Green-Light GaN p-n Junction Luminescent Particles Enhance the Superconducting Properties of B(P)SCCO Smart Meta-Superconductors (SMSCs)
Abstract
:1. Introduction
2. Model
3. Materials and Methods
3.1. Preparation of p-n Junction Luminescent Particles
3.2. Preparation of B(P)SCCO Precursor Powders
3.3. Preparation of BSCCO Superconductor and Inhomogeneous Phase Sample
3.4. Measurement of Critical Temperature (Tc)
3.5. Measurement of Critical Current Density and Meissner Effect
4. Results
4.1. Scanning Electron Microscope (SEM)
4.2. Critical Temperature TC
4.3. Critical Current Density JC
4.4. Complete Diamagnetism (Meisner Effect)
5. Discussion
5.1. The Enhancement Effect of Green-Light p-n Junction Luminescent Particle Doping
5.2. Adjusting the Matrix Size of B(P)SCCO Superconductors Can Regulate the Enhancement Effect of Superconducting Properties
5.3. Comparison of Chemical Doping and Luminescent Inhomogeneous Phase Doping
5.4. Universality of Enhancing Superconducting Performance through Luminescent Inhomogeneous Phase Doping
5.5. Enhancement Effect of p-n Junction Luminescent Particle Doping on Different Superconductors
5.6. The Physical Origin of the Increase in the Critical Transition Temperature
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef]
- Bardeen, J. Theory of the Meissner Effect in Superconductors. Phys. Rev. 1955, 97, 1724–1725. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible high TC superconductivity in the Ba-La-Cu-O system. Z. Phys. B Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Agterberg, D.F.; Davis, J.S.; Edkins, S.D.; Fradkin, E.; Van Harlingen, D.J.; Kivelson, S.A.; Lee, P.A.; Radzihovsky, L.; Tranquada, J.M.; Wang, Y. The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond. Annu. Rev. Condens. Matter Phys. 2020, 11, 231–270. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1−XFX]FeAs (x = 0.05–0.12) with TC = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef]
- Chen, X.H.; Dai, P.C.; Feng, D.L.; Xiang, T.; Zhang, F.C. Iron-based high transition temperature superconductors. Natl. Sci. Rev. 2014, 1, 371–395. [Google Scholar] [CrossRef]
- Zhang, P.; Yaji, K.; Hashimoto, T.; Ota, Y.; Kondo, T.; Okazaki, K.; Wang, Z.; Wen, J.; Gu, G.D.; Ding, H.; et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 2018, 360, 182–186. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef]
- Sun, W.G.; Kuang, X.Y.; Keen, H.D.J.; Lu, C.; Hermann, A. Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 2020, 102, 144524. [Google Scholar] [CrossRef]
- Dasenbrock-Gammon, N.; Snider, E.; McBride, R.; Pasan, H.; Durkee, D.; Khalvashi-Sutter, N.; Munasinghe, S.; Dissanayake, S.E.; Lawler, K.V.; Salamat, A.; et al. Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature 2023, 615, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.; Hunt, C.R.; Nicoletti, D.; Hu, W.; Gierz, I.; Liu, H.Y.; Le Tacon, M.; Loew, T.; Haug, D.; Keimer, B.; et al. Optically induced coherent transport far above TC in underdoped YBa2Cu3O6+δ. Phys. Rev. B 2014, 89, 184516. [Google Scholar] [CrossRef]
- Mitrano, M.; Cantaluppi, A.; Nicoletti, D.; Kaiser, S.; Perucchi, A.; Lupi, S.; Di Pietro, P.; Pontiroli, D.; Riccò, M.; Clark, S.R.; et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 2016, 530, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Cantaluppi, A.; Buzzi, M.; Jotzu, G.; Nicoletti, D.; Mitrano, M.; Pontiroli, D.; Riccò, M.; Perucchi, A.; Di Pietro, P.; Cavalleri, A. Pressure tuning of light-induced superconductivity in K3C60. Nat. Phys. 2018, 14, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kasahara, Y.; Ye, J.T.; Iwasa, Y.; Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 2015, 350, 409–413. [Google Scholar] [CrossRef]
- Saito, Y.; Nojima, T.; Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2017, 2, 16094. [Google Scholar] [CrossRef]
- Zhou, H.X.; Xie, T.; Taniguchi, T.; Watanabe, K.; Young, A.F. Superconductivity in rhombohedral trilayer graphene. Nature 2021, 598, 434–438. [Google Scholar] [CrossRef]
- Richter, C.; Boschker, H.; Dietsche, W.; Fillis-Tsirakis, E.; Jany, R.; Loder, F.; Kourkoutis, L.F.; Muller, D.A.; Kirtley, J.R.; Schneider, C.W.; et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 2013, 502, 528–531. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, Y.; Xia, M.; Ye, Z.; Chen, F.; Xie, X.; Peng, R.; Xu, D.; Fan, Q.; Xu, H.; et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Zhang, H.; Liu, Z.; Tian, H.; Sun, Y.; Zhang, M.; Zhou, Y.; Sun, J.; Xie, Y. Electric field control of superconductivity at the LaAlO3/KTaO3(111) interface. Science 2021, 372, 721–724. [Google Scholar] [CrossRef]
- Li, D.; Lee, K.; Wang, B.Y.; Osada, M.; Crossley, S.; Lee, H.R.; Cui, Y.; Hikita, Y.; Hwang, H.Y. Superconductivity in an infinite-layer nickelate. Nature 2019, 572, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Tam, C.C.; Sui, X.; Zhao, Y.; Xu, M.; Choi, J.; Leng, H.; Zhang, J.; Wu, M.; Xiao, H.; et al. Critical role of hydrogen for superconductivity in nickelates. Nature 2023, 615, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Huo, M.; Hu, X.; Li, J.; Liu, Z.; Han, Y.; Tang, L.; Mao, Z.; Yang, P.; Wang, B.; et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 2023, 621, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Malozemoff, A.P. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid. Annu. Rev. Mater. Res. 2012, 42, 373–397. [Google Scholar] [CrossRef]
- Mukherjee, P.; Rao, V.V. Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems. J. Mod. Power Syst. Clean Energy 2019, 7, 400–411. [Google Scholar] [CrossRef]
- Yao, C.; Ma, Y.W. Superconducting materials: Challenges and opportunities for large-scale applications. Iscience 2021, 24, 102541. [Google Scholar] [CrossRef] [PubMed]
- Sorbom, B.; Ball, J.; Palmer, T.; Mangiarotti, F.; Sierchio, J.; Bonoli, P.; Kasten, C.; Sutherland, D.; Barnard, H.; Haakonsen, C.; et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng. Des. 2015, 100, 378–405. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159. [Google Scholar] [CrossRef]
- Qi, X.L.; Hughes, T.L.; Zhang, S.C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B 2010, 82, 184516. [Google Scholar] [CrossRef]
- Fornieri, A.; Whiticar, A.M.; Setiawan, F.; Portolés, E.; Drachmann, A.C.C.; Keselman, A.; Gronin, S.; Thomas, C.; Wang, T.; Kallaher, R.; et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 2019, 569, 89–92. [Google Scholar] [CrossRef]
- Grilli, F.; Pardo, E.; Stenvall, A.; Nguyen, D.N.; Yuan, W.; Gomory, F. Computation of Losses in HTS under the Action of Varying Magnetic Fields and Currents. IEEE Trans. Appl. Supercond. 2014, 24, 78–110. [Google Scholar] [CrossRef]
- Shen, B.Y.; Grilli, F.; Coombs, T. Review of the AC loss computation for HTS using H formulation. Supercond. Sci. Technol. 2020, 33, 033002. [Google Scholar] [CrossRef]
- Pan, X.Y.; Wu, W.; Yu, X.; Lu, L.; Guo, C.J.; Zhao, Y. Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 °C. Supercond. Sci. Technol. 2023, 36, 034004. [Google Scholar] [CrossRef]
- Weber, H.W. Radiation Effects on Superconducting Fusion Magnet Components. Int. J. Mod. Phys. E 2011, 20, 1325–1378. [Google Scholar] [CrossRef]
- Haran, K.S.; Kalsi, S.; Arndt, T.; Karmaker, H.; Badcock, R.; Buckley, B.; Haugan, T.; Izumi, M.; Loder, D.; Bray, J.W.; et al. High power density superconducting rotating machines-development status and technology roadmap. Supercond. Sci. Technol. 2017, 30, 123002. [Google Scholar] [CrossRef]
- Hosono, H.; Yamamoto, A.; Hiramatsu, H.; Ma, Y.W. Recent advances in iron-based superconductors toward applications. Mater. Today 2018, 21, 278–302. [Google Scholar] [CrossRef]
- Dai, P.C. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 2015, 87, 855–896. [Google Scholar] [CrossRef]
- Tallon, L.J.; Buckley, G.R.; Gilbert, W.P.; Presland, R.M.; Brown, M.W.I.; Bowder, E.M.; Christian, A.L.; Gafull, R. High-TC superconducting phases in the series Bi2.1(Ca, Sr)n+1CunO2n+4+δ. Nature 1988, 333, 153–156. [Google Scholar] [CrossRef]
- Majewsky, P.; Hettich, B.; Schulze, K.; Petzow, G. Preparation of unleaded Bi2Sr2Ca2Cu3O10. Adv. Mater. 1991, 3, 488–491. [Google Scholar] [CrossRef]
- Ikeda, Y.; Takano, M.; Hiroi, Z.; Oda, K.; Kitaguchi, H.; Takada, J.; Miura, Y.; Takeda, Y.; Yamamoto, O.; Mazaki, H. The High-TC Phase with a New Modulation Mode in the Bi, Pb-Sr-Ca-Cu-O System. Jpn. J. Appl. Phys. 1988, 27, L2067–L2070. [Google Scholar] [CrossRef]
- Asghari, R.; Naghshara, H.; Arsalan, L.Ç.; Sedghi, H. Comparing the Effects of Nb, Pb, Y, and La Replacement on the Structural, Electrical, and Magnetic Characteristics of Bi-Based Superconductors. J. Supercond. Nov. Magn. 2018, 31, 3889–3898. [Google Scholar] [CrossRef]
- Honma, T.; Hor, P.H. Universal optimal hole-doping concentration in single-layer high-temperature cuprate superconductors. Supercond. Sci. Technol. 2006, 19, 907–911. [Google Scholar] [CrossRef]
- Tsui, O.K.C.; Ong, N.P.; Peterson, J.B. Excitation of the Josephson plasma mode in Bi2Sr2CaCu2O8+δ in an oblique field. Phys. Rev. Lett. 1996, 76, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Kiwa, T.; Misra, M.; Tonouchi, M.; Uchiyama, T.; Iguchi, I.; Wang, Z. Tetrahertz pulse radiation properties of a Bi2Sr2CaCu2O8+δ bowtie antenna by optical pulse illumination. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap. 2002, 41, 1992–1997. [Google Scholar] [CrossRef]
- Kawayama, I.; Zhang, C.H.; Wang, H.B.; Tonouchi, M. Study on terahertz emission and optical/terahertz pulse responses with superconductors. Supercond. Sci. Technol. 2013, 26, 093002. [Google Scholar] [CrossRef]
- Hudakova, N.; Plechacek, V.; Dordor, P.; Flachbart, K.; Knizek, K.; Kovac, J.; Reiffers, M. Influence of Pb concentration on microstructural and superconducting properties of BSCCO superconductors. Supercond. Sci. Technol. 1995, 8, 324–328. [Google Scholar] [CrossRef]
- Chu, C.W.; Bechtold, J.; Gao, L.; Hor, P.H.; Huang, Z.J.; Meng, R.L.; Sun, Y.Y.; Wang, Y.Q.; Xue, Y.Y. Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare-earth elements. Phys. Rev. Lett. 1988, 60, 941–943. [Google Scholar] [CrossRef] [PubMed]
- Zhigadlo, N.D.; Petrashko, V.V.; Semenenko, Y.A.; Panagopoulos, C.; Cooper, J.R.; Salje, E.K.H. The effects of Cs doping, heat treatments on the phase formation and superconducting properties of (Bi, Pb)-Sr-Ca-Cu-O ceramics. Phys. C Supercond. 1998, 299, 327–337. [Google Scholar] [CrossRef]
- Jordan, F.; Pena, O. Texturation and critical currents in cerium-substituted cuprates Bi2Sr2Ca1−xCexCu2O8+δ. J. Magn. Magn. Mater. 1995, 140, 1315–1316. [Google Scholar] [CrossRef]
- Annabi, M.; M’Chirgui, A.; Ben Azzouz, F.; Zouaoui, M.; Ben Salem, M. Addition of nanometer Al2O3 during the final processing of (Bi,Pb)-2223 superconductors. Phys. C-Supercond. Its Appl. 2004, 405, 25–33. [Google Scholar] [CrossRef]
- Yavuz, Ş.; Bilgili, Ö.; Kocabaş, K. Effects of superconducting parameters of SnO2 nanoparticles addition on (Bi, Pb)-2223 phase. J. Mater. Sci. Mater. Electron. 2016, 27, 4526–4533. [Google Scholar] [CrossRef]
- Jia, Z.Y.; Tang, H.; Yang, Z.Q.; Xing, Y.T.; Wang, Y.Z.; Qiao, G.W. Effects of nano-ZrO2 particles on the superconductivity of Pb-doped BSCCO. Phys. C 2000, 337, 130–132. [Google Scholar] [CrossRef]
- Guilmeau, E.; Andrzejewski, B.; Noudem, J.G. The effect of MgO addition on the formation and the superconducting properties of the Bi2223 phase. Phys. C-Supercond. Its Appl. 2003, 387, 382–390. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, X.P.; Kang, L.; Zhang, F.L.; Liu, Y.H.; Luo, C.R. The defect effect in the one-dimensional negative permeability material. Acta Phys. Sin. 2004, 53, 2206–2211. [Google Scholar] [CrossRef]
- Zhao, X. Bottom-up fabrication methods of optical metamaterials. J. Mater. Chem. 2012, 22, 9439–9449. [Google Scholar] [CrossRef]
- Smolyaninova, V.N.; Yost, B.; Zander, K.; Osofsky, M.S.; Kim, H.; Saha, S.; Greene, R.L.; Smolyaninov, I.I. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials. Sci. Rep. 2014, 4, 7321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.W.; Tao, S.; Chen, G.W.; Zhao, X.P. Improving the Critical Temperature of MgB2 Superconducting Metamaterials Induced by Electroluminescence. J. Supercond. Nov. Magn. 2016, 29, 1159–1162. [Google Scholar] [CrossRef]
- Tao, S.; Li, Y.B.; Chen, G.W.; Zhao, X.P. Critical Temperature of Smart Meta-superconducting MgB2. J. Supercond. Nov. Magn. 2017, 30, 1405–1411. [Google Scholar] [CrossRef]
- Li, Y.B.; Chen, H.G.; Wang, M.Z.; Xu, L.X.; Zhao, X.P. Smart meta-superconductor MgB2 constructed by the dopant phase of luminescent nanocomposite. Sci. Rep. 2019, 9, 14194. [Google Scholar] [CrossRef]
- Li, Y.B.; Han, G.Y.; Zou, H.Y.; Tang, L.; Chen, H.G.; Zhao, X.P. Reinforcing Increase of ΔTC in MgB2 Smart Meta-Superconductors by Adjusting the Concentration of Inhomogeneous Phases. Materials 2021, 14, 3066. [Google Scholar] [CrossRef]
- Chen, H.G.; Li, Y.B.; Wang, M.Z.; Han, G.Y.; Shi, M.; Zhao, X.P. Smart meta-structure method for increasing TC of Bi(Pb)SrCaCuO high-temperature superconductors. J. Supercond. Nov. Magn. 2020, 33, 3015–3025. [Google Scholar] [CrossRef]
- Chen, H.G.; Wang, M.Z.; Qi, Y.; Li, Y.B.; Zhao, X.P. Relationship between the TC of Smart Meta-Superconductor Bi(Pb)SrCaCuO and Inhomogeneous Phase Content. Nanomaterials 2021, 11, 1061. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.G.; Li, Y.B.; Qi, Y.; Wang, M.Z.; Zou, H.Y.; Zhao, X.P. Critical Current Density and Meissner Effect of Smart Meta-Superconductor MgB2 and Bi(Pb)SrCaCuO. Materials 2022, 15, 972. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hai, Q.; Shi, M.; Chen, H.; Li, Y.; Qi, Y. An Improved Smart Meta-Superconductor MgB2. Nanomaterials 2022, 12, 2590. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Z.; Xu, L.X.; Chen, G.W.; Zhao, X.P. Topological Luminophor Y2O3:Eu3++Ag with High Electroluminescence Performance. ACS Appl. Mater. Interfaces 2019, 11, 2328–2335. [Google Scholar] [CrossRef]
- Malik, B.A.; Rather, G.H.; Asokan, K.; Malik, M.A. Study on excess conductivity in YBCO + xAg composites. Appl. Phys. A-Mater. Sci. Process. 2021, 127, 294. [Google Scholar] [CrossRef]
- Kamar, A.; Srour, A.; Roumié, M.; Malaeb, W.; Awad, R.; Khalaf, A. Comparative study of structural and superconducting properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ phase substituted by copper fluoride and thallium fluoride. Appl. Phys. A-Mater. Sci. Process. 2021, 127, 579. [Google Scholar] [CrossRef]
- Karaca, I.; Celebi, S.; Varilci, A.; Malik, A.I. Effect of Ag2O addition on the intergranular properties of the superconducting Bi-(Pb)-Sr-Ca-Cu-O system. Supercond. Sci. Technol. 2003, 16, 100–104. [Google Scholar] [CrossRef]
- Shamsodini, M.; Salamati, H.; Shakeripour, H.; Sarsari, I.A.; Esferizi, M.F.; Nikmanesh, H. Effect of using two different starting materials (nitrates and carbonates) and a calcination processes on the grain boundary properties of a BSCCO superconductor. Supercond. Sci. Technol. 2019, 32, 075001. [Google Scholar] [CrossRef]
- Posselt, H.; Muller, H.; Andres, K.; Saito, G. Reentrant Meissner effect in the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl under pressure. Phys. Rev. B 1994, 49, 15849–15852. [Google Scholar] [CrossRef]
- Horiuchi, T.; Kawai, T.; Kawai, S.; Ogura, K. The trial of making Bi-Sr-Ca-Cu-M-O superconductors (M = Li, Na, K, Rb, Cs). Ferroelectrics 1990, 109, 351–356. [Google Scholar] [CrossRef]
Samples | A1 | A2 | A3 | A4 |
---|---|---|---|---|
Inhomogeneous phase p-n junction concentration (wt.%) | 0 | 0.1 | 0.15 | 0.2 |
Samples | B1 | B2 | B3 | B4 | B5 |
---|---|---|---|---|---|
Inhomogeneous phase p-n junction concentration (wt.%) | 0 | 0.1 | 0.15 | 0.2 | 0.25 |
Samples | Concentration (wt.%) | TC,0/K | TC,on/K | ΔTC,0/K | ΔTC,on/K | Transition Width/K |
---|---|---|---|---|---|---|
A1 | 0 | 103 ± 0.17 | 114 ± 0.15 | 0 | 0 | 11 |
A2 | 0.1 | 103.5 ± 0.11 | 114 ± 0.13 | 0.5 | 0 | 10.5 |
A3 | 0.15 | 105 ± 0.19 | 114 ± 0.16 | 2 | 0 | 9 |
A4 | 0.2 | 104 ± 0.16 | 114 ± 0.17 | 1 | 0 | 10 |
Samples | Concentration (wt.%) | TC,0/K | TC,on/K | ΔTC,0/K | ΔTC,on/K | Transition Width/K |
---|---|---|---|---|---|---|
B1 | 0 | 102 ± 0.17 | 109 ± 0.13 | 0 | 0 | 7 |
B2 | 0.1 | 102.5 ± 0.17 | 112 ± 0.14 | 0.5 | 3 | 9.5 |
B3 | 0.15 | 103 ± 0.15 | 112 ± 0.18 | 1 | 3 | 9 |
B4 | 0.2 | 104 ± 0.19 | 112 ± 0.17 | 2 | 3 | 8 |
B5 | 0.25 | 103.5 ± 0.13 | 112 ± 0.15 | 1.5 | 3 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, Q.; Chen, H.; Sun, C.; Chen, D.; Qi, Y.; Shi, M.; Zhao, X. Green-Light GaN p-n Junction Luminescent Particles Enhance the Superconducting Properties of B(P)SCCO Smart Meta-Superconductors (SMSCs). Nanomaterials 2023, 13, 3029. https://doi.org/10.3390/nano13233029
Hai Q, Chen H, Sun C, Chen D, Qi Y, Shi M, Zhao X. Green-Light GaN p-n Junction Luminescent Particles Enhance the Superconducting Properties of B(P)SCCO Smart Meta-Superconductors (SMSCs). Nanomaterials. 2023; 13(23):3029. https://doi.org/10.3390/nano13233029
Chicago/Turabian StyleHai, Qingyu, Honggang Chen, Chao Sun, Duo Chen, Yao Qi, Miao Shi, and Xiaopeng Zhao. 2023. "Green-Light GaN p-n Junction Luminescent Particles Enhance the Superconducting Properties of B(P)SCCO Smart Meta-Superconductors (SMSCs)" Nanomaterials 13, no. 23: 3029. https://doi.org/10.3390/nano13233029
APA StyleHai, Q., Chen, H., Sun, C., Chen, D., Qi, Y., Shi, M., & Zhao, X. (2023). Green-Light GaN p-n Junction Luminescent Particles Enhance the Superconducting Properties of B(P)SCCO Smart Meta-Superconductors (SMSCs). Nanomaterials, 13(23), 3029. https://doi.org/10.3390/nano13233029