Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. TEM Measurement
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, T.; Elias, L.R. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1995, 354, 575–583. [Google Scholar] [CrossRef]
- Zuo, J.M.; Yuan, R.; Shao, Y.T.; Hsiao, H.W.; Pidaparthy, S.; Hu, Y.; Yang, Q.; Zhang, J. Data-driven electron microscopy: Electron diffraction imaging of materials structural properties. Microscopy 2022, 71, i116–i131. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; McBride, W.; O’Leary, N.; Oxley, M. Exit wave reconstruction at atomic resolution. Ultramicroscopy 2004, 100, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Harada, K. Interference and interferometry in electron holography. Microscopy 2021, 70, 3–16. [Google Scholar] [CrossRef]
- Rezikyan, A.; Jibben, Z.J.; Rock, B.A.; Zhao, G.; Koeck, F.A.; Nemanich, R.F.; Treacy, M.M. Speckle suppression by decoherence in fluctuation electron microscopy. Microsc. Microanal. 2015, 21, 1455–1474. [Google Scholar] [CrossRef]
- Hamed, A.; El-Ghandoor, H.; El-Diasty, F.; Saudy, M. Analysis of speckle images to assess surface roughness. Opt. Laser Technol. 2004, 36, 249–253. [Google Scholar] [CrossRef]
- Tchvialeva, L.; Markhvida, I.; Zeng, H.; McLean, D.I.; Lui, H.; Lee, T.K. Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile. Opt. Lasers Eng. 2010, 48, 774–778. [Google Scholar] [CrossRef]
- Weiss, J.N. Dynamic Light Scattering (DLS) Spectroscopy. In Dynamic Light Scattering Spectroscopy of the Human Eye; Springer International Publishing: Cham, Switzerland, 2022; pp. 13–17. [Google Scholar] [CrossRef]
- Krajina, B.A.; Tropini, C.; Zhu, A.; DiGiacomo, P.; Sonnenburg, J.L.; Heilshorn, S.C.; Spakowitz, A.J. Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials. ACS Cent. Sci. 2017, 3, 1294–1303. [Google Scholar] [CrossRef]
- Anthuparambil, N.D.; Girelli, A.; Timmermann, S.; Kowalski, M.; Akhundzadeh, M.S.; Retzbach, S.; Senft, M.D.; Dargasz, M.; Gutmüller, D.; Hiremath, A.; et al. Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays. Nat. Commun. 2023, 14, 5580. [Google Scholar] [CrossRef]
- Miao, J.; Charalambous, P.; Kirz, J.; Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 1999, 400, 342–344. [Google Scholar] [CrossRef]
- Grübel, G.; Zontone, F. Correlation spectroscopy with coherent X-rays. J. Alloy. Compd. 2004, 362, 3–11. [Google Scholar]
- Sutton, M. A review of X-ray intensity fluctuation spectroscopy. Comptes Rendus Phys. 2008, 9, 657–667. [Google Scholar]
- Lehmkühler, F.; Roseker, W.; Grübel, G. From femtoseconds to hours—measuring dynamics over 18 orders of magnitude with coherent x-rays. Appl. Sci. 2021, 11, 6179. [Google Scholar]
- Chen, S.W.; Guo, H.; Seu, K.A.; Dumesnil, K.; Roy, S.; Sinha, S.K. Jamming Behavior of Domains in a Spiral Antiferromagnetic System. Phys. Rev. Lett. 2013, 110, 217201. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhong, L.; Jangid, R.; Meera; Rippy, G.; Ainslie, K.; Kohne, C.; Everhardt, A.S.; Noheda, B.; Zhang, Y.; et al. Domain fluctuations in a ferroelectric low-strain BaTiO3 thin film. Phys. Rev. Mater. 2020, 4, 114409. [Google Scholar] [CrossRef]
- Lehmkühler, F.; Gutt, C.; Fischer, B.; Schroer, M.A.; Sikorski, M.; Song, S.; Roseker, W.; Glownia, J.; Chollet, M.; Nelson, S.; et al. Single Shot Coherence Properties of the Free-Electron Laser SACLA in the Hard X-ray Regime. Sci. Rep. 2014, 4, 5234. [Google Scholar] [CrossRef]
- Lee, S.; Roseker, W.; Gutt, C.; Fischer, B.; Conrad, H.; Lehmkühler, F.; Steinke, I.; Zhu, D.; Lemke, H.; Cammarata, M.; et al. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Opt. Express 2013, 21, 24647. [Google Scholar] [CrossRef]
- Wochner, P.; Gutt, C.; Autenrieth, T.; Demmer, T.; Bugaev, V.; Ortiz, A.D.; Duri, A.; Zontone, F.; Grübel, G.; Dosch, H. X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter. Proc. Natl. Acad. Sci. USA 2009, 106, 11511–11514. [Google Scholar]
- Hu, Z.; Donatelli, J.J.; Sethian, J.A. Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion coefficients. Proc. Natl. Acad. Sci. USA 2021, 118, e2105826118. [Google Scholar]
- Bjesen, E.; Petersen, T.C.; Martin, A.; Weyland, M.; Liu, A.C. Statistical measures of angular correlations in amorphous materials from electron nano-diffraction in the scanning/transmission electron microscope. J. Phys. Mater. 2020, 3, 044002. [Google Scholar]
- Zhang, P.; He, L.; Besser, M.F.; Liu, Z.; Schroers, J.; Kramer, M.J.; Voyles, P.M. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids. Ultramicroscopy 2017, 178, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, J.; Shimaoka, Y.; Sasaki, H. Precise method for measuring spatial coherence in TEM beams using Airy diffraction patterns. Microscopy 2018, 67, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Herring, R.A. Electron beam coherence measurements using diffracted beam interferometry/holography. J. Electron Microsc. 2009, 58, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.; Erni, R.; Etheridge, J. Method to measure spatial coherence of subangstrom electron beams. Appl. Phys. Lett. 2008, 93. [Google Scholar] [CrossRef]
- Velazco, A.; Béché, A.; Jannis, D.; Verbeeck, J. Reducing electron beam damage through alternative STEM scanning strategies, Part I: Experimental findings. Ultramicroscopy 2022, 232, 113398. [Google Scholar] [CrossRef] [PubMed]
- Gutt, C.; Wochner, P.; Fischer, B.; Conrad, H.; Castro-Colin, M.; Lee, S.; Lehmkühler, F.; Steinke, I.; Sprung, M.; Roseker, W.; et al. Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-ray Regime. Phys. Rev. Lett. 2012, 108, 024801. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts and Company Publishers: Greenwood Village, CO, USA, 2007. [Google Scholar]
- Hytch, M.; Stobbs, W. Quantitative criteria for the matching of simulations with experimental HREM images. Microsc. Microanal. Microstruct. 1994, 5, 133–151. [Google Scholar] [CrossRef]
- Thust, A. High-resolution transmission electron microscopy on an absolute contrast scale. Phys. Rev. Lett. 2009, 102, 220801. [Google Scholar] [CrossRef]
- Van Dyck, D.; Lobato, I.; Chen, F.R.; Kisielowski, C. Do you believe that atoms stay in place when you observe them in HREM? Micron 2015, 68, 158–163. [Google Scholar] [CrossRef]
- Howie, A. Hunting the Stobbs factor. Ultramicroscopy 2004, 98, 73–79. [Google Scholar] [CrossRef]
- Radić, D.; Hilke, S.; Peterlechner, M.; Posselt, M.; Wilde, G.; Bracht, H. Comparison of experimental STEM conditions for fluctuation electron microscopy. Microsc. Microanal. 2020, 26, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, S.; Yamasaki, J. Quantitative measurement of spatial coherence of electron beams emitted from a thermionic electron gun. JOSA A 2021, 38, 1893–1900. [Google Scholar] [CrossRef]
- Miller, P.D.; Gibson, J.M. Connecting small-angle diffraction with real-space images by quantitative transmission electron microscopy of amorphous thin-films. Ultramicroscopy 1998, 74, 221–235. [Google Scholar] [CrossRef]
- Franken, L.E.; Grünewald, K.; Boekema, E.J.; Stuart, M.C. A technical introduction to transmission electron microscopy for soft-matter: Imaging, possibilities, choices, and technical developments. Small 2020, 16, 1906198. [Google Scholar] [CrossRef] [PubMed]
- Morishita, S.; Yamasaki, J.; Tanaka, N. Measurement of spatial coherence of electron beams by using a small selected-area aperture. Ultramicroscopy 2013, 129, 10–17. [Google Scholar] [CrossRef]
- Kisielowski, C.; Specht, P.; Helveg, S.; Chen, F.R.; Freitag, B.; Jinschek, J.; Van Dyck, D. Probing the Boundary between Classical and Quantum Mechanics by Analyzing the Energy Dependence of Single-Electron Scattering Events at the Nanoscale. Nanomaterials 2023, 13, 971. [Google Scholar] [CrossRef]
- Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W.T.; Hwang, I.S.; Stibor, A. Coherent properties of a tunable low-energy electron-matter-wave source. Phys. Rev. A 2018, 97, 013611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.-H.; Lee, J.; Lee, J.I.; Cho, B.-G.; Lee, S. Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material. Nanomaterials 2023, 13, 3016. https://doi.org/10.3390/nano13233016
Kwon J-H, Lee J, Lee JI, Cho B-G, Lee S. Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material. Nanomaterials. 2023; 13(23):3016. https://doi.org/10.3390/nano13233016
Chicago/Turabian StyleKwon, Ji-Hwan, Joohyun Lee, Je In Lee, Byeong-Gwan Cho, and Sooheyong Lee. 2023. "Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material" Nanomaterials 13, no. 23: 3016. https://doi.org/10.3390/nano13233016
APA StyleKwon, J. -H., Lee, J., Lee, J. I., Cho, B. -G., & Lee, S. (2023). Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material. Nanomaterials, 13(23), 3016. https://doi.org/10.3390/nano13233016