Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nanoparticles using the Pechini Polymeric Precursor Method
2.2. Potentiometric Titration Curve
2.3. Structural and Optical Characterization of Ceramic Powders
2.4. Photocatalytic Evaluation of Nanoparticles
3. Results and Discussions
3.1. Potentiometric Titration Curves
3.2. Characterization of the Solid Phase
3.2.1. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
3.2.2. Scanning Electron Microscope
3.2.3. X-ray Diffraction
3.2.4. Nitrogen Adsorption and Desorption Isotherms
3.3. Optical Characterizations
3.3.1. Fourier Transform Infrared Spectroscopy
3.3.2. Raman Spectroscopy
3.3.3. Diffuse Reflectance Spectroscopy
3.3.4. Photoluminescence Spectroscopy
3.4. Methyl Orange (MO) and Levofloxacin (LVF) Photodegradation Tests
3.4.1. Determination of Calibration Curves
3.4.2. MO and LVF Degradation Kinetics
System | Method of Synthesis | Parameter of Synthesis | (eV) | Emerging Pollutant | Irradiation | Efficiency (%) | Ref | |
---|---|---|---|---|---|---|---|---|
Sol–gel | Precursor: Calcium chloride (CaCl2), Titanium (IV) isopropoxide [Ti(OC4H9)4] 700 °C/2 h | 2.95 | 48.2 | MO | 100 min Light source: 500 W Xe lamp (470 nm). | 62% 10 mg/50 mL of 5 mg/L | [60] | |
900/2 h | 2.82 | 73.4 | MO | 88% 10 mg/50 mL of 5 mg/L | ||||
Microwave-assisted method | Precursor: Calcium acetate Ca(CH3COO)22H2O, Titanyl sulfate TiO(SO4.) Microwave irradiation at 400 W | 2.67 | - | MB | 240 min Light source: 6 W Hg lamp (254 nm) | 96.4% 0.1 g in 20 ppm de MB dye | [44] | |
Polyacrylamide gel route | Precursor: calcium nitrate Ca(NO3)24H2O, Titanium Tetrabutoxide Ti(C4H9O)4Chelating agent: Ethylenediaminetetraacetic acid (EDTA) 600 °C/6 h | 3.66 | 60.5 | MO | 180 min Light source: 15 W low-pressure mercury lamp (254 nm) | 96% 0.1 g/100 mL of 1 mg/L | [91] | |
Solid state | Precursor: calcium carbonate CaCO3, titanium oxide TiO2 1400 °C/3 h | 3.18 | 0.10 | MB | 60 min Light source: 500 W Hg lamp | 0.1 g/200 mL of 10 mg/mL | [53] | |
Sol–gel | Precursor: calcium nitrate tetrahydrate Ca(NO3)2·4H2O, Tetrabutyl titanate Ti(C4H9O)4 700 °C/3 h | 3.42 | 9.69 | MB | 0.1 g/200 mL of 10 mg/mL | |||
Hydrothermal | Precursor: calcium nitrate tetrahydrate Ca(NO3)2·4H2O, Tetrabutyl titanate Ti(C4H9O)4 200 °C/24 h. | 3.49 | 18.20 | MB | 96.6% 0.1 g/200 mL of 10 mg/mL | |||
Thermal method | Precursor: calcium nitrate Ca(NO3), Tetra-n-butyl titanate C16H36O4Ti 700 °C/5 h | 3.08 | - | MO | 40 min Light source: 500 W, Xe lamp | 99.03% 15 mg/50 mL of 10 mg/L (0.3 g/L) | [86] | |
Hydrothermal | 180 °C/12 h Precursor: titanium isopropoxide | 3.65 | 108.14 | Arsenite [As(III)] | 40 min Light source: UV light irradiation (254 nm) | 98.4% 80 mg/80 mL of 2 mg/L | [92] | |
Hydrothermal | 180 °C/24 h Precursor: tetrabutyltitanate (TNB), calcium nitrate and melamine. Composition: CTO/40%CN | 3.35 | - | LVF | 120 min Light source: 500 W low-pressure mercury lamp (254 nm) | 87.7% 0.4 g/L | [93] | |
Polymeric precursor method | Precursor: calcium acetate [Ca(C2H3O2)2], titanium butoxide (C16H36O4Ti) 700 °C/2 h | 3.44 | 34.6 | MB | 180 min Light source: 125 W mercury lamp | 69% 1.0 g/L and pH of 11.2 | [43] | |
Polymeric precursor method | Precursor: titanium tetrabutoxide ]4, and calcium acetate (700 °C/6 h | 3.4 | 10.01 | MO | 120 min Light source: UV lamp | 88.1% 5 g/L and pH of 6.2 | This work | |
LVF | 120 min Light source: UV lamp | 98.1% 10 g/L and pH of 4.5 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, M.J.; Soto, A.M.; Usma, J.I.; Gutiérrez, O.D. Contaminantes Emergentes En Aguas, Efectos y Posibles Tratamientos. Prod. Limpia 2012, 7, 52–73. [Google Scholar]
- Fu, X.; Zhou, G.; Li, J.; Yao, Q.; Han, Z.; Yang, R.; Chen, X.; Wang, Y. Critical Review on Modified Floating Photocatalysts for Emerging Contaminants Removal from Landscape Water: Problems, Methods and Mechanism. Chemosphere 2023, 341, 140043. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Marín, D. Contaminantes Emergentes En El Agua: Regulación En México, Principio Precautorio y Perspectiva Comparada. Rev. Derecho Ambient. 2021, 15, 51–76. [Google Scholar] [CrossRef]
- Sandoval, J.A.; Morales-Granados, M.A.; Rubio, D. Breve Revisión Del Uso de Microalgas Para La Remoción de Contaminantes Emergentes En Aguas Residuales. Gestión Ambient. 2020, 23, 127–137. [Google Scholar] [CrossRef]
- Andrea, J.; Urbina, J.; Augusto, J.; Solano2, V. Los Contaminantes Emergentes de Las Aguas Residuales de La Industria Farmacéutica y Su Tratamiento Por Medio de La Ozonización. Inf. Técnico 2020, 84, 249–263. [Google Scholar] [CrossRef]
- Intisar, A.; Ramzan, A.; Hafeez, S.; Hussain, N.; Irfan, M.; Shakeel, N.; Gill, K.A.; Iqbal, A.; Janczarek, M.; Jesionowski, T. Adsorptive and Photocatalytic Degradation Potential of Porous Polymeric Materials for Removal of Pesticides, Pharmaceuticals, and Dyes-Based Emerging Contaminants from Water. Chemosphere 2023, 336, 139203. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, F.; Wang, Z.; Xing, B. Roadmap of Environmental Health Research on Emerging Contaminants: Inspiration from the Studies on Engineered Nanomaterials. Eco-Environ. Health 2022, 1, 181–197. [Google Scholar] [CrossRef]
- Veiga-del-Baño, J.M.; Cámara, M.Á.; Oliva, J.; Hernández-Cegarra, A.T.; Andreo-Martínez, P.; Motas, M. Mapping of Emerging Contaminants in Coastal Waters Research: A Bibliometric Analysis of Research Output during 1986–2022. Mar. Pollut. Bull. 2023, 194, 115366. [Google Scholar] [CrossRef]
- Fernández González, E. Toxicidad de Contaminantes Emergentes Farmacéuticos Sobre la Microalga Modelo Chlamydomonas Reinhardtii; Universidade da Coruña: Coruña, Spain, 2023. [Google Scholar]
- Sharma, A.; Kumar, N.; Mudhoo, A.; Garg, V.K. Phytobiomass-Based Nanoadsorbents for Sequestration of Aquatic Emerging Contaminants: An Overview. J. Environ. Chem. Eng. 2023, 11, 109506. [Google Scholar] [CrossRef]
- Puri, M.; Gandhi, K.; Kumar, M.S. Emerging Environmental Contaminants: A Global Perspective on Policies and Regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef]
- Hu, X.; Gong, S.; He, Q.; Wu, J.L.; Li, N. Less Is More: A New Perspective for Toxicity of Emerging Contaminants by Structures, Protein Adducts and Proteomics. TrAC Trends Anal. Chem. 2023, 167, 117289. [Google Scholar] [CrossRef]
- Silva, E.C.; Soares, V.R.; Fajardo, A.R. Removal of Pharmaceuticals from Aqueous Medium by Alginate/Polypyrrole/ZnFe2O4 Beads via Magnetic Field Enhanced Adsorption. Chemosphere 2023, 316, 137734. [Google Scholar] [CrossRef] [PubMed]
- Shearer, L.; Pap, S.; Gibb, S.W. Removal of Pharmaceuticals from Wastewater: A Review of Adsorptive Approaches, Modelling and Mechanisms for Metformin and Macrolides. J. Environ. Chem. Eng. 2022, 10, 108106. [Google Scholar] [CrossRef]
- Afsa, S.; Vieira, M.; Nogueira, A.F.; ben Mansour, H.; Nunes, B. A Multi-Biomarker Approach for the Early Assessment of the Toxicity of Hospital Wastewater Using the Freshwater Organism Daphnia Magna. Environ. Sci. Pollut. Res. 2021, 29, 19132–19147. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, X.; Bai, Y.; Chen, J.; Zhang, C. Simple Synthesis of CaTiO3/g-C3N4 Heterojunction for Efficient Photodegradation of Methylene Blue and Levofloxacin. Opt. Mater. 2023, 135, 113239. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, H.; Liu, J.; Xia, Q.; Liu, J.; Liang, X.; Liu, E.; Fan, J. Effective Photodegradation of Rhodamine B and Levofloxacin over CQDs Modified BiOCl and BiOBr Composite: Mechanism and Toxicity Assessment. J. Colloid Interface Sci. 2022, 627, 180–193. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chen, J.; Yang, Y.; Hu, X.; Jiang, Z.; Yan, Y.; Sun, J.; Fu, L.; Wei, J.; Yang, T. Coupling Plasmonic Effect into Stable AgCl/NH2-MIL-68In Z-Scheme Heterojunction System for Efficient Photodegradation of Levofloxacin. Opt. Mater. 2023, 137, 113554. [Google Scholar] [CrossRef]
- Varma, K.S.; Shukla, A.D.; Tayade, R.J.; Mishra, M.K.; Nguyen, V.H.; Gandhi, V. Interaction of Levofloxacin with Reverse Micelle Sol-Gel Synthesized TiO2 Nanoparticles: Revealing Ligand-to-Metal Charge Transfer (LMCT) Mechanism Enhances Photodegradation of Antibiotics under Visible Light. Mater. Lett. 2022, 309, 131304. [Google Scholar] [CrossRef]
- Yang, X.; Hesami, M.D.; Nazemipool, E.; Bahadoran, A.; Al-Bahrani, M.; Azizi, B. Fabrication of CuCo2S4 Yolk-Shell Spheres Embedded with S-Scheme V2O5-Deposited on Wrinkled g-C3N4 for Effective Promotion of Levofloxacin Photodegradation. Sep. Purif. Technol. 2022, 301, 122005. [Google Scholar] [CrossRef]
- Regraguy, B.; Ellouzi, I.; Mabrouki, J.; Rahmani, M.; Drhimer, F.; Mahmou, C.; Dahchour, A.; El Mrabet, M.; El Hajjaji, S. Zinc Doping of Different Nanoparticles of TiO2 Sachtopore for Improved Elimination of the Methyl Orange by Photocatalysis. Emergent Mater. 2022, 5, 1945–1958. [Google Scholar] [CrossRef]
- Juárez Ramírez, I.; Torres Martínez, L.M.; López, A.C.; Garza Tovar, L.L.; Meza De La Rosa, M.E. Nanopartículas Semiconductoras: Una Alternativa para la Degradación de Contaminantes Orgánicos Presentes en Agua Residual y la Generación de Energía de Manera Sustentable; Ciencia UANL: San Nicolás de los Garza, Mexico, 2008; Volume XI, pp. 411–422. [Google Scholar]
- Okoye, C.O.; Nyaruaba, R.; Ita, R.E.; Okon, S.U.; Addey, C.I.; Ebido, C.C.; Opabunmi, A.O.; Okeke, E.S.; Chukwudozie, K.I. Antibiotic Resistance in the Aquatic Environment: Analytical Techniques and Interactive Impact of Emerging Contaminants. Environ. Toxicol. Pharmacol. 2022, 96, 103995. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Ding, L.; Ren, P.; Zhong, M.; Ma, J.; Fan, X. Performances and Mechanism of Methyl Orange and Congo Red Adsorbed on the Magnetic Ion-Exchange Resin. J. Chem. Eng. Data 2020, 65, 725–736. [Google Scholar] [CrossRef]
- Osugi, M.E.; Rajeshwar, K.; Ferraz, E.R.A.; de Oliveira, D.P.; Araújo, Â.R.; Zanoni, M.V.B. Comparison of Oxidation Efficiency of Disperse Dyes by Chemical and Photoelectrocatalytic Chlorination and Removal of Mutagenic Activity. Electrochim. Acta 2009, 54, 2086–2093. [Google Scholar] [CrossRef]
- Stevović, S.; Nestorović, Ž.; Đurić, N. Nanotechnology in the Function of Sustainable Water Use. Contemp. Mater. 2020, 11, 102–111. [Google Scholar] [CrossRef]
- Liang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S. Treatment of Highly Concentrated Wastewater Containing Multiple Synthetic Dyes by a Combined Process of Coagulation/Flocculation and Nanofiltration. J. Memb. Sci. 2014, 469, 306–315. [Google Scholar] [CrossRef]
- Kono, H.; Kusumoto, R. Removal of Anionic Dyes in Aqueous Solution by Flocculation with Cellulose Ampholytes. J. Water Process Eng. 2015, 7, 83–93. [Google Scholar] [CrossRef]
- Furlan, F.R.; de Melo da Silva, L.G.; Morgado, A.F.; de Souza, A.A.U.; Guelli Ulson de Souza, S.M.A. Removal of Reactive Dyes from Aqueous Solutions Using Combined Coagulation/Flocculation and Adsorption on Activated Carbon. Resour. Conserv. Recycl. 2010, 54, 283–290. [Google Scholar] [CrossRef]
- Domènech, X.; Jardim, W.F.; Litter, M.I. Procesos Avanzados de Oxidación para la Eliminación de Contaminantes. Elimin. Contam. Fotocatálisis Heterogénea 2001, 2016, 3–26. [Google Scholar]
- Bhat, A.P.; Gogate, P.R. Degradation of Nitrogen-Containing Hazardous Compounds Using Advanced Oxidation Processes: A Review on Aliphatic and Aromatic Amines, Dyes, and Pesticides. J. Hazard. Mater. 2021, 403, 123657. [Google Scholar] [CrossRef]
- Aplin, R.; Waite, T.D. Comparison of Three Advanced Oxidation Processes for Degradation of Textile Dyes. Water Sci. Technol. 2000, 42, 345–354. [Google Scholar] [CrossRef]
- Ismail, G.A.; Sakai, H. Review on Effect of Different Type of Dyes on Advanced Oxidation Processes (AOPs) for Textile Color Removal. Chemosphere 2022, 291, 132906. [Google Scholar] [CrossRef]
- Ledakowicz, S.; Pázdzior, K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021, 26, 870. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Ersöz, G. Hybrid Application of Advanced Oxidation Processes to Dyes′ Removal. In Green Chemistry and Water Remediation: Research and Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 209–238. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes. Chemosphere 2018, 197, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Liu, L.; Peng, Q.; Qiu, J.; Gong, H.; Zhong, A.; Liu, S. Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production. Molecules 2023, 28, 4507. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A New Cd(II)-Based Coordination Polymer for Efficient Photocatalytic Removal of Organic Dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-C.; Wang, J.; Guo, J.; Yan, M.-H.; Wang, J.; Srivastava, D.; Kumar, A.; Sakiyama, H.; Muddassir, M.; Pan, Y. A 3D Rare Cubane-like Tetramer Cu(II)-Based MOF with 4-Fold Dia Topology as an Efficient Photocatalyst for Dye Degradation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130475. [Google Scholar] [CrossRef]
- Dandia, A.; Saini, P.; Sharma, R.; Parewa, V. Visible Light Driven Perovskite-Based Photocatalysts: A New Candidate for Green Organic Synthesis by Photochemical Protocol. Curr. Res. Green Sustain. Chem. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Belov, A.A.; Zavyalov, A.P.; Papynov, E.K.; Azon, S.A.; Fedorets, A.N.; Buravlev, I.Y.; Balanov, M.I.; Tananaev, I.G.; Shi, Y.; et al. Reaction Synthesis of SrTiO3 Mineral-like Ceramics for Strontium-90 Immobilization via Additional in-Situ Synchrotron Studies. Ceram. Int. 2022, 48, 19597–19605. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, H.; Wang, S.; Li, X. How to Apply Metal Halide Perovskites to Photocatalysis: Challenges and Development. Nanoscale 2021, 13, 10281–10304. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Germiniano, T.O.; Savoia, J.E.; Marques, R.G.; dos Santos Ribeiro, V.A.; Ueda, A.C. CaTiO3 Perovskite in the Photocatalysis of Textile Wastewater | Perovskitas Do Tipo CaTiO3 Na Fotocatálise de Efluentes Têxteis. Rev. Ambient. Agua 2019, 14, e2336. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Thamima, M.; Karuppuchamy, S. Dye Removal Efficiency of Perovskite Structured CaTiO3 Nanospheres Prepared by Microwave Assisted Method. Mater. Today Proc. 2019, 35, 44–47. [Google Scholar] [CrossRef]
- Fatimah, I.; Rahmadianti, Y.; Pudiasari, R.A. Photocatalyst of Perovskite CaTiO3 Nanopowder Synthesized from CaO derived from Snail Shell in Comparison with The Use of CaO and CaCO3. IOP Conf. Ser. Mater. Sci. Eng. 2018, 349, 012026. [Google Scholar] [CrossRef]
- Passi, M.; Pal, B. A Review on CaTiO3 Photocatalyst: Activity Enhancement Methods and Photocatalytic Applications. Powder Technol. 2021, 388, 274–304. [Google Scholar] [CrossRef]
- García-Mendoza, M.F.; Torres-Ricárdez, R.; Ramírez-Morales, E.; Álvarez-Ramirez, J.G.; Díaz-Flores, L.L.; del Ángel-Meraz, E.; Rojas-Blanco, L.; Pérez-Hernández, G. CaTiO3 Perovskite Synthetized by Chemical Route at Low Temperatures for Application as a Photocatalyst for the Degradation of Methylene Blue. J. Mater. Sci. Mater. Electron. 2023, 34, 873. [Google Scholar] [CrossRef]
- Kosyanov, D.Y.; Yavetskiy, R.P.; Tolmachev, A.V.; Vornovskikh, A.A.; Pogodaev, A.V.; Gridasova, E.A.; Shichalin, O.O.; Kaidalova, T.A.; Kuryavyi, V.G. Fabrication of Highly-Doped Nd3+:YAG Transparent Ceramics by Reactive SPS. Ceram. Int. 2018, 44, 23145–23149. [Google Scholar] [CrossRef]
- Muñoz Chilito, J.F. Conformado, Caracterización y Evaluación, de la Interacción Con Gases Emitidos por la Combustión de Fuentes Móviles, de Piezas Cerámicas de los Sistemas Óxido de Cinc (ZnO) Con Ceria (CeO2) o Magnesia (MgO); Universidad del Cauca: Cauca, Columbia, 2021. [Google Scholar]
- Tamayo, R.; Espinoza-González, R.; Gracia, F.; Rodrigues-Filho, U.P.; Flores, M.; Sacari, E. As(III) Removal from Aqueous Solution by Calcium Titanate Nanoparticles Prepared by the Sol Gel Method. Nanomaterials 2019, 9, 733. [Google Scholar] [CrossRef]
- Thakur, P.; Khambadkar, J.; Patil, A.; Dudhe, M.; Thombare, P.; Chaudhary, A.A. Characterization and Photoluminescence of Dy3+ Doped CaTiO3 Nanoparticles Prepared by Sol-Gel Method. Indian J. Pure Appl. Phys. 2018, 56, 853–858. [Google Scholar]
- Setyaningsih, E.; Machfudzoh, M.; Utomo, W.; Fansuri, H. Preparation of CaTiO3 Asymmetric Membranes Using Polyetherimide as Binder Polymer. Indones. J. Chem. 2016, 16, 20–24. [Google Scholar] [CrossRef]
- Han, C.; Liu, J.; Yang, W.; Wu, Q.; Yang, H.; Xue, X. Photocatalytic Activity of CaTiO3 Synthesized by Solid State, Sol–Gel and Hydrothermal Methods. J. Sol-Gel Sci. Technol. 2017, 81, 806–813. [Google Scholar] [CrossRef]
- Hosseini, S. Preparation and Characterization of Calcium Titanate Nanoparticles with the Aid of Different Acids and Study of Their Photocatalytic Properties. J. Mater. Sci. Mater. Electron. 2017, 28, 3703–3708. [Google Scholar] [CrossRef]
- Mitchell, J.; Argyriou, D.N.; Jorgensen, J. Colossal Magnetoresistive Oxides; Tokura, Y., Ed.; Gordon and Breach Science Publishers: London, UK, 1998. [Google Scholar]
- Liu, X.; Liebermann, R.C. X-Ray Powder Diffraction Study of CaTiO3 Perovskite at High Temperatures. Phys. Chem. Miner. 1993, 20, 171–175. [Google Scholar] [CrossRef]
- Natarajan, S.; Bajaj, H.C.; Tayade, R.J. Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes from Waste Water Using Photocatalytic Process. J. Environ. Sci. 2018, 65, 201–222. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Anjelin Ursula Portia, S.; Rajkumar, S.; Elanthamilan, E.; Princy Merlin, J.; Ramamoorthy, K. Effect of Annealing Temperature on Structural, Optical and Visible Light Photocatalytic Performance of CaTiO3 Catalysts Synthesized by Simple Sol-Gel Technique. Inorg. Chem. Commun. 2020, 119, 108051. [Google Scholar] [CrossRef]
- Portia, S.A.U.; Parthibavarman, M.; Ramamoorthy, K. Unpredicted Visible Light Induced Advanced Photocatalytic Performance of Eu Doped CaTiO3 Nanoparticles Prepared by Facile Sol–Gel Technique. J. Clust. Sci. 2022, 33, 2093–2102. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Mobin, S.M. Hydrothermally Grown Novel Pyramids of the CaTiO3 Perovskite as an Efficient Electrode Modifier for Sensing Applications. Mater. Adv. 2020, 1, 2003–2009. [Google Scholar] [CrossRef]
- Meroni, D.; Porati, L.; Demartin, F.; Poelman, D. Sol-Gel Synthesis of CaTiO3:Pr3+ Red Phosphors: Tailoring the Synthetic Parameters for Luminescent and Afterglow Applications. ACS Omega 2017, 2, 4972–4981. [Google Scholar] [CrossRef]
- Park, B.G. Photoluminescence of Eu3+-Doped CaTiO3 Perovskites and Their Photocatalytic Properties with a Metal Ion Loading. Chem. Phys. Lett. 2019, 722, 44–49. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, H.; Yi, Z.; Li, R.; Xian, T. Design of Ternary CaTiO3/g-C3N4/AgBr Z-Scheme Heterostructured Photocatalysts and Their Application for Dye Photodegradation. Solid State Sci. 2020, 100, 106102. [Google Scholar] [CrossRef]
- Calvache-Muñoz, J.; Rodríguez-Páez, J.E. Removal of Rhodamine 6G in the Absence of UV Radiation Using Ceria Nanoparticles (CeO2-NPs). J. Environ. Chem. Eng. 2020, 8, 103518. [Google Scholar] [CrossRef]
- Abdulkareem, S.K.; Ajeel, S.A. Effect of Annealing Temperatures on the Structural and Crystalline Properties of CaTiO3 Powder Synthesized via Conventional Solid-State Method. Mater. Today Proc. 2021, 42, 2674–2679. [Google Scholar] [CrossRef]
- Ernawati, L.; Yusariarta, A.W.; Laksono, A.D.; Wahyuono, R.A.; Widiyandari, H.; Rebeka, R.; Sitompul, V. Kinetic Studies of Methylene Blue Degradation Using CaTiO3 Photocatalyst from Chicken Eggshells. J. Phys. Conf. Ser. 2021, 1726, 012017. [Google Scholar] [CrossRef]
- Shi, F.; Fu, G.; Xiao, E.-C.; Li, J. Lattice Vibrational Characteristics and Dielectric Properties of Pure Phase CaTiO3 Ceramic. J. Mater. Sci. Mater. Electron. 2020, 31, 18070–18076. [Google Scholar] [CrossRef]
- Zheng, H.; Reaney, I.M.; Csete de Györgyfalva, G.D.C.; Ubic, R.; Yarwood, J.; Seabra, M.P.; Ferreira, V.M. Raman Spectroscopy of CaTiO3-Based Perovskite Solid Solutions. J. Mater. Res. 2004, 19, 488–495. [Google Scholar] [CrossRef]
- Gu, M.; Rondinelli, J.M. Role of Orbital Filling on Nonlinear Ionic Raman Scattering in Perovskite Titanates. Phys. Rev. B 2017, 95, 24109. [Google Scholar] [CrossRef]
- Hirata, T.; Ishioka, K.; Kitajima, M. Vibrational Spectroscopy and X-Ray Diffraction of Perovskite Compounds Sr1−xMxTiO3(M = Ca, Mg; 0 ≤ x ≤ 1). J. Solid State Chem. 1996, 124, 353–359. [Google Scholar] [CrossRef]
- Moreira, M.L.; Paris, E.C.; do Nascimento, G.S.; Longo, V.M.; Sambrano, J.R.; Mastelaro, V.R.; Bernardi, M.I.B.; Andrés, J.; Varela, J.A.; Longo, E. Structural and Optical Properties of CaTiO3 Perovskite-Based Materials Obtained by Microwave-Assisted Hydrothermal Synthesis: An Experimental and Theoretical Insight. Acta Mater. 2009, 57, 5174–5185. [Google Scholar] [CrossRef]
- McMillan, P.; Ross, N. The Raman Spectra of Several Orthorhombic Calcium Oxide Perovskites. Phys. Chem. Miner. 1988, 16, 21–28. [Google Scholar] [CrossRef]
- Dong, W.; Zhao, G.; Bao, Q.; Gu, X. Effects of Morphologies on the Photocatalytic Properties of CaTiO3 Nano/Microstructures. J. Ceram. Soc. Jpn. 2016, 124, 475–479. [Google Scholar] [CrossRef]
- Alzahrani, A.; Samokhvalov, A. Conventional and Cryo-Synchronous Luminescence Spectra of Orthorhombic Calcium Titanate. J. Lumin. 2016, 178, 430–436. [Google Scholar] [CrossRef]
- Milanez, J.; De Figueiredo, A.T.; De Lazaro, S.; Longo, V.M.; Erlo, R.; Mastelaro, V.R.; Franco, R.W.A.; Longo, E.; Varela, J.A. The Role of Oxygen Vacancy in the Photoluminescence Property at Room Temperature of the CaTiO3. J. Appl. Phys. 2009, 106, 043526. [Google Scholar] [CrossRef]
- Alzahrani, A.; Samokhvalov, A. Porous Calcium Titanate and Sorption and Desorption of Water under Ambient Conditions: A Study by Conventional and Synchronous Luminescence Spectroscopy. J. Porous Mater. 2017, 24, 1145–1154. [Google Scholar] [CrossRef]
- Marques, V.S.; Cavalcante, L.S.; Sczancoski, J.C.; Volanti, D.P.; Espinosa, J.W.M.; Joya, M.R.; Santos, M.R.M.C.; Pizani, P.S.; Varela, J.A.; Longo, E. Influence of Microwave Energy on Structural and Photoluminescent Behavior of CaTiO3 Powders. Solid State Sci. 2008, 10, 1056–1061. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Zhao, T.; Peng, Q.; Yang, W.; Cao, J.; Zheng, Y.; Li, C.; Pan, J. The CdS/CaTiO3 Cubic Core-Shell Composite towards Enhanced Photocatalytic Hydrogen Evolution and Photodegradation. Int. J. Hydrogen Energy 2023, 48, 21788–21798. [Google Scholar] [CrossRef]
- Rashki, O.; Rezaei, M.R.; Sayadi, M.H. The High Photocatalytic Efficiency and Stability of the Z-Scheme CaTiO3/WS2 Heterostructure for Photocatalytic Removal of 17α-Ethinyl Estradiol in Aqueous Solution. J. Photochem. Photobiol. A Chem. 2022, 433, 114169. [Google Scholar] [CrossRef]
- Shanbhag, V.V.; Prashantha, S.C.; Ravi Kumar, C.R.; Kumar, P.; Surendra, B.S.; Nagabhushana, H.; Jnaneshwara, D.M.; Revathi, V.; Naik, R.; Shashidhara, T.S.; et al. Comparative Analysis of Electrochemical Performance and Photocatalysis of SiO2 Coated CaTiO3:RE3+ (Dy, Sm), Li+ Core Shell Nano Structures. Inorg. Chem. Commun. 2021, 134, 108960. [Google Scholar] [CrossRef]
- Rosa, E.V. Nanocompostos à Base de Nitreto de Carbono Grafítico Magnético Como Potenciais Remediadores Ambientais de Poluidores Emergentes. Ph.D. Thesis, Universidade de Brasília, Brasilia, Brasil, 2020. [Google Scholar]
- Xian, T.; Yang, H.; Huo, Y.S. Enhanced Photocatalytic Activity of CaTiO3-Graphene Nanocomposites for Dye Degradation. Phys. Scr. 2014, 89, 115801. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.S.W.; Gulshan, F. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef]
- Yan, X.; Huang, X.; Fang, Y.; Min, Y.; Wu, Z.; Li, W.; Yuan, J.; Tan, L. Efficiency and High Photocatalytic Activity. Int. J. Electrochem. Sci. 2014, 9, 5155–5163. [Google Scholar] [CrossRef]
- Tsai, C.-K.; Lee, Y.-C.; Nguyen, T.T.; Horng, J.-J. Levofloxacin Degradation under Visible-LED Photo-Catalyzing by a Novel Ternary Fe–ZnO/WO3 Nanocomposite. Chemosphere 2022, 298, 134285. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-J.; Yan, X.; Wu, H.-Y.; Fang, Y.; Min, Y.-H.; Li, W.-S.; Wang, S.-Y.; Wu, Z.-J. Preparation of Zr-Doped CaTiO3 with Enhanced Charge Separation Efficiency and Photocatalytic Activity. Trans. Nonferrous Met. Soc. China Engl. Ed. 2016, 26, 464–471. [Google Scholar] [CrossRef]
- Yang, H.; Han, C.; Xue, X. Photocatalytic Activity of Fe-Doped CaTiO3 under UV–Visible Light. J. Environ. Sci. 2014, 26, 1489–1495. [Google Scholar] [CrossRef]
- Kumar, A.; Schuerings, C.; Kumar, S.; Kumar, A.; Krishnan, V. Perovskite-Structured CaTiO3 Coupled with g-C3N4 as a Heterojunction Photocatalyst for Organic Pollutant Degradation. Beilstein J. Nanotechnol. 2018, 9, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.S.; Yang, H.; Xian, T.; Jiang, J.L.; Wei, Z.Q.; Li, R.S.; Feng, W.J. A Polyacrylamide Gel Route to Different-Sized CaTiO3 Nanoparticles and Their Photocatalytic Activity for Dye Degradation. J. Sol-Gel Sci. Technol. 2014, 71, 254–259. [Google Scholar] [CrossRef]
- Zhuang, J.; Tian, Q.; Lin, S.; Yang, W.; Chen, L.; Liu, P. Precursor Morphology-Controlled Formation of Perovskites CaTiO3 and Their Photo-Activity for As(III) Removal. Appl. Catal. B Environ. 2014, 156–157, 108–115. [Google Scholar] [CrossRef]
- Yang, X.; Fu, J.; Jin, C.; Chen, J.; Liang, C.; Wu, M.; Zhou, W. Formation Mechanism of CaTiO3 Hollow Crystals with Different Microstructures. J. Am. Chem. Soc. 2010, 132, 14279–14287. [Google Scholar] [CrossRef]
Groups | Representative Compounds |
---|---|
Flame retardants | Tris (chloroisopropyl) phosphate, tris(2-chloroethyl) phosphate. |
Personal care products and cosmetics | Soaps, detergents, disinfectants, humectants, shampoo, conditioner, sunscreen, biocides. bisphenols, triclosan, parabens. |
Pharmaceuticals | Antibiotics, anti-inflammatory, psychiatric drugs, antiepileptics, analgesics, estrogens, β-blockers, steroids, veterinary medicine. |
Pesticides | Organochlorines, organophosphates, fungicides (triazoles), herbicides, insecticides (neonicotinoids), bactericides, rodenticides, nematicides. |
Lifestyle products | Caffeine, nicotine. |
Illicit drugs | Amphetamine, cocaine, methamphetamine, heroin, morphine. |
Industrial substances | Surfactants, perfluorinated compounds, alkylphenols, dyes, nanoparticles. |
Biological agents | Pathogenic bacteria, multi-drug-resistant microbes, antifungal resistance, virus, antibiotic resistance genes. |
Unintentional persistent organic pollutants | Dioxins, brominated dioxins, halogenated polycyclic aromatic hydrocarbon, polychlorinated naphthalenes, environmentally persistent free radicals. |
Other substances/issues | Rare earth elements, metalloids (selenium), microplastics, radionuclides, food packaging, containers, corrosion inhibitors. |
Class of Emerging Contaminant | Toxicity Effect |
---|---|
Pharmaceutical products | In mollusks, they cause genotoxicity, neurotoxicity, and oxidative stress; reduced growth in algae and fish; extensive DNA damage in fish, kidney injury and gill alterations; cytoplasmic and nuclear deformities and alterations in hormonal damage in mammals, including humans. |
Personal care and hormonal products | Infertility, hormone-dependent tumors, folliculogenesis, spermatogenesis, steroidogenesis, and breast cancer occur in humans. The production of vitellogenin is induced in rainbow trout fry; reduction in plasma testosterone in goldfish. They are inhibitors of algae growth. Damage to the reproductive system, reduced growth, poor heart function, mortality, immobilization, and oxidative stress have been observed in crustaceans. |
Pesticides | There have been harmful effects on the gills of fish; the feminization of male aquatic organisms; in humans, the reproductive and sexual systems are severely affected. |
Microplastics | Oxidative stress is generated in sea cucumbers; blockage of the alimentary canal in fish, crabs, mussels, oysters, whales and plankton; in humans, they cause cytotoxicity and reproductive damage. |
Flame retardants | Inhibition of growth and reproduction and decreased survival rate of crustaceans and zebrafish. |
Organohalides | Male fertility, obesity, and puberty in humans. |
Polyfluoroalkyl substances (PFAS) | Dysregulation of thyroid hormones and adverse kidney health in humans. |
Composition | 90% | 10% |
---|---|---|
Structure | Orthorhombic | Rutile |
Spatial group | P42/mnm | |
) | 5.38 | 4.59 |
) | 5.44 | 4.59 |
) | 7.64 | 2.96 |
90° | 90° | |
223.6 | 62.42 | |
Tolerance factor (t) | 0.903 | --- |
Bond length | 1.95 | --- |
Angle () | 157.4 | --- |
Crystallite size (nm) | 83.8 | |
6.93 | ||
5.43 | ||
1.482 |
Sample | Vibrational Mode and Functional Groups | Reference | |
---|---|---|---|
thermally treated at 350 °C | 368 | - | |
bond of the | [47] | ||
Characteristic vibration of alkali titanates | [64] | ||
bond | [51] | ||
- | |||
bond | [44] | ||
groups plane | [65] | ||
[44] | |||
Carbonate-type species related to the oxide. | [66] | ||
Stretching of the bond | [60,61] | ||
thermally treated at 700 °C | - | ||
- | |||
[67] | |||
[51] | |||
group | [68] | ||
bond | [63] |
λexit (nm) | λ (nm) | Energy (eV) | Color | Possible Defects | Ref. |
---|---|---|---|---|---|
250 | 411 | 3.02 | Violet | Emission from the intermediate state directly below the conduction band | [76] |
437 | 2.84 | Violet | Charge transfer between bands | [77] | |
465 | 2.67 | Blue | Radioactive recombination of the electron–hole pair trapped in the TiO6 octahedral structural unit in CaTiO3 | [76] | |
479 | 2.59 | Blue | |||
601 | 2.06 | Orange | Presence of ions located in octahedral sis | [60,78] | |
325 | 563 | 2.20 | Yellow | Defects are directly related to the oxygen vacancies in complex groups or in the torsion of the bonds between the groups | [79] |
611 | 2.03 | Orange | |||
625 | 1.98 | Orange | |||
646 | 1.92 | Red |
Quantity of CTO | Rate of Degradation of MO in 120 min (%) | Apparent Velocity Constants, MO | Rate of Degradation of LVF in 180 min (%) | Apparent Velocity Constants, LVF | ||||
---|---|---|---|---|---|---|---|---|
K (min−1) | R2 | Standard Error | K (min−1) | R2 | Standard Error | |||
3 gL−1 | 78.8 | 0.01343 | 0.98357 | 6.13047 × 104 | 18.3 | 0.00133 | 0.95909 | 7.91415 × 10−5 |
5 gL−1 | 88.1 | 0.01814 | 0.97314 | 0.00106 | 74.2 | 0.00814 | 0.98680 | 2.71512 × 10−4 |
10 gL−1 | 78.7 | 0.01306 | 0.98357 | 5.96089 × 10−4 | 98.1 | 0.02042 | 0.96806 | 0.00107 |
15 gL−1 | 79.4 | 0.01314 | 0.94666 | 0.0011 | 95.6 | 0.01648 | 0.98944 | 4.9135 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerón-Urbano, L.; Aguilar, C.J.; Diosa, J.E.; Mosquera-Vargas, E. Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants. Nanomaterials 2023, 13, 2967. https://doi.org/10.3390/nano13222967
Cerón-Urbano L, Aguilar CJ, Diosa JE, Mosquera-Vargas E. Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants. Nanomaterials. 2023; 13(22):2967. https://doi.org/10.3390/nano13222967
Chicago/Turabian StyleCerón-Urbano, Lizet, Carol J. Aguilar, Jesús E. Diosa, and Edgar Mosquera-Vargas. 2023. "Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants" Nanomaterials 13, no. 22: 2967. https://doi.org/10.3390/nano13222967
APA StyleCerón-Urbano, L., Aguilar, C. J., Diosa, J. E., & Mosquera-Vargas, E. (2023). Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants. Nanomaterials, 13(22), 2967. https://doi.org/10.3390/nano13222967