Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results
3.1. Synthesis and Characterization of HCs
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, W.; Tang, Y.; Liu, J.; Xiao, S.; Zhang, Y.; Gao, Y.; Yang, C.; Liu, L. Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries. J. Alloys Compd. 2023, 946, 169384. [Google Scholar] [CrossRef]
- Sun, N.; Qiu, J.; Xu, B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate. Adv. Energy Mater. 2022, 12, 2200715. [Google Scholar] [CrossRef]
- Xu, R.; Yi, Z.; Song, M.; Chen, J.; Wei, X.; Su, F.; Dai, L.; Sun, G.; Yang, F.; Xie, L.; et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor. Carbon 2023, 206, 94–104. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Gu, Z.; Meng, Y.; Yang, M.; Yu, M.; Zhao, C.; Wu, X. Waste-to-wealth: Low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries. Electrochim. Acta 2020, 361, 137041. [Google Scholar] [CrossRef]
- Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 2011, 4, 3342–3345. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, Y.; Li, X.; Zhang, K.; Pang, Q.; Qin, A. Boosting the initial coulomb efficiency of sisal fiber-derived carbon anode for sodium ion batteries by microstructure controlling. Nanomaterials 2023, 13, 881. [Google Scholar] [CrossRef] [PubMed]
- Aristote, N.; Song, Z.; Deng, W.; Hou, H.; Zou, G.; Ji, X. Effect of double and triple-doping of sulfur, nitrogen and phosphorus on the initial coulombic efficiency and rate performance of the biomass derived hard carbon as anode for sodium-ion batteries. J. Power Sources 2023, 558, 232517. [Google Scholar] [CrossRef]
- Minakshi, M.; Visbal, H.; Mitchelld, D.; Fichtner, M. Bio-waste chicken eggshells to store energy. Dalton Trans. 2018, 47, 16828–16834. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, X.; Lou, X.; Paik, U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 2016, 9, 2314–2318. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, J.; Zhang, G.; Guo, C.; Li, M.; Zhu, Y.; Qian, Y. Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A 2017, 5, 12144–12148. [Google Scholar] [CrossRef]
- Ramkumara, R.; Minakshi, M. Electrochemical synthesis of polyaniline cross-linked NiMoO4 nanofibre dendrites for energy storage devices. New J. Chem. 2016, 40, 7456–7464. [Google Scholar] [CrossRef]
- Albohani, S.; Minakshi, M.; Laird, D. Egg shell membrane template stabilises formation of β-NiMoO4 nanowires and enhances hybrid supercapacitor behavior. Mater. Lett. 2019, 236, 64–68. [Google Scholar] [CrossRef]
- Luo, W.; Jian, Z.; Xing, Z.; Wang, W.; Bommier, C.; Lerner, M.; Ji, X. Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 2015, 1, 516–522. [Google Scholar] [CrossRef]
- Stevens, D.; Dahn, J. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Li, H.; Chen, L.; Huang, X. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Meng, Z.; Lu, M.; Xu, Z.; Liu, P.; Li, T. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage. J. Mater. Sci. Technol. 2021, 76, 11–19. [Google Scholar] [CrossRef]
- Luo, D.; Xu, J.; Guo, Q.; Fang, L.; Zhu, X.; Xia, H. Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1805371. [Google Scholar] [CrossRef]
- Song, M.; Xie, L.; Cheng, J.; Yi, Z.; Song, G.; Jia, X.; Chen, J.; Guo, Q. Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries. J. Energy Chem. 2022, 66, 448–458. [Google Scholar] [CrossRef]
- Tong, Y.; Wu, Y.; Liu, Z.; Yin, Y.; Sun, Y.; Li, H. Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin. Chem. Lett. 2023, 34, 107443. [Google Scholar] [CrossRef]
- Wang, B.; Xia, J.; Dong, X.; Wu, X.; Jin, L.; Li, W. Highly purified carbon derived from deashed anthracite for sodium-ion storage with enhanced capacity and rate performance. Energy Fuels. 2020, 34, 16831–16837. [Google Scholar] [CrossRef]
- Xiao, N.; Zhang, X.; Liu, C.; Wang, Y.; Li, H.; Qiu, J. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574–581. [Google Scholar]
- Liu, Y.; Guo, X.; Tian, X.; Liu, Z. Coal-based semicoke derived carbon anode materials with tunable microcrystalline structure for fast lithium-ion storage. Nanomaterials 2022, 12, 4067. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.; Chong, C.; Wang, J.; Shi, Z. Phenolic formaldehyde resin/graphene composites as lithium-ion batteries anode. J. Pan Mater. Lett. 2016, 170, 217–220. [Google Scholar] [CrossRef]
- Nagao, M.; Pitteloud, C.; Kamiyama, T.; Otomo, T.; Itoh, K.; Fukunaga, T.; Tatsumi, K.; Kanno, R. Structure characterization and lithiation mechanism of nongraphitized carbon for lithium secondary batteries. Eur. J. Heart Fail. 2006, 14, A914–A919. [Google Scholar] [CrossRef]
- Xing, W.; Xue, J.S.; Zheng, T.; Gibaud, A.; Dahn, J.R. Correlation between lithium intercalation capacity and microstructure in hard carbons. J. Electrochem. Soc. 1996, 143, 3482–3491. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, D.; Minakshi, M.; Quadsia, S.; Ahuja, R. Activation-induced surface modulation of biowaste derived hierarchical porous carbon for supercapacitors. ChemPlusChem 2022, 87, e202200126. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, H.; Yoon, S.; Korai, Y.; Mochida, I.; Ku, C. Anthracite as a candidate for lithium-ion battery anode. J. Power Sources 2003, 113, 157–165. [Google Scholar] [CrossRef]
- Liu, X.; Tao, H.; Tang, C.; Yang, X. Anthracite-derived carbon as superior anode for lithium/potassium-ion batteries. Chem. Eng. Sci. 2022, 248, 117200. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Qi, X.; Rong, X.; Li, H.; Huang, X.; Chen, L. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications. Energy Storage Mater. 2016, 5, 191–197. [Google Scholar] [CrossRef]
- Chen, C.; Xiong, X.; Hu, P.; Hao, Z.; Huang, Y. Coordination of surface-induced reaction and intercalation: Toward a high-performance carbon anode for sodium-ion batteries. Adv. Sci. 2017, 4, 1600500. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Hu, F.; Zhang, T.; Liu, S.; Song, C.; Li, N.; Weng, Z.; Wang, J.; Jian, X. Engineering Ultramicroporous carbon with abundant C═O as extended “Slope-dominated” sodium ion battery anodes. ACS Sustain. Chem. Eng. 2021, 9, 9727–9739. [Google Scholar] [CrossRef]
- Tang, X.; Xie, F.; Lu, Y. Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes. Nano Res. 2023, 16, 12579–12586. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, W.; Zheng, D.; Liang, Q.; Wang, D.; Kang, F.; Yang, Q. The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 2018, 8, 1702395. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X.; Nie, Z.; Gu, M.; Saraf, L.; Exarhos, G.; Zhang, J.; et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett. 2013, 13, 3909–3914. [Google Scholar] [CrossRef] [PubMed]
- Minakshia, M.; Singha, P.; Issaa, T.; Thurgatea, S.; Marco, R. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery. J. Power Sources 2004, 138, 319–322. [Google Scholar] [CrossRef]
- Xu, T.; Qiu, X.; Zhang, X.; Xia, Y. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance. Chem. Eng. J. 2023, 452, 139514. [Google Scholar] [CrossRef]
- Alvin, S.; Chandra, C.; Kim, J. Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries. Chem. Eng. J. 2020, 391, 123576. [Google Scholar] [CrossRef]
- Chen, X.; Fang, Y.; Lu, H.; Li, H.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Cao, Y. Microstructure-dependent charge/discharge behaviors of hollow carbon spheres and its implication for sodium storage mechanism on hard carbon anodes. Small 2021, 17, 2102248. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Liu, L.; Tao, P.; Fan, M.; Xu, N.; Shen, X.; Yan, C. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 2017, 29, 1702268. [Google Scholar] [CrossRef]
- Wang, J.; Lv, W.; Ren, Q.; Yan, L.; Zhang, L.; Shi, Z. High-performance hard carbon anode prepared via an ingenious green-hydrothermal route. Appl. Surf. Sci. 2021, 558, 149824. [Google Scholar] [CrossRef]
- Asfaw, H.; Tai, C.; Valvo, M.; Younesi, R. Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries: Insight into local structure and interfacial kinetics. Mater. Today Energy 2020, 18, 100505. [Google Scholar] [CrossRef]
- Gao, X.; Shen, Z.; Chang, G.; Li, Z.; Zhao, H. Mechanochemistry induced pore regulation and pyridinic nitrogen doping in anthracite derived carbon for sodium storage. Diam. Relat. Mater. 2022, 130, 109481. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, P.; Song, X.; Zhang, M.; Kong, X.; Jin, S.; Chang, X.; Zhang, Y. Wheat bran derived carbon toward cost-efficient and high-performance lithium storage. ACS Sustain. Chem. Eng. 2020, 8, 15898–15905. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Jian, Z.; Jiang, H.; Razink, J.; Stickle, W.; Neuefeind, J.; Ji, X. Defective hard carbon anode for Na-ion batteries. Chem. Mater. 2018, 30, 4536–4542. [Google Scholar] [CrossRef]
- Yuan, M.; Cao, B.; Liu, H.; Meng, C.; Wu, J.; Zhang, S.; Li, A.; Chen, X.; Song, H. Sodium storage mechanism of nongraphitic carbons: A general model and the function of accessible closed pores. Chem. Mater. 2022, 34, 3489–3500. [Google Scholar] [CrossRef]
- Xiao, L.; Cao, Y.; Henderson, W.A.; Sushko, M.L.; Shao, Y.; Xiao, J.; Wang, W.; Engelhard, M.H.; Nie, Z.; Liu, J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279–288. [Google Scholar] [CrossRef]
- He, X.; Zhao, J.; Lai, W.; Li, R.; Yang, Z.; Xu, C.; Dai, Y.; Gao, Y.; Liu, X.; Li, L.; et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 44358–44368. [Google Scholar] [CrossRef]
- Conti, D.M.; Fusaro, C.; Bruni, G.; Galinetto, P.; Albini, B.; Milanese, C.; Berbenni, V.; Capsoni, D. ZnS–rGO/CNF free-standing anodes for SIBs: Improved electrochemical performance at high c-rate. Nanomaterials 2023, 13, 1160. [Google Scholar] [CrossRef]
- Alvira, D.; Antoràn, D.; Manyà, J.J. Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chem. Eng. J. 2022, 447, 137468. [Google Scholar]
- Zhao, H.; Ye, J.; Song, W.; Zhao, D.; Kang, M.; Shen, H.; Li, Z. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon. ACS Appl. Mater. Interfaces 2020, 12, 6991–7000. [Google Scholar] [CrossRef]
- Zhou, C.; Li, A.; Cao, B.; Chen, X.; Jia, M.; Song, H. The non-ignorable impact of surface oxygen groups on the electrochemical performance of N/O dual-doped carbon anodes for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A1447–A1454. [Google Scholar] [CrossRef]
- Xia, G.; Shen, S.; Zhu, F.; Xie, J.; Hu, Y.; Zhu, K.; Zhang, J. Effect of oxygen-containing functional groups of carbon materials on the performance of Li–O2 batteries. Electrochem. Commun. 2015, 60, 26–29. [Google Scholar] [CrossRef]
- Javed, M.; Saqib, A.; Rehman, A.; Ali, B.; Faizan, M.; Anang, D.; Iqbal, Z. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim. Acta 2019, 297, 250–257. [Google Scholar] [CrossRef]
- Yang, H.; Xu, R.; Yu, Y. A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial coulombic efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose. Energy Storage. Mater. 2019, 22, 105–112. [Google Scholar] [CrossRef]
- Bommier, C.; Surta, T.; Dolgos, M.; Ji, X. New mechanistic insights on Na-ion storage in nongraphitizable. Carbon Nano Lett. 2015, 15, 5888–5892. [Google Scholar] [CrossRef]
- Yang, M.; Luo, Z.; Wang, X.; Cao, X.; Mao, W.; Pan, Y.; Dai, C.; Pan, J. Revealing sodium storage mechanism of hard carbon anodes throughin-situ investigation of mechano-electrochemical coupling behavior. J. Energy Chem. 2023, 86, 227–236. [Google Scholar] [CrossRef]
- Guo, D.; Yang, M.; Xu, S.; Zhu, S.; Liu, G.; Wu, N.; Cao, A.; Mi, H.; Liu, X. Ni activated Mo2C by regulating the interfacial electronic structure for highly efficient lithium-ion storage. Nanoscale 2022, 14, 14575–14584. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, K.; Zhang, H.; Zhou, T.; Wang, J.; Wei, W.; Yang, Z.; Sun, X.; Cai, W.; Zheng, G. Heterostructures: Bio-inspired leaf-mimicking nanosheet/nanotube heterostructure as a highly efficient oxygen evolution catalyst. Adv. Sci. 2015, 2, 1500003. [Google Scholar] [CrossRef]
- Bommier, C.; Ji, X. Electrolytes. SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes. Small 2018, 14, 1703576. [Google Scholar] [CrossRef]
- Li, S.; Luo, Z.; Li, L.; Hu, J.; Zou, G.; Hou, H.; Ji, X. Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 2020, 32, 306–319. [Google Scholar]
- Cao, Y.; Xiao, L.; Sushko, M.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.; Yang, Z.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787. [Google Scholar] [CrossRef]
- Chen, M.; Luo, F.; Liao, Y.; Liu, C.; Xu, D.; Wang, Z.; Liu, Q.; Wang, D.; Ye, Y.; Li, S.; et al. Hard carbon derived for lignin with robust and low-potential sodium ion storage. J. Electroanal. Chem. 2022, 919, 116526. [Google Scholar] [CrossRef]
- Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1602898. [Google Scholar] [CrossRef]
- Jin, Q.; Li, W.; Wang, K.; Li, H.; Feng, P.; Zhang, Z.; Wang, W.; Jiang, K. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage. Adv. Funct. Mater. 2020, 30, 1909907. [Google Scholar] [CrossRef]
- Augustyn, V.; Come, J.; Lowe, M.; Kim, J.; Taberna, P.; Tolbert, S.; Abruña, H.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, X.; Fan, L.; Yan, L.; Wang, Z.; Lei, W.; Ruan, D.; Shi, Z. Boosting the high capacitance-controlled capacity of hard carbon by using surface oxygen functional groups for fast and stable sodium storage. ACS Appl. Energy Mater. 2021, 4, 11436–11446. [Google Scholar] [CrossRef]
- Shen, J.; Wu, N.; Xie, W.; Li, Q.; Guo, D.; Li, J.; Liu, G.; Liu, X. Realizing ultrafast and robust sodium-ion storage of iron sulfide enabled by heteroatomic doping and regulable interface engineering. Molecules 2023, 28, 3757. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.; Zhao, H.; Meng, Z. Recent progress on graphene-based nanocomposites for electrochemical sodium-ion storage. Nanomaterials 2022, 12, 2837. [Google Scholar] [CrossRef]
- Quan, L.; Guo, Y.; Wen, H. Investigation of pyrolysed anthracite as an anode material for sodium ion batteries. New J. Chem. 2022, 46, 13575–13581. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, D.; Ye, J.; Wang, P.; Chai, M.; Li, Z. Directional oxygen functionalization by defect in different metamorphic-grade coal-derived carbon materials for sodium storage. Energy Environ. Mater. 2021, 5, 313–320. [Google Scholar] [CrossRef]
- LI, F.; Tao, H.; Liu, X.; Yang, X. Pyrolyzed hydrogenated anthracite as anode materials for sodium-ion batteries. Chin. Ceramic. Soc. 2022, 50, 1890–1898. [Google Scholar]
- Zhuang, Z.; Cui, Y.; Zhu, H.; Shi, Y.; Zhuang, Q. Coal-based amorphous carbon as economical anode material for sodium-ion battery. J. Electro. Chem. Soc. 2018, 165, A2225. [Google Scholar] [CrossRef]
- Le, M.; Tran, T.; Huynh, T.; Nguyen, V.; Vo, D.; Tran, V.; Le, M. Development of vang danh anthracite as a costeffective anode for sodium-ion batteries through a heat-treatment process. RSC Adv. 2022, 12, 29900–29907. [Google Scholar] [CrossRef] [PubMed]
Sample Name | B-HC1100 | A-HC900 | A-HC1100 | A-HC1300 |
---|---|---|---|---|
(Å) | 3.75 | 3.70 | 3.72 | 3.67 |
/ | 1.26 | 1.22 | 1.24 | 1.15 |
( ) | 1.14 | 12.44 | 3.88 | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Guo, D.; Luo, Y.; Xu, J.; Guo, K.; Wang, W.; Liu, G.; Wu, N.; Liu, X.; Qin, A. Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries. Nanomaterials 2023, 13, 3002. https://doi.org/10.3390/nano13233002
Xu Y, Guo D, Luo Y, Xu J, Guo K, Wang W, Liu G, Wu N, Liu X, Qin A. Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries. Nanomaterials. 2023; 13(23):3002. https://doi.org/10.3390/nano13233002
Chicago/Turabian StyleXu, Yaya, Donglei Guo, Yuan Luo, Jiaqi Xu, Kailong Guo, Wei Wang, Guilong Liu, Naiteng Wu, Xianming Liu, and Aimiao Qin. 2023. "Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries" Nanomaterials 13, no. 23: 3002. https://doi.org/10.3390/nano13233002
APA StyleXu, Y., Guo, D., Luo, Y., Xu, J., Guo, K., Wang, W., Liu, G., Wu, N., Liu, X., & Qin, A. (2023). Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries. Nanomaterials, 13(23), 3002. https://doi.org/10.3390/nano13233002