and processing of Sn-and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. J. Mater. Chem. A 2017, 5, 2592. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zhang, Y.; Han, X.; Xiao, K.; Nabahat, M.; Arbiol, J.; Llorca, J.; Ibáñez, M.; Cabot, A. PbS–Pb–CuxS composites for thermoelectric application. ACS Appl. Mater. Interfaces 2021, 13, 51373–51382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Xing, C.; Han, X.; Arbiol, J.; Cadavid, D.; Ibáñez, M.; Cabot, A. Bismuth telluride–copper telluride nanocomposites from heterostructured building blocks. J. Mater. Chem. C 2020, 8, 14092. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Zhang, T.; Zuo, Y.; Xiao, K.; Arbiol, J.; Llorca, J.; Liu, Y.; Cabot, A. Enhanced thermoelectric performance of n-type Bi2Se3 Nanosheets through Sn doping. Nanomaterials 2018, 7, 1827. [Google Scholar] [CrossRef] [PubMed]
- Amin Bhuiyan, M.R.; Mamur, H.; Dilmaç, Ö.F. A Review on Performance Evaluation of Bi2Te3-based and some other Thermoelectric Nanostructured Materials. Curr. Nanosci. 2021, 17, 423–446. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Chen, Y.; Wu, H.; Wang, H.; Yang, M.; Wang, G.; Xu, J.; Zhou, X.; Han, G. Achieving enhanced thermoelectric performance in (SnTe) 1−x (Sb2 Te3)x and (SnTe) 1−y (Sb2 Se3) y synthesized via solvothermal reaction and sintering. ACS Appl. Mater. Inter. 2020, 12, 44805–44814. [Google Scholar] [CrossRef]
- Liu, M.; Yin, S.; Ren, T.; Xu, Y.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Two-Dimensional Heterojunction Electrocatalyst: Au-Bi2Te3 Nanosheets for Electrochemical Ammonia Synthesis. ACS Appl. Mater. Inter. 2021, 13, 47458–47464. [Google Scholar] [CrossRef]
- Mehta, R.J.; Zhang, Y.; Karthik, C.; Singh, B.; Siegel, R.W.; Borca-Tasciuc, T.; Ramanath, G. A New Class of Doped Nanobulk High-Figure-of-Merit Thermoelectrics by Scalable Bottom-up Assembly. Nat. Mater. 2012, 11, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Lei, Y.; Zhao, H.; Liang, J.; Ding, P.; Liu, Q.; Lu, S.; Li, Q.; Sun, Q. Noble-metal-free electrocatalysts toward H2O2 production. J. Mater. Chem. A 2020, 8, 23123–23141. [Google Scholar] [CrossRef]
- Huo, D.; Lin, G.; Lv, M. Hydrothermal synthesis of Bi2Se3 nanosheets by using gallic acid as a reductant. RSC Adv. 2022, 12, 15150–15157. [Google Scholar] [CrossRef]
- Xu, H.; Chen, G.; Jin, R.; Chen, D.; Wang, Y.; Pei, J. Green synthesis of Bi2Se3 hierarchical nanostructure and its electrochemical properties. RSC Adv. 2014, 4, 8922–8929. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Pan, J.; Sun, Y.; Zhang, L.; Song, S. Hierarchical Bi2Te3 Nanostrings: Green Synthesis and Their Thermoelectric Properties. Chem. Eur. J. 2018, 24, 9765–9768. [Google Scholar] [CrossRef]
- Yang, H.Q.; Chen, Y.J.; Wang, X.Y.; Miao, L.; Li, X.Y.; Han, X.D.; Lu, X.; Wang, G.Y.; Zhou, X.Y. Realizing high thermoelectric performance in Te nanocomposite through Sb2Te3 incorporation. CrystEngComm 2018, 20, 7729–7738. [Google Scholar] [CrossRef]
- Isaeva, A.; Ruck, M. Crystal chemistry and bonding patterns of bismuth-based topological insulators. Inorg. Chem. 2020, 597, 3437–3451. [Google Scholar] [CrossRef]
- Salvato, M.; Crescenzi, M.D.; Scagliotti, M. Nanometric Moiré Stripes on the Surface of Bi2Se3 Topological Insulator. ACS Nano 2022, 16, 13860–13868. [Google Scholar] [CrossRef] [PubMed]
- Kunakova, G.; Kauranens, E.; Niherysh, K. Magnetotransport Studies of Encapsulated Topological Insulator Bi2Se3 Nanoribbons. Nanomaterials 2022, 12, 768. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Zhou, F. Synthesis, Evolution of Morphology, Transport Properties for Bi2Te3 Nanoplates. Crystals 2022, 12, 1668. [Google Scholar] [CrossRef]
- Tan, L.; Zhou, F.; Zhang, L.; Xiang, S.; Song, K.; Zhao, Y. High-Fidelity Hyperentangled Cluster States of Two-Photon Systems and Their Applications. Symmetry 2019, 11, 1079. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Fang, X.M.; Zhou, F.; Song, K.H. A scheme for realizing quantum information storage and retrieval from quantum memory based on nitrogenvacancy centers. Phys. Rev. A 2012, 86, 052325. [Google Scholar] [CrossRef]
- Yuan, T.; Zhou, F.; Chen, S.; Xiang, S.; Song, K.; Zhao, Y. Multipurpose Quantum Simulator Based on a Hybrid Solid-State Quantum Device. Symmetry 2019, 11, 467. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Shi, Z.; Zhou, F.; Xiang, S.; Song, K. Implementation of one-way quantum computing with a hybrid solid-state quantum system. Chin. J. Electron 2017, 26, 27–34. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, S.; Song, K.; Zhao, Y. Influence from cavity decay on entanglement evolution of three superconducting charge qubits coupled to a cavity. Chin. J. Electron 2014, 23, 157–162. [Google Scholar]
- Zhao, Y.; Fang, X.M.; Zhou, F.; Song, K.H. Preparation of N-qubit GHZ state with a hybrid quantum system based on nitrogen-vacancy centers. Chin. Phys. Lett. 2013, 30, 050304. [Google Scholar] [CrossRef]
- Zhao, Y.; Mi, X.W.; Xiang, S.; Zhou, F.; Song, K. Entanglement Dynamics of Three Superconducting Charge Qubits Coupled to a Cavity. Commun. Theor. Phys. 2011, 55, 775. [Google Scholar] [CrossRef]
- Zhang, H.J.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Zhou, W.; Tang, D. Temperature-Dependent Raman Scattering of Large Size Hexagonal Bi2Se3 Single-Crystal nanosheets. Appl. Sci. 2018, 8, 1794. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Zhou, W.; Tang, D. Temperature dependent Raman of BiTe nanotubes. AIP Adv. 2018, 8, 125330. [Google Scholar] [CrossRef]
- Tan, G.J.; Zhao, L.D.; Shi, F.Y.; Doak, J.W.; Lo, S.H.; Sun, H.; Wolverton, C.; Dravid, V.P.; Uher, C.; Kanatzidis, M.G. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J. Am. Chem. Soc. 2014, 136, 7006–7017. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.Q.; Zhang, Q.C.; Wang, G.Y.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 2011, 3, 160–166. [Google Scholar] [CrossRef]
- Tan, G.J.; Zheng, Y.; Tang, X.F. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Appl. Phys. Lett. 2013, 103, 183904. [Google Scholar] [CrossRef]
- Zhao, L.D.; Wu, H.J.; Hao, S.Q.; Wu, C.I.; Zhou, X.Y.; Biswas, K.; He, J.Q.; Hogan, T.P.; Uher, C.; Wolverton, C. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 2013, 6, 3346–3355. [Google Scholar] [CrossRef]
- Kim, H.S.; Shin, H.S.; Lee, J.S.; Ahn, C.W.; Song, J.Y.; Doh, Y.J. Quantum electrical transport properties of topological insulator Bi2Te3 nanowires. Curr. Appl. Phys. 2016, 16, 51–56. [Google Scholar] [CrossRef]
- Zhu, H.T.; Luo, J.; Liang, J.K. Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties. J. Mater. Chem. A 2014, 2, 12821–12826. [Google Scholar] [CrossRef]
- Fu, J.; Song, S.; Zhang, X.; Cao, F.; Zhou, L.; Li, X.; Zhang, H. Bi2Te3 nanosheets and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties. CrystEngComm 2012, 14, 2159–2165. [Google Scholar] [CrossRef]
- Ponraj, J.S.; Xu, Z.Q.; Dhanabalan, S.C.; Mu, H.; Wang, Y.; Yuan, J.; Li, P.; Thakur, S.; Ashrafi, M.; Mccoubrey, K.; et al. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 2016, 27, 462001. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, W.; Qiu, Y.; Yi, X.; Bussche, A.; Kane, A.; Gao, H.; Koski, K.; Hurt, R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 1750–1780. [Google Scholar] [CrossRef]
- Hong, M.; Chen, Z.G.; Yang, L.; Zou, J. Enhancing thermoelectric performance of Bi2Te3-based nanostructures through rational structure design. Nanoscale 2016, 8, 8681–8686. [Google Scholar] [CrossRef]
- Li, C.Y.; Ruoff, A.L.; Spencerm, C.W. Effect of pressure on the energy gap of Bi2Te3. J. Appl. Phys. 1961, 32, 1733–1735. [Google Scholar] [CrossRef]
- Kullmann, W.; Geurts, J.; Richter, W.; Lehner, N.; Steigenberger, U.; Eichhorn, G.; Geick, R. Effect of hydrostatic and uniaxial pressure on structural properties and Raman active lattice vibrations in Bi2Te3. Phys. Stat. Sol. B 1984, 125, 131–138. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional van Der Waals Crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, Z.; Xu, G.; Zhou, B.; Wu, S.; Dumcenco, D.; Yan, K.; Zhang, Y.; Mo, S.K.; Dudin, P.; et al. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit. Nano Lett. 2016, 16, 4738–4745. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Dai, J.; Dong, H.; Geng, Y.; Cao, F.; Wang, C.; Xu, R.; Pang, F.; Liu, Z.X.; Li, F.; et al. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers. Nat. Commun. 2023, 14, 6320. [Google Scholar] [CrossRef]
- Shi, B.; Miao, L.; Wang, Q.; Du, J.; Tang, P.; Liu, J.; Zhao, C.; Wen, S. Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions. Appl. Phys. Lett. 2015, 107, 15110. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Miao, L.; Jiang, G.; Chen, S.; Liu, J.; Fu, X.; Zhao, C.; Zhang, H. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer. Opt. Express 2015, 23, 7681–7693. [Google Scholar] [CrossRef] [PubMed]
- Dun, C.; Hewitt, C.A.; Jiang, Q.; Guo, Y.; Xu, J.; Li, Y.; Li, Q.; Wang, H.; Carroll, D.L. Bi2Te3 Plates with Single Nanopore: The Formation of Surface Defects and Self-Repair Growth. Chem. Mater. 2018, 30, 1965–1970. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, W.; Pan, J.; Ye, C. Alternating Current Electroluminescent sampless with Inorganic Phosphors for Deformable Displays. Cell Rep. Phys. Sci. 2020, 1, 100213. [Google Scholar] [CrossRef]
- He, Q.; Worku, M.; Xu, L.; Zhou, C.; Lteif, S.; Schlenoff, J.B.; Ma, B. Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells. J. Mater. Chem. A 2020, 8, 2039–2046. [Google Scholar] [CrossRef]
- He, Q.; Worku, M.; Xu, L.; Zhou, C.; Lin, H.; Robb, A.J.; Hanson, K.; Xin, Y.; Ma, B. Facile Formation of 2D–3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 1159–1168. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Fu, Y.; Pan, J.; Bakr, O.M. Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chem. Rev. 2021, 121, 12112–12180. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, K. Morphological evolution in single—Crystalline Bi2Te3 nanoparticles, nanosheets and nanotubes with different synthesis temperatures. Bull. Mater. Sci. 2013, 36, 765–770. [Google Scholar] [CrossRef]
- Wei, H.; Wu, H.; Huang, K.; Ge, B.; Ma, J.; Lang, J.; Zu, D.; Lei, M.; Yao, Y.; Guo, W.; et al. Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chem. Sci. 2019, 10, 2830–2836. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, L.P.; Zhu, T.J.; Xie, J.; Zhao, X.B. High yield Bi2Te3 single crystal nanosheets with uniform morphology via a solvothermal synthesis. Cryst. Growth Des. 2013, 13, 645–651. [Google Scholar] [CrossRef]
- Zheng, X.F.; Liu, C.X.; Yan, Y.Y.; Wang, Q. A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications. Renew. Sust. Energy Rev. 2014, 32, 486–503. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, W.; Zeng, B.; Zhang, G.; Song, Y.; Zhang, X.; Huang, J.; Li, J.; Li, T. The effect of the Bi source on optical properties of Bi2Te3 nanostructures. Solid State Commun. 2011, 151, 704–707. [Google Scholar] [CrossRef]
- He, X.; Zhang, H.; Lin, W.; Wei, R.; Qiu, J.; Zhang, M.; Hu, B. PVP-Assisted Solvothermal Synthesis of High-Yielded Bi2Te3 Hexagonal Nanoplates: Application in Passively Q-Switched Fiber Laser. Sci. Rep. 2015, 5, 15868. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, H.; Guo, L.; Su, W.; Zhao, L.; Li, G.; Chen, T.; Wang, C.; Dang, F. Stacking surface derived catalytic capability and by-product prevention for high efficient two dimensional Bi2Te3 cathode catalyst in Li-oxygen batteries. Appl. Catal. B Environ. 2022, 318, 121844. [Google Scholar] [CrossRef]
- Vinoth, S.; Karthikeyan, V.; Roy, V.A.L.; Srinivasanet, B.; Thilakan, P. Bismuth Telluride (Bi2Te3) nanocrystallites: Studies on growth morphology and its influence on the thermoelectric properties. J. Cryst. Growth 2023, 606, 127087. [Google Scholar] [CrossRef]
- Zheng, D.; Jin, H.; Hou, L.; Liao, Y.; Ji, P. The synthesis of bismuth telluride nanowires with a high aspect ratio via precise regulation of growth rates. Mater. Lett. 2023, 335, 133772. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, D.; Cao, J.; Zeng, Z.; Zhang, B.; Pan, J.; Liu, D.; Liu, S.; Jiao, S.; Chen, T.; et al. Highly efficient 1D p-Te/2D n-Bi2Te3 heterojunction self-driven broadband photodetector. Nano Res. 2023, 3, 1–11. [Google Scholar] [CrossRef]
- Shyni, P.; Pradyumnan, P.P. Deep tuning of Bi2Te3 nanostructures suitable for thermoelectric waste heat recovery: The impact of pH on crystal growth in hydrothermal synthesis. Mater. Sci. Eng. B 2023, 287, 116090. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, X.; Wang, Q.; Liu, X.; Wang, Q.; Qiu, Y.; Shu, Z.; Guo, Z.; Tong, Y.; Cui, J.; et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ. Sci. 2020, 13, 2106–2114. [Google Scholar] [CrossRef]
- Wang, Y.; Bourgés, C.; Rajamathi, R.; Nethravathi, C.; Rajamathi, M.; Mori, T. The effect of reactive electric field-assisted sintering of MoS2/Bi2Te3 heterostructure on the phase integrity of Bi2Te3 matrix and the thermoelectric properties. Materials 2021, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Liu, T.; Lai, H.; Meng, X.; Yang, L.; Su, J.; Chen, T. A universally edta-assisted synthesis of polytypic bismuth telluride nanoplates with a size-dependent enhancement of tumor radiosensitivity and metabolism in vivo. ACS Nano 2022, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Riyajuddin, S.; Ghosh, K.; Ghosh, R. Room-Temperature Ammonia Detection Using Layered Bi2Se3/Bi2O3: A Next-Generation Sensor. ACS Appl. Electron. Mater. 2023, 5, 948–956. [Google Scholar] [CrossRef]
- Ma, R.; Yang, D.; Tian, Z.; Song, H.; Zhang, Y. Effects of Bi2Te3 doping on the thermoelectric properties of Cu2Se alloys. Appl. Phys. A 2022, 128, 531. [Google Scholar] [CrossRef]
- Guo, Y.; Du, J.; Hu, M.; Wei, B.; Su, T.; Zhou, A. Improve thermoelectric performance of Bi2Te3 by incorporation of Mo2C MXene with N-type conductivity. J. Mater. Sci.-Mater. Electron. 2023, 34, 685. [Google Scholar] [CrossRef]
- Al Naim, A.F.; El-Shamy, A.G. Review on recent development on thermoelectric functions of PEDOT: PSS based systems. Mater. Sci. Semicond. Process. 2022, 152, 107041. [Google Scholar] [CrossRef]
- He, Q.; Zhang, W.; Liu, X.; Song, H. Enhanced thermoelectric performance of Bi2Te3 by La2O3 dispersion. Mod. Phys. Lett. B 2022, 36, 2250157. [Google Scholar] [CrossRef]
- Kim, M.; Park, D.; Kim, J. A thermoelectric generator comprising selenium-doped bismuth telluride on flexible carbon cloth with n-type thermoelectric properties. Ceram. Int. 2022, 48, 10852–10861. [Google Scholar] [CrossRef]
- Wu, F.; Wang, W. Thermoelectric Performance of n-Type Polycrystalline Bi2Te3 by Melt Spinning following High-Pressure Sintering. J. Electron. Mater. 2023, 52, 276–283. [Google Scholar] [CrossRef]
TeO | BiCl | NaOH | PVP (K-30) | t(h) | T(°C) | Morphology | |
---|---|---|---|---|---|---|---|
(a) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 36 h | 140 °C | nanoparticles |
(b) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 36 h | 160 °C | nanoparticles and nanosheets |
(c) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 36 h | 180 °C | nanosheets |
(d) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 36 h | 200 °C | nanoclusters |
TeO | BiCl | PVP | T(°C) | t(h) | NaOH | Morphology | |
---|---|---|---|---|---|---|---|
(a) | 3.0 mmol | 2.0 mmol | 1.0 g | 180 °C | 36 h | 0.0 mmol | nanoclusters and nanorods |
(b) | 3.0 mmol | 2.0 mmol | 1.0 g | 180 °C | 36 h | 5.0 mmol | nanorods |
(c) | 3.0 mmol | 2.0 mmol | 1.0 g | 180 °C | 36 h | 10.0 mmol | nanowires and nanosheets |
(d) | 3.0 mmol | 2.0 mmol | 1.0 g | 180 °C | 36 h | 20.0 mmol | nanosheets |
(e) | 3.0 mmol | 2.0 mmol | 1.0 g | 180 °C | 36 h | 40.0 mmol | nanoclusters |
(f) | 3.0 mmol | 2.0 mmol | 1.0 g | 180 °C | 36 h | KOH | nanoclusters |
TeO | BiCl | T(°C) | t(h) | NaOH | Surfactants | Morphology | |
---|---|---|---|---|---|---|---|
(a) | 3.0 mmol | 2.0 mmol | 180 °C | 36 h | 20.0 mmol | 0.0 g | nanoclusters and nanorods |
(b) | 3.0 mmol | 2.0 mmol | 180 °C | 36 h | 20.0 mmol | CTAB | nanorods |
(c) | 3.0 mmol | 2.0 mmol | 180 °C | 36 h | 20.0 mmol | EDTA | nanorods |
(d) | 3.0 mmol | 2.0 mmol | 180 °C | 36 h | 20.0 mmol | SDBS | nanosheets and nanorods |
TeO | BiCl | NaOH | PVP | T(°C) | t(h) | Morphology | |
---|---|---|---|---|---|---|---|
(a) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 180 °C | 3 h | nanoparticles |
(b) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 180 °C | 6 h | nanoparticles and nanosheets |
(c) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 180 °C | 12 h | nanoparticles and nanosheets |
(d) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 180 °C | 24 h | nanosheets |
(e) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 180 °C | 36 h | nanosheets |
(f) | 3.0 mmol | 2.0 mmol | 20.0 mmol | 1.0 g | 180 °C | 48 h | nanorods |
Parameters Name | M(g) | D(mm) | H(mm) | V(cm) | (g/cm) | Relative Density |
---|---|---|---|---|---|---|
Measured value | 1.733 | 12.50 | 1.95 | 0.23918 | 7.2456 | 93.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Zhou, W.; Zhao, Y.; Liu, L. Green Synthesis and Morphological Evolution for Bi2Te3 Nanosystems via a PVP-Assisted Hydrothermal Method. Nanomaterials 2023, 13, 2894. https://doi.org/10.3390/nano13212894
Zhou F, Zhou W, Zhao Y, Liu L. Green Synthesis and Morphological Evolution for Bi2Te3 Nanosystems via a PVP-Assisted Hydrothermal Method. Nanomaterials. 2023; 13(21):2894. https://doi.org/10.3390/nano13212894
Chicago/Turabian StyleZhou, Fang, Weichang Zhou, Yujing Zhao, and Li Liu. 2023. "Green Synthesis and Morphological Evolution for Bi2Te3 Nanosystems via a PVP-Assisted Hydrothermal Method" Nanomaterials 13, no. 21: 2894. https://doi.org/10.3390/nano13212894
APA StyleZhou, F., Zhou, W., Zhao, Y., & Liu, L. (2023). Green Synthesis and Morphological Evolution for Bi2Te3 Nanosystems via a PVP-Assisted Hydrothermal Method. Nanomaterials, 13(21), 2894. https://doi.org/10.3390/nano13212894