Influence of the Ti-TiN-(Y,Ti,Al)N Nanolayer Coating Deposition Process Parameters on Cutting Tool Oxidative Wear during Steel Turning
Abstract
:1. Introduction
2. Materials and Methods
- Preliminary thermal activation and etching in a flow of gas (argon) and metal (titanium) plasma.
- Deposition of coatings. The parameters for this process were selected based on the following analysis:
3. Results
3.1. Elemental and Phase Composition, Structure
3.2. Hardness, Elastic Modulus, Critical Fracture Load Values during Scratch Test
3.3. Wear Resistance during Turning
3.3.1. Coating Y65
3.3.2. Coating Y85
3.3.3. Coating Y105
4. Conclusions
- When turning 1045 steel, a coating with 30 at. % yttrium showed better wear resistance compared to a commercial (Ti,Cr,Al) N coating. The coating with 63 at. % yttrium did not show an increase in wear resistance compared to the uncoated sample.
- While the tool with a coating containing 30 at. % yttrium showed smooth wear without signs of active brittle fracture, other coatings under study were destroyed as a result of active cracking and oxidation.
- Nanolayers with a high yttrium content are oxidized more actively compared to nanolayers with a high titanium content. When the titanium content in nanolayers subject to oxidation is more than 50 at. %, observed within 10 at. % oxygen, with a content of more than 50 at. % yttrium oxygen content exceeding 25 at. %.
- SAED analysis shows partial retention of the (Y,Ti,Al)N and (Ti,Y,Al)N phases during the formation of the Y2O3 oxide phase in the outer layers of the coating and the presence of the initial phases (Y,Ti,Al)N and (Ti, Y,Al)N in deep layers.
- Nanolayers of coatings with a high aluminum content are more susceptible to oxidative attack with the loss of the original nanolayer structure. In addition to oxidation, spinodal decomposition processes can occur in these nanolayers. This issue requires additional study.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soto, G.; Moreno-Armenta, M.G.; Reyes-Serrato, A. First principles study on the formation of yttrium nitride in cubic and hexagonal phases. Comput. Mater. Sci. 2008, 42, 8–13. [Google Scholar] [CrossRef]
- Haglund, J.; Grimvall, G.; Jarlborg, T.; Fernandez, A.; Guillermet, A.F. Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure. Phys. Rev. B 1991, 43, 14400–14408. [Google Scholar] [CrossRef]
- Mancera, L.; Rodriguez, J.A.; Takeuchi, N. First principles calculations of the ground state properties and structural phase transformation in YN. J. Phys. Condens. Matter 2003, 15, 2625–2633. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, R.; Gour, A. TBI calculations of the elastic properties and structural phase transformation in novel materials: Yttrium nitride. Acta Phys. Pol. A 2011, 120, 1021–1025. [Google Scholar] [CrossRef]
- Zerroug, S.; Ali Sahraoui, F.; Bouarissa, N. Ab initio calculations of yttrium nitride: Structural and electronic properties. Appl. Phys. A 2009, 97, 345–350. [Google Scholar] [CrossRef]
- Yusa, H.; Fujihisa, H. Dense Structure of Yttrium Nitride as a Post-Rock-Salt Phase: High-Pressure Experiments and Computations. Inorg. Chem. 2022, 61, 20906–20912. [Google Scholar] [CrossRef]
- Aslandukov, A.; Aslandukova, A.; Laniel, D.; Koemets, I.; Fedotenko, T.; Yuan, L.; Steinle-Neumann, G.; Glazyrin, K.; Hanfland, M.; Dubrovinsky, L.; et al. High-Pressure Yttrium Nitride, Y5N14, Featuring Three Distinct Types of Nitrogen Dimers. J. Phys. Chem. C 2021, 125, 18077–18084. [Google Scholar] [CrossRef]
- Xu, B.; Xiang, H.; Yin, J.; Xia, Y.; Liu, Z. A two-dimensional tetragonal yttrium nitride monolayer: A ferroelastic semiconductor with switchable anisotropic properties. Nanoscale 2018, 10, 215–221. [Google Scholar] [CrossRef]
- Ngoipala, A.; Kaewmaraya, T.; Hussain, T.; Karton, A. Scavenging properties of yttrium nitride monolayer towards toxic sulfur gases. Appl. Surf. Sci. 2011, 537, 147711. [Google Scholar] [CrossRef]
- De La Cruz, W.; Díaz, J.A.; Mancera, L.; Takeuchi, N.; Soto, G. Yttrium nitride thin films grown by reactive laser ablation. J. Phys. Chem. Solids 2003, 64, 2273–2279. [Google Scholar] [CrossRef]
- Yang, J.W.; An, L. Ab initio calculation of the electronic, mechanical, and thermodynamic properties of yttrium nitride with the rocksalt structure. Phys. Status Solidi B Basic Res. 2014, 251, 792–802. [Google Scholar] [CrossRef]
- Ghebouli, M.A.; Ghebouli, B.; Zeghad, A.; Chihi, T.; Fatmi, M.; Ahmed, S.I. First-principles calculations to investigate structural, elastic, electronic, lattice dynamic and optical properties for scandium and yttrium nitrides in zinc blend structure. J. Mater. Res. Technol. 2021, 14, 1958–1968. [Google Scholar] [CrossRef]
- Du, L.; Edgar, J.H.; Peascoe-Meisner, R.A.; Gong, Y.; Bakalova, S.; Kuball, M. Sublimation crystal growth of yttrium nitride. J. Cryst. Growth 2010, 312, 2896–2903. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Z.; Chen, S.; Guo, Y. Microstructure and tensile properties of yttrium nitride dispersion-strengthened 14Cr-3W ferritic steels. Fusion Eng. Des. 2015, 101, 17–21. [Google Scholar] [CrossRef]
- Dou, X.; Han, H.; Zhai, G.; Suo, B. Potential energy curves and interpretation of electronic spectrum of the yttrium nitride. Int. J. Quantum Chem. 2011, 111, 3378–3384. [Google Scholar] [CrossRef]
- Lü, T.-Y.; Huang, M.-C. Electronic structure of ScN and YN: Density-functional theory LDA and GW approximation calculations. Chin. Phys. 2007, 16, 62–66. [Google Scholar]
- Yurdasan, N.B.; Gulebaglan, S.E.; Akyuz, G.B. First principles study of phonon dispersion curved for yttrium nitride. Acta Phys. Pol. 2013, 123, 317–319. [Google Scholar] [CrossRef]
- Saha, B.; Sands, T.D.; Waghmare, U.V. Electronic structure, vibrational spectrum, and thermal properties of yttrium nitride: A first-principles study. J. Appl. Phys. 2011, 109, 073720. [Google Scholar] [CrossRef]
- Haq, B.U.; Afaq, A.; Abdellatif, G.; Ahmed, R.; Naseem, S.; Khenata, R. First principles study of scandium nitride and yttrium nitride alloy system: Prospective material for optoelectronics. Superlattices Microstruct. 2015, 85, 24–33. [Google Scholar] [CrossRef]
- Gao, H.; Sun, L.; Zhao, M. Low-loss hyperbolic dispersion and anisotropic plasmonic excitation in nodal-line semimetallic yttrium nitride. Opt. Express 2020, 28, 22076–22087. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.-B.; Zhang, H.; Yin, W.-J.; Zhang, H.-B.; Peng, P.; Liu, L.-M. Electronic structures and optical properties of two-dimensional ScN and YN nanosheets. J. Appl. Phys. 2014, 115, 093504. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Bublikov, J.; Seleznev, A.; Sotova, C. Crack formation and oxidation wear in (Cr,Y,Al)N and (Mo,Y,Al)N nanolayer coatings with high content of yttrium. Wear 2023, 528–529, 204989. [Google Scholar] [CrossRef]
- Ju, H.; Yu, L.; He, S.; Asempah, I.; Xu, J.; Hou, Y. The enhancement of fracture toughness and tribological properties of the titanium nitride films by doping yttrium. Surf. Coat. Technol. 2017, 321, 57–63. [Google Scholar] [CrossRef]
- Lewis, D.B.; Donohue, L.A.; Lembke, M.; Münz, W.-D.; Kuzel, R., Jr.; Valvoda, V.; Blomfield, C.J. The influence of the yttrium content on the structure and properties of Ti1-x-y-zAlxCryYzN PVD hard coatings. Surf. Coat. Technol. 1999, 114, 187–199. [Google Scholar] [CrossRef]
- Scheerer, H.; Berger, C. Wear mechanisms of (Cr,Al,Y)N PVD coatings at elevated temperatures. Plasma Process. Polym. 2009, 6 (Suppl. S1), S157–S161. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Lewis, D.B.; Luo, Q.; Münz, W.-D.; Mayrhofer, P.H.; Mitterer, C.; Zhou, Z.; Rainforth, W.M. TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures. Thin Solid Film. 2005, 485, 160–168. [Google Scholar] [CrossRef]
- Walker, J.C.; Ross, I.M.; Reinhard, C.; Rainforth, W.M.; Hovsepian, P.E. High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on γ-TiAl. Wear 2009, 267, 965–975. [Google Scholar] [CrossRef]
- Dominguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jimenez De Haro, M.C.; Justo, A.; Brizuela, M.; Rojas, T.C.; Sanchez-Lopez, J.C. Role of Y in the oxidation resistance of CrAlYN coatings. Appl. Surf. Sci. 2015, 353, 504–511. [Google Scholar] [CrossRef]
- Dudziak, T.; Datta, P.K.; Mayrhofer, P.H.; Rovere, F. High temperature oxidation resistance of CrAlYN-coated Ti45Al8Nb. Oxid. Met. 2011, 75, 359–376. [Google Scholar] [CrossRef]
- Braun, R.; Lange, A.; Hovsepian, P.E.; Ehiasarian, A.P.; Tietema, R.; Leyens, C. Oxidation behaviour of TiAlYN/CrN and CrAlYN/CrN nanoscale multilayer coatings with Al2O3 topcoat deposited on gamma-TiAl alloys. Mater. High Temp. 2011, 28, 324–335. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Ehiasarian, A.P.; Braun, R.; Walker, J.; Du, H. Novel CrAlYN/CrN nanoscale multilayer PVD coatings produced by the combined High Power Impulse Magnetron Sputtering/Unbalanced Magnetron Sputtering technique for environmental protection of γ-TiAl alloys. Surf. Coat. Technol. 2010, 204, 2702–2708. [Google Scholar] [CrossRef]
- Rovere, F.; Mayrhofer, P.H.; Reinholdt, A.; Mayer, J.; Schneider, J.M. The effect of yttrium incorporation on the oxidation resistance of Cr–Al–N coatings. Surf. Coat. Technol. 2008, 202, 5870–5875. [Google Scholar] [CrossRef]
- Liu, S.; Ong, B.D.; Guo, J.; Liu, E.; Zeng, X. Wear performance of Y-doped nanolayered CrN/AlN coatings. Surf. Coat. Technol. 2019, 367, 349–357. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Ji, R.; Zeng, X.T.; Clegg, W.J. AlN/CrN multilayer structures with increased thermal stability. Scr. Mater. 2017, 130, 242–246. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Ng, F.L.; Ji, R.; Zeng, X.T. Oxidation behaviour of CrAlYN coatings at elevated temperatures. Surf. Coat. Technol. 2017, 320, 357–361. [Google Scholar] [CrossRef]
- Yaylalı, B.; Gülten, G.; Yeşilyurt, M.; Yüksel, F.; Polat, M.A.; Efeoğlu, İ. Annealing Effect on Nb Additive CrYN Thin Films Deposited by Magnetron Sputtering. In Proceedings of the 5th International Conference on Advances in Manufacturing and Materials Engineering, Kuala Lumpur, Malaysia, 9–10 August 2022; Lecture Notes in Mechanical Engineering. Springer: Singapore, 2023; pp. 259–265. [Google Scholar]
- Yamamoto, K.; Kujime, S.; Fox-Rabinovich, G. Effect of alloying element (Si,Y) on properties of AIP deposited (Ti,Cr,Al)N coating. Surf. Coat. Technol. 2008, 203, 579–583. [Google Scholar] [CrossRef]
- Mingsheng, L.; Changjie, F.; Fuhui, W.; Weitao, W. Long-term oxidation resistance of (Ti,Al,Y)N coatings at 800 °C. Mater. Sci. Forum 2007, 546–549 Pt 3, 1789–1794. [Google Scholar]
- Li, M.; Wang, F.; Wu, W. High temperature oxidation of (Ti,Al)N and (Ti,Al,Y)N coatings on a steel prepared by arc ion plating (AIP). Mater. Sci. Forum 2004, 461–464, 351–358. [Google Scholar] [CrossRef]
- Rachbauer, R.; Holec, D.; Lattemann, M.; Hultman, L.; Mayrhofer, P.H. Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti-Al-N thin films. Int. J. Mater. Res. 2011, 102, 735–742. [Google Scholar] [CrossRef]
- Aninat, R.; Valle, N.; Chemin, J.-B.; Duday, D.; Michotte, C.; Penoy, M.; Bourgeois, L.; Choquet, P. Addition of Ta and Y in a hard Ti-Al-N PVD coating: Individual and conjugated effect on the oxidation and wear properties. Corros. Sci. 2019, 156, 171–180. [Google Scholar] [CrossRef]
- Belous, V.A.; Vasyliev, V.V.; Goltvyanytsya, V.S.; Goltvyanytsya, S.K.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel’nitskij, V.E.; Tolmacheva, G.N.; Danylina, O. Structure and properties of Ti-Al-Y-N coatings deposited from filtered vacuum-arc plasma. Surf. Coat. Technol. 2011, 206, 1720–1726. [Google Scholar] [CrossRef]
- Grigoriev, S.; Volosova, M.; Fyodorov, S.; Lyakhovetskiy, M.; Seleznev, A. DLC-coating application to improve the durability of ceramic tools. J. Mater. Eng. Perform. 2019, 28, 4415–4426. [Google Scholar] [CrossRef]
- Sobol’, O.V.; Andreev, A.A.; Grigoriev, S.N.; Gorban’, V.F.; Volosova, M.A.; Aleshin, S.V.; Stolbovoy, V.A. Physical characteristics, structure and stress state of vacuum-arc TiN coating, deposition on the substrate when applying high-voltage pulse during the deposition. Probl. At. Sci. Technol. 2011, 4, 174–177. [Google Scholar]
- Sobol’, O.V.; Andreev, A.A.; Grigoriev, S.N.; Gorban’, V.F.; Volosova, M.A.; Aleshin, S.V.; Stolbovoi, V.A. Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings. Met. Sci. Heat Treat. 2012, 54, 195–203. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Fedorov, S.V.; Okunkova, A.A.; Pivkin, P.M.; Peretyagin, P.Y.; Ershov, A. Development of DLC-Coated Solid SiAlON/TiN Ceramic End Mills for Nickel Alloy Machining: Problems and Prospects. Coatings 2021, 11, 532. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Uglov, V.; Milovich, F.; Cherenda, N.; Andreev, N.; Migranov, M.; Seleznev, A. Influence of tribological properties of Zr-ZrN-(Zr,Cr,Al)N and Zr-ZrN-(Zr,Mo,Al)N multilayer nanostructured coatings on the cutting properties of coated tools during dry turning of Inconel 718 alloy. Wear 2023, 512–513, 204521. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Mustafaev, E. Specific features of the structure and properties of arc-PVD coatings depending on the spatial arrangement of the sample in the chamber. Vacuum 2022, 200, 111047. [Google Scholar] [CrossRef]
- Haršáni, M.; Sahul, M.; Zacková, P.; Čaplovič, Ľ. Study of cathode current effect on the properties of CrAlSiN coatings prepared by LARC. Vacuum 2017, 139, 1–8. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Wu, C.-J. Mechanical properties and impact resistance of multilayered TiAlN/ZrN coatings. Surf. Coat. Technol. 2013, 231, 62–66. [Google Scholar] [CrossRef]
- Krysina, O.V.; Prokopenko, N.A.; Ivanov, Y.F.; Tolkachev, O.S.; Shugurov, V.V.; Petrikova, E.A. Multi-layered gradient (Zr,Nb)N coatings deposited by the vacuum-arc method. Surf. Coat. Technol. 2020, 393, 125759. [Google Scholar] [CrossRef]
- Ju, H.; Jia, P. Microstructure, Oxidation Resistance and Mechanical Properties of Nb–Y–N Films by Reactive Magnetron Sputtering. Prot. Met. Phys. Chem. Surf. 2020, 56, 328–332. [Google Scholar] [CrossRef]
- ASTM C1624-05; Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- Knunyants, I.L. (Ed.) . Chemical Encyclopedia; Soviet Encyclopedia: Moscow, Russia, 1990; Volume 2, 671p. [Google Scholar]
- Bennett, M.J.; Houlton, M.R.; Dearnaley, G. The influence of the surface ion implantation of aluminium and yttrium upon the oxidation behaviour of a Fe-15% Cr-4% Al Fecralloy® stainless steel, in air, at 1100 °C. Corros. Sci. 1980, 20, 69–72. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Han, Y. Effect of yttrium on oxidation behavior of Ni 3Al-based single crystal alloys. Rare Met. 2011, 30 (Suppl. S1), 538–543. [Google Scholar] [CrossRef]
- Cueff, R.; Buscail, H.; Caudron, E.; Issartel, C.; Riffard, F. Oxidation of alumina formers at 1173 K: Effect of yttrium ion implantation and yttrium alloying addition. Corros. Sci. 2003, 45, 1815–1831. [Google Scholar] [CrossRef]
- Cueff, R.; Buscail, H.; Caudron, E.; Riffard, F. The effect of yttrium on the oxidation of a commercial Fe-Cr-Al alloy at 1173 K. Mater. Sci. Forum 2001, 369–372, 311–318. [Google Scholar] [CrossRef]
- Vorkötter, C.; Hagen, S.P.; Pintsuk, G.; Mack, D.E.; Virtanen, S.; Guillon, O.; Vaßen, R. Oxide Dispersion Strengthened Bond Coats with Higher Alumina Content: Oxidation Resistance and Influence on Thermal Barrier Coating Lifetime. Oxid. Met. 2019, 92, 167–194. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Zhang, C.; Lan, H.; Hou, P.Y.; Yang, Z.-G. Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium. Corros. Sci. 2011, 53, 1035–1043. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, C.; Zhang, Y.D.; Salam, S.; Wang, H.F.; Yang, Z.G. Effect of yttrium and aluminum additions on isothermal oxidation behavior of Tribaloy T-700 alloys. Corros. Sci. 2014, 88, 405–415. [Google Scholar] [CrossRef]
- Edgren, A.; Johansson, L.-G.; Ström, E.; Hörnqvist Colliander, M. Influence of Yttrium Doping on the Oxidation of Mo(Si,Al)2 in Air at 1500 °C. Oxid. Met. 2022, 98, 415–427. [Google Scholar] [CrossRef]
- Issartel, C.; Buscail, H.; Chevalier, S.; Favergeon, J. Effect of Yttrium as Alloying Element on a Model Alumina-Forming Alloy Oxidation at 1100 °C. Oxid. Met. 2017, 88, 409–420. [Google Scholar] [CrossRef]
- Cueff, R.; Buscail, H.; Caudron, E.; Issartel, C.; Riffard, F. Oxidation behaviour of alumina formers at 1173 K: Influence of yttrium alloying addition. In Proceedings of the 13th French-Polish Seminar on Reactivity of Solids, Cluny, France, 3–5 September 2002; Annales de Chimie, Science des Matériaux. Lavoisier: Cachan, France, 2003; Volume 28, pp. S207–S214. [Google Scholar]
- Jedliński, J.; Mrowec, S. The influence of implanted yttrium on the oxidation behaviour of β-NiAl. Mater. Sci. Eng. A 1987, 8, 281–287. [Google Scholar] [CrossRef]
- Issartel, C.; Buscail, H.; Caudron, E.; Cueff, R.; Riffard, F.; Perrier, S.; Chevalier, S. Influence of yttrium introduction method on the oxidation at 1100°C of a model alumina-forming alloy. In Proceedings of the 13th French-Polish Seminar on Reactivity of Solids, Cluny, France, 3–5 September 2002; Annales de Chimie, Science des Matériaux. Lavoisier: Cachan, France, 2003; Volume 28, pp. S215–S222. [Google Scholar]
- Xin, L.; Li, M.S.; Qian, Y.H.; Li, T.F. Influences of yttrium on cyclic oxidation behavior of Fe-Cr-Al alloy. J. Rare Earths 2001, 19, 53–56. [Google Scholar]
- Veprek, S.; Männling, H.D.; Jilek, M.; Holubar, P. Avoiding the high-temperature decomposition and softening of (Al1−xTix)N coatings by the formation of stable superhard nc-(Al1−xTix)N/a-Si3N4 nanocomposite. Mater. Sci. Eng. A 2004, 366, 202–205. [Google Scholar] [CrossRef]
- Rogström, L.; Johansson-Jõesaar, M.P.; Landälv, L.; Ahlgren, M.; Odén, M. Wear behavior of ZrAlN coated cutting tools during turning. Surf. Coat. Technol. 2015, 282, 180–187. [Google Scholar] [CrossRef]
- Choi, P.-P.; Povstugar, I.; Ahn, J.-P.; Kostka, A.; Raabe, D. Thermal stability of TiAIN/CrN multilayer coatings studied by atom probe tomography. Ultramicroscopy 2011, 111, 518–523. [Google Scholar] [CrossRef]
- Povstugar, I.; Choi, P.-P.; Tytko, D.; Ahn, J.-P.; Raabe, D. Interface-directed spinodal decomposition in TiAlN/CrN multilayer hard coatings studied by atom probe tomography. Acta Mater. 2013, 61, 7534–7542. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Prakash, M.S.; Jain, A.; Rajam, K.S. Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum 2005, 77, 169–179. [Google Scholar] [CrossRef]
Coating | Hardness, GPa | Elasticity Modulus, GPa | Critical Failure Load LC2, N |
---|---|---|---|
Y65 | 27 ± 1.2 | 215 ± 47 | 38 |
Y85 | 24 ± 0.9 | 200 ± 62 | 24 |
Y105 | 16 ± 1.7 | 160 ± 67 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vereschaka, A.; Sotova, C.; Milovich, F.; Seleznev, A.; Sitnikov, N.; Shekhtman, S.; Pirogov, V.; Baranova, N. Influence of the Ti-TiN-(Y,Ti,Al)N Nanolayer Coating Deposition Process Parameters on Cutting Tool Oxidative Wear during Steel Turning. Nanomaterials 2023, 13, 3039. https://doi.org/10.3390/nano13233039
Vereschaka A, Sotova C, Milovich F, Seleznev A, Sitnikov N, Shekhtman S, Pirogov V, Baranova N. Influence of the Ti-TiN-(Y,Ti,Al)N Nanolayer Coating Deposition Process Parameters on Cutting Tool Oxidative Wear during Steel Turning. Nanomaterials. 2023; 13(23):3039. https://doi.org/10.3390/nano13233039
Chicago/Turabian StyleVereschaka, Alexey, Catherine Sotova, Filipp Milovich, Anton Seleznev, Nikolay Sitnikov, Semen Shekhtman, Vladimir Pirogov, and Natalia Baranova. 2023. "Influence of the Ti-TiN-(Y,Ti,Al)N Nanolayer Coating Deposition Process Parameters on Cutting Tool Oxidative Wear during Steel Turning" Nanomaterials 13, no. 23: 3039. https://doi.org/10.3390/nano13233039
APA StyleVereschaka, A., Sotova, C., Milovich, F., Seleznev, A., Sitnikov, N., Shekhtman, S., Pirogov, V., & Baranova, N. (2023). Influence of the Ti-TiN-(Y,Ti,Al)N Nanolayer Coating Deposition Process Parameters on Cutting Tool Oxidative Wear during Steel Turning. Nanomaterials, 13(23), 3039. https://doi.org/10.3390/nano13233039