Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning
Abstract
:1. Introduction
2. Solution Flow Model in Nozzle
2.1. Principle of Centrifugal Spinning and Jet Process
2.2. Establishment of Spinning Solution Flow Model in Nozzle
3. Optimization Process of Bent-Tube Nozzle Structure
3.1. Establishment of Optimization Model of Centrifugal Spinning Nozzle
3.2. Application of Neural Network Algorithm in Bent-Tube Nozzle
3.3. Optimization Results of Bent-Tube Nozzle
4. Experiment Sections
4.1. Centrifugal Spinning Experiment
4.1.1. Experimental Materials and Experimental Equipment
4.1.2. Experimental Process of Centrifugal Spinning
4.1.3. Experimental Results and Nanofiber Diameter Distribution
4.2. The Influence of Spinning Parameters on Nanofibers
4.2.1. Effect of Nozzle Diameter on Nanofibers
4.2.2. Effect of Bending Angle on Nanofibers
4.2.3. Effect of Curvature Radius on Nanofibers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, H.; Chen, H.; Li, X.; Liu, C.; Yang, B. A comparative study of jet formation in nozzle- and nozzle-less centrifugal spinning systems. J. Polym. Sci. 2014, 52, 1547–1559. [Google Scholar] [CrossRef]
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar] [CrossRef]
- Al-Kadumi, A.K.; Al-Baghdadi, M.H. Effect of the Polymer Density on Nano Fiber Properties. Nonlinear Opt. 2020, 52, 271–279. [Google Scholar]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional materials by electrostatic spinning of polymers. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Nazari, M.; Agbolaghi, S.; Gheybi, H.; Abbaspoor, S.; Abbasi, F. A focus on the features of polyaniline nanofibres prepared via developing the single crystals of their block copolymers with poly (ethylene glycol). Bull. Mater. Sci. 2018, 41, 29. [Google Scholar] [CrossRef]
- Loordhuswamy, A.M.; Krishnaswamy, V.R.; Korrapati, P.S.; Thinakaran, S.; Rengaswami, G.D.V. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Mater. Sci. Eng. C 2014, 42, 799–807. [Google Scholar] [CrossRef]
- Zuniga, L.; Agubra, V.; Flores, D.; Campos, H.; Villareal, J. Multichannel hollow structure for improved electrochemical performance of TiO2/Carbon composite nanofibers as anodes for lithium ion batteries. J. Alloys Compd. 2016, 686, 733–743. [Google Scholar] [CrossRef]
- Dos Santos, D.M.; Correa, D.S.; Medeiros, E.S.; Oliveira, J.E.; Mattoso, L.H.C. Advances in functional polymer nanofibers: From spinning fabrication techniques to recent biomedical applications. ACS Appl. Mater. Interfaces 2020, 12, 45673–45701. [Google Scholar] [CrossRef]
- Wang, M.; Yu, D.G.; Li, X.; Williams, G.R. The development and bio-applications of multifluid electrostatic spinning. Mater. Highlights 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Li, L.; Zhang, C.; Tian, L.; Wu, Z.; Wang, D.; Jiao, T. Preparation and Antibacterial Properties of a Composite Fiber Membrane Material Loaded with Cationic Antibacterial Agent by Electrospinning. Nanomaterials 2023, 13, 583. [Google Scholar] [CrossRef]
- Lee, M.; Kang, J.; Lee, Y.T. Melt Blown Fiber-Assisted Solvent-Free Device Fabrication at Low-Temperature. Micromachines 2020, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Han, W.; Chen, H.; Tu, M.; Zeng, R.; Shi, Y.; Cha, Z.; Zhou, C. Preparation, structure and crystallinity of chitosan nano-fibers by a solid–liquid phase separation technique. Carbohydr. Polym. 2011, 83, 1541–1546. [Google Scholar] [CrossRef]
- Keaswejjareansuk, W.; Wang, X.; Sisson, R.D.; Liang, J. Electrostatic spinning process control for fiber-structured poly(Bisphenol A-co-Epichlorohydrin) membrane. AIMS Mater. Sci. 2020, 7, 130–143. [Google Scholar] [CrossRef]
- Sarkar, K.; Gomez, C.; Zambrano, S.; Ramirez, M.; De Hoyos, E.; Vasquez, H.; Lozano, K. Electrostatic spinning to forcespinning™. Mater. Today 2010, 13, 12–14. [Google Scholar] [CrossRef]
- Yu, J.; Baird, D.G. Study of melt spinning processing conditions for a polyacrylonitrile copolymer with a water/ethanol mixture as a plasticizer. Int. Polym. Process. 2019, 34, 557–563. [Google Scholar] [CrossRef]
- Noroozi, S.; Hassanzadeh, H.; Arne, W.; Larson, R.G.; Taghavi, S.M. Centrifugal spinning of polymeric solutions: Experiments and modelling. J. Non-Newton. Fluid Mech. 2023, 313, 104971. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, Y.; Xu, Q.; Zhang, B. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J. Eng. Fibers Fabr. 2019, 14, 1558925019867517. [Google Scholar] [CrossRef]
- Fang, Y.; Dulaney, A.R.; Gadley, J.; Maia, J.; Ellison, C.J. A comparative parameter study: Controlling fiber diameter and diameter distribution in centrifugal spinning of photocurable monomers. Polymer 2016, 88, 102–111. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Li, W.; Zhang, Z.; Zhang, C. Investigation on slippage mechanism in the micro-triangle and preparation of composite nanofiber by centrifugal spinning. J. Text. Inst. 2023, 114, 151–162. [Google Scholar] [CrossRef]
- Atıcı, B.; Ünlü, C.H.; Yanilmaz, M. A review on centrifugally spun fibers and their applications. Polym. Rev. 2022, 62, 1–64. [Google Scholar] [CrossRef]
- Ren, L.; Kotha, S.P. Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett. 2014, 117, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Merchiers, J.; Meurs, W.; Deferme, W.; Peeters, R.; Buntinx, M.; Reddy, N.K. Influence of polymer concentration and nozzle material on centrifugal fiber spinning. Polymers 2020, 12, 575. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Z.; Lu, B.; Mei, S.; Xu, Q.; Liu, F. Research on parametric model for polycaprolactone nanofiber produced by centrifugal spinning. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 186. [Google Scholar] [CrossRef]
- Ravishankar, P.; Khang, A.; Laredo, M.; Balachandran, K. Using dimensionless numbers to predict centrifugal jet-spun nanofiber morphology. J. Nanomater. 2019, 2019, 4639658. [Google Scholar] [CrossRef]
- Padilla-Gainza, V.; Morales, G.; Rodríguez-Tobías, H.; Lozano, K. Forcespinning technique for the production of poly (D,L-lactic acid) sub-micron fibers: Process-morphology-properties Relationship. J. Appl. Polym. Sci. 2019, 136, 47643. [Google Scholar] [CrossRef]
- Liu, K.; Li, W.; Ye, P.; Zhang, Z.; Ji, Q.; Wu, Z. The Bent-Tube Nozzle Optimization of Force-Spinning With the Gray Wolf Algorithm. Front. Bioeng. Biotechnol. 2021, 9, 807287. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Zhang, S.; Xu, G.; Fu, K.; Lee, H.; Zhang, X. Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur. Polym. J. 2013, 49, 3834–3845. [Google Scholar] [CrossRef]
- Zhmayev, Y.; Divvela, M.J.; Ruo, A.C.; Huang, T.; Joo, Y.L. The jetting behavior of viscoelastic Boger fluids during centrifugal spinning. Phys. Fluids 2015, 27, 123101. [Google Scholar] [CrossRef]
- Lai, Z.; Wang, J.; Liu, K.; Li, W.; Zhang, Z.; Chen, B. Research on rotary nozzle structure and flow field of the spinneret for centrifugal spinning. J. Appl. Polym. Sci. 2021, 138, 50832. [Google Scholar] [CrossRef]
- Muloiwa, M.; Dinka, M.; Nyende-Byakika, S. Modelling the biological treatment process aeration efficiency: Application of the artificial neural network algorithm. Water Sci. Technol. 2022, 86, 2912–2927. [Google Scholar] [CrossRef]
- Faridi, I.K.; Tsotsas, E.; Heineken, W.; Koegler, M. Spatio-temporal prediction of temperature in fluidized bed biomass gasifier using dynamic recurrent neural network method. Appl. Therm. Eng. 2023, 219, 119334. [Google Scholar] [CrossRef]
- Bayar, B.; Stamm, M.C. Design principles of convolutional neural networks for multimedia forensics. Electron. Imaging 2017, 29, 77–86. [Google Scholar] [CrossRef]
Item | Interpretation | Sign | Value (Range) |
---|---|---|---|
Optimization objective | Head loss | E | Minimum/j |
Design parameters | Bending angle | Θ | [0, 45]/angle |
Radius of curvature | R | [4, 9]/10−3 m | |
Outlet radius | R2 | [0.15, 0.5]/10−3 m | |
Equipment parameters | Container length | L1 | 30/10−3 m |
Taper tube length | L2 | 14.4/10−3 m | |
Length of straight pipe | L3 | 10/10−3 m | |
Container radius | R1 | 15/10−3 m | |
Container taper | φ | 90/angle | |
Solution parameters | Consistency coefficient | k | 7.62/pa·s |
Rheological index | n | 0.504 | |
Solution density | ρ | 1000/kg/m3 | |
Speed | Equipment speed | ω | [1000, 4000]/rpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Ye, P.; Zhang, Z.; Xu, Q. Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning. Nanomaterials 2023, 13, 3057. https://doi.org/10.3390/nano13233057
Guo Q, Ye P, Zhang Z, Xu Q. Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning. Nanomaterials. 2023; 13(23):3057. https://doi.org/10.3390/nano13233057
Chicago/Turabian StyleGuo, Qinghua, Peiyan Ye, Zhiming Zhang, and Qiao Xu. 2023. "Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning" Nanomaterials 13, no. 23: 3057. https://doi.org/10.3390/nano13233057
APA StyleGuo, Q., Ye, P., Zhang, Z., & Xu, Q. (2023). Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning. Nanomaterials, 13(23), 3057. https://doi.org/10.3390/nano13233057